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Abstract: Introduction: The influence of the MPFL graft in cases of patella instability with dysplastic
trochlea is a controversial topic. The effect of the MPFL reconstruction as single therapy is under
investigation, especially with severely dysplastic trochlea (Dejour types C and D). The purpose
of this study was to evaluate the impact of trochlear dysplasia on patellar kinematics in patients
suffering from low flexion patellar instability under weight-bearing conditions after isolated MPFL
reconstruction. Material and Methods: Thirteen patients were included in this study, among them
were eight patients with mild dysplasia (Dejour type A and B) and five patients with severe dysplasia
(Dejour type C and D). By performing a knee MRI with in situ loading, patella kinematics and
the patellofemoral cartilage contact area could be measured under the activation of the quadriceps
musculature in knee flexion angles of 0◦, 15◦ and 30◦. To mitigate MRI motion artefacts, prospective
motion correction based on optical tracking was applied. Bone and cartilage segmentation were
performed semi-automatically for further data analysis. Cartilage contact area (CCA) and patella
tilt were the main outcome measures for this study. Pre- and post-surgery measures were compared
for each group. Results: Data visualized a trending lower patella tilt after MPFL graft installation
in both groups and flexion angles of the knee. There were no significant changes in patella tilt
at 0◦ (unloaded pre-surgery: 22.6 ± 15.2; post-surgery: 17.7 ± 14.3; p = 0.110) and unloaded
15◦ flexion (pre-surgery: 18.9 ± 12.7; post-surgery: 12.2 ± 13.0; p = 0.052) of the knee in patients
with mild dysplasia, whereas in patients with severe dysplasia of the trochlea the results happened
not to be significant in the same angles with loading of 5 kg (0◦ flexion pre-surgery: 34.4 ± 12.1;
post-surgery: 31.2 ± 16.1; p = 0.5; 15◦ flexion pre-surgery: 33.3 ± 6.1; post-surgery: 23.4 ± 8.6;
p = 0.068). CCA increased in every flexion angle and group, but significant increase was seen only
between 0◦–15◦ (unloaded and loaded) in mild dysplasia of the trochlea, where significant increase
in Dejour type C and D group was seen with unloaded full extension of the knee (0◦ flexion) and
30◦ flexion (unloaded and loaded). Conclusion: This study proves a significant effect of the MPFL
graft to cartilage contact area, as well as an improvement of the patella tilt in patients with mild
dysplasia of the trochlea. Thus, the MPFL can be used as a single treatment for patient with Dejour
type A and B dysplasia. However, in patients with severe dysplasia the MPFL graft alone does not
significantly increase CCA.

Keywords: cartilage contact area; patella dynamics; trochlea dysplasia

1. Introduction

Patellar instability is a frequent cause of early degenerative articular cartilage damage
and developing patellofemoral osteoarthritis. Among others, trochlear dysplasia, patella
alta and genu valgum are reported to predispose for patellar instability or recurrent dis-
locations [1]. However, patellar dislocations and instability are always accompanied by
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damage to the medial capsuloligamentous restrain tissue [2], consisting of mainly the
medial patellofemoral ligament (MPFL), the weaker medial patellotibial ligament (MPTL),
the medial patellomeniscal ligament (MPML), and the medial quadriceps tendon femoral
ligament (MQTFL) [3,4]. Current studies report the MPFL as the strongest restraint against
lateral translation of the patella and MPFL-plasty as a successful treatment option for
patients with low flexion patellar instability [5,6]. About 50–60% of the total patellar
restraining forces is provided by the MPFL between angles of 0–30◦ flexion [7]. The patel-
lar tracking mechanism changes from predominant soft tissue, especially ligamentary
restraints, to increasingly osseous tracking due to the engagement of the patella in the
trochlear groove at about 30◦ of knee flexion [8].

The effects of surgical stabilization on patellar kinematics and cartilage contact mecha-
nisms are being investigated. However, the impact of trochlear dysplasia on cartilaginous
contact areas and patella kinematics after MPFL reconstruction remain unclear [9]. In order
to achieve optimal post-surgery results and prevent early joint degeneration due to persis-
tent maltracking after single MPFL reconstruction surgery, the necessity of adjunctional
measures, i.e., trochlea augmentation, has to be evaluated.

Although evaluating joint kinematics and cartilage surface areas is challenging, it is
greatly facilitated by fluoroscopy and Magnetic Resonance Imaging (MRI) [10,11]. Cadav-
eric studies primarily enabled insights into cartilage deformation under axial loading [12].
The reproducibility and quantification of MRI-guided investigations in vivo is technically
difficult. Knee flexion is required to load the patellofemoral joint axially. Weight bearing
under knee flexion leads to joint shaking, and consequently to motion artefacts in MRI
scans. Pulley or pneumatic loading devices have been used to enable reproducible and
comparable loading among a cohort of subjects [13–16]. In anticipation of motion arte-
facts, prospective motion correction (PMC) systems with optical tracking have successfully
minimized artefacts during loaded MRI scans [16].

The purpose of this study was to evaluate the impact of trochlear dysplasia on patellar
kinematics in patients suffering from low flexion patellar instability under weight-bearing
conditions after isolated MPFL reconstruction. To test our hypothesis—that in patients with
severe trochlea dysplasia, reconstruction of the MPFL does not sufficiently increase cartilage
contact area (CCA) and patella tracking as “stand alone” treatment—we conducted pre-
and post-surgery MRI scans of each patient to observe the intra-patient changes after
MPFL augmentation.

2. Materials and Methods

Thirteen patients with a dysplastic trochlea and chronic patellar luxation were in-
cluded in this study. Only patients with chronic patella instability, dysplasia of the trochlea,
no previous surgery on the affected knee and aged between 18–40 years were included.
Exclusion criteria included a history of prior patellofemoral surgery, metallic material from
previous knee surgery, pregnancy, retropatellar osteoarthritis and claustrophobia. Measure-
ments were taken pre- and post-surgery after implementation of an MPFL graft. Trochlear
configurations and patellar positions were determined by measuring the patellotrochlear
index, lateral trochlear inclination angle, mean osseous sulcus angle and then classified
according to the Dejour classification for dysplastic trochlea in all subjects [17–20]. An
overview of the patient selection process is shown in Figure 1.
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Figure 1. Patient selection process according to STROBE guideline.

The MRI measurements were performed with a Magnetom Trio 3T MRI system
(Siemens Healthineers, Erlangen, Germany), using an 8-channel multipurpose coil (NO-
RAS MRI products, Germany) for signal reception, which was attached to the thigh with a
hook-and-loop fastener. The experiments were conducted with an MRI-compatible pneu-
matic loading device to enable accurate load adjustment in the 0–500 N range (Figure 1).
A 3D turbo-spin echo (TSE) protocol with GRAPPA parallel imaging acceleration by a
factor of 2 and an isotropic resolution of 0.5 mm was applied for the MRI scans. Further
scan parameters were TR = 1.8 s, TE = 59 ms, receiver bandwidth = 504 Hz/Px, and scan
duration = 6:20 min. For prospective motion correction, we used a moiré phase tracking
(MPT) system with one in-bore camera and a single tracking marker [21]. Translational and
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rotational motion was optically tracked with a frame rate of 80 frames/s, enabling real-time
updates of the MRI measurement volume before every excitation pulse.

The patient was tied to the scanner bed with a weight-lifting belt, and the leg to be
examined was placed in the sliding carriage of the loading device (Figure 2). Measurements
were performed with knee flexion angles of 0◦, 15◦ and 30◦. For accurate and reproducible
angle adjustment, the knee was propped with a height-adjustable foam roll.
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Figure 2. Experimental Setup. The knee is loaded with an MR-compatible pneumatic loading
device (left). The multipurpose coil is attached to the thigh and the tracking marker for prospective
motion correction is taped to the knee cap (right).

For all three flexion angles, measurements were performed first without loading and
then with a load of approximately 5 kg. The MRI scans were started with a delay of 30 s
after the onset of loading to allow adaptation of the cartilage to the load [11,16,22].

SATORI, the web-based application developed by Fraunhofer MEVIS was used for
semi-automated segmentation of the MR images. SATORI is a customizable annotation
and analysis tool based on the MeVisLab rapid prototyping environment for medical
image analysis and visualization [23,24]. Bones and cartilages were semi-automatically
segmented in the data acquired at knee extension position (base image). We applied inter-
slice smoothing (Gaussian kernel with σ = 1.25 mm) to reduce discontinuities caused by
slice-wise drawing.

The Euclidean distance between two opposing cartilage surfaces was computed. Based
on these, the cartilage contact area (CCA) was defined as the cartilage surface area with an
inter-cartilage distance below 1 mm. Following this definition, we achieved contiguous
contact areas without holes in all our measurement data. Accurate and consistent segmen-
tation of the cartilages were needed to compute CCAs for each flexion angle. Based on
available manual segmentation masks, a convolutional neural network, known as U-Net,
was trained to segment bones in all the remaining images (flexion angle > 0◦ and loading
of 50 N) [25]. An iterative closest point algorithm on the surface meshes created from the
masks was used to pre-align the femur (patella) bone in the extended knee to the flexed
knee position [26]. Following this coarse alignment of the bones, a rigid image registration
of the two MRI images with the normalized gradient fields (NGF) distance measure was
performed to perfect the bone alignments [27]. The NGF evaluation was limited to a mask
region comprising the femur (patella) bone mask and a dilated (3 mm) region around it,
ensuring that the bone contours are entirely accounted for. The resulting refined transfor-
mation matrices were used to align femur and patella and the corresponding cartilages in
the extension position to the corresponding bone in the flexed knee position.
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For statistical analysis, our cohort was split into groups with severe (Dejour type C
and D) and mild (Types A and B) dysplastic trochlea. Pre- and post-surgery data were
evaluated using a Wilcoxon signed-rank test for paired data. Differences with p < 0.05 were
considered significant.

Statistical analyses were performed using IBM SPSS Statistics 28.0 (IBM Corp., 2017.
IBM SPSS Statistics for Windows, Armonk, NY, USA).

This study was approved by the Institutional Review Board (Freiburg University’s
Ethics Committee approved this study, ID 443/16) and all subjects provided written in-
formed consent before participation. All subjects voluntarily took part in the study in
accordance with the Declaration of Helsinki.

The results of all statistical tests were interpreted in an exploratory sense. No adjust-
ments for multiple testing were made in this exploratory study.

3. Results

A total of 13 patients with trochlea dysplasia were included for data analysis. Of those,
trochlea dysplasia was classified according to reported ranges in the literature [18,20]. For
distributive analysis of mild and severe dysplasia, we conducted a subgroup analysis of
patients with mild (Dejour types A and B; n = 8) and severe (Dejour types C + D; n = 5)
trochlear dysplasia. A demographic overview is depicted in Table 1.

Table 1. Cohort demographics.

Mild
Dejour Typ A + B

Severe
Dejour Type C + D Total

Gender ratio
Female:Male 4:4 4:1 8:5

Age in years 29.2 ± 9.6 23.5 ± 4.5 27.2 ± 8.4

Height in cm 171.6 ± 8.2 169.8 ± 6.6 171.0 ± 7.4

Weight in kg 71.5 ± 7.5 70.4 ± 5.0 71.1 ± 6.6

BMI 24.4 ± 2.7 24.5 ± 2.7 24.2 ± 2.6

The MPFL influence on patellar dynamics was evaluated via the measured differences
between pre- and post-surgery patellar tilt, patellofemoral CCA and medial-to-lateral
translation of the patella.

3.1. Patella Tilt

Data visualized a trending lower patella tilt after MPFL graft installation in both
groups and at all flexion angles of the knee (Figures 3 and 4). Results turned out to be
significant in every group except for a flexion angle of 15◦ with loading, as well as 0◦

extension with loading in case of severe dysplasia. In patients with mild trochlea dysplasia
no significant change in patella tilt could be seen in full extension (0◦) and 15◦ flexion of
the knee without loading, respectively (Table 2). In patients with mild dysplasia, patella tilt
was also significantly lower during 30◦ flexion with and without loading.

3.2. Cartilage Contact Area

The changes in cartilage contact area are depicted in Table 3. We observed a CCA in-
crease in patients with severely and mildly dysplastic trochlea for the loaded and unloaded
measurements, compared to pre-surgery measurements (Figures 5 and 6).

However, the increase in CCA at all 0◦–15◦ flexion angles was significant in patients
with mild trochlear dysplasia.

In patients with a severely dysplastic trochlea, we perceived a trending increase, but
the MPFL graft only had a significant influence on the CCA in 0◦ flexion (unloaded) and
30◦ flexion (unloaded and loaded).
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Table 2. Patella tilt in degree.

Mild Mild Severe Severe

Flexion Angle n Pre-Operative
Mean ± SD

Post-Operative
Mean ± SD p n Pre-Operative

Mean ± SD
Post-Operative

Mean ± SD p

Flexion 0◦ 8 22.6 ± 15.2 17.7 ± 14.3 0.110 5 34.4 ± 10.1 23.1 ± 7.6 0.043

Flexion 0◦ plus
5 kg load 8 23.2 ± 15.1 16.5 ± 14.1 0.051 5 34.4 ± 12.1 31.2 ± 16.1 0.500

Flexion 15◦ 8 18.9 ± 12.7 12.2 ± 13.0 0.052 5 29.7 ± 7.8 24.0 ± 7.4 0.043

Flexion 15◦ plus
5 kg load 8 24.0 ± 11.0 16.5 ± 12.5 0.044 5 33.3 ± 6.1 23.4 ± 8.6 0.068

Flexion 30◦ 8 18.1 ± 12.1 15.4 ± 11.3 0.041 5 28.3 ± 5.9 21.0 ± 4.0 0.043

Flexion 30◦ plus
5 kg load 8 17.0 ± 11.6 15.4 ± 11.2 0.039 5 26.2 ± 6.3 20.5 ± 3.1 0.043
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Table 3. Cartilage contact area in mm2.

Mild Mild Severe Severe

Flexion Angle Number of
Patients

Pre-Operative
Mean ± SD

Post-Operative
Mean ± SD p Number of

Patients
Pre-Operative
Mean ± SD

Post-Operative
Mean ± SD p

Flexion 0◦ 8 74.2 ± 51.8 195.1 ± 49.9 0.007 5 56.0 ± 46.6 120.5 ± 31.1 0.043

Flexion 0◦ plus
5 kg load 8 76.3 ± 50.4 183.4 ± 57.7 0.011 5 84.4 ± 50.3 139.8 ± 84.5 0.225

Flexion 15◦ 8 114.7 ± 75.7 250.4 ± 90.0 0.007 5 131.5 ± 40.3 170.4 ± 36.5 0.345

Flexion 15◦ plus
5 kg load 8 104.4 ± 82.0 215.9 ± 38.2 0.009 5 89.5 ± 45.4 223.5 ± 120.4 0.068

Flexion 30◦ 8 339.7 ± 87.3 379.7 ± 30.2 0.128 5 148.1 ± 85.9 238.3 ± 92.5 0.043

Flexion 30◦ plus
5 kg load 8 336.7 ± 99.3 397.8 ± 54.8 0.056 5 187.6 ± 67.8 312.7 ± 42.2 0.043
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4. Discussion

To date, this is the first work to have quantitatively assessed patellofemoral dynamics
under in situ loading. For the first time, improvement of patellar tilt and CCA could
be demonstrated following medial patellofemoral ligament reconstruction for recurrent
patellar instability using and A.I. algorithm based on segmented MRI in a loading device.
However, in cases of dysplastic trochlea the MPFL did not increase CCA or lowered patella
tilt significantly during the flexion of the knee. In an exploratory investigation under in
situ loading, Clark et al. measured CCA with patella-femoral instability against healthy
individuals with axial MRI sequences across different flexion angles between 0–40◦ of knee
flexion. A continuous increase in CCA was documented over the course of flexion [28].
Similar observations were made in the present study.

Normally, to control the maltracking of the patella before and after surgery, standard
imaging assessment comprises plain radiographs, CT scans or MRI scans.

Plain radiographs lack sensitivity in the detection of osteochondral lesions. In approxi-
mately 40%, small osteochondral lesions are missed [29]. CT and MRI present modalities to
also account for predisposing factors associated with chronic patellar instability or patella
maltracking [30,31]. However, all of the above-named imaging procedures only allow
static insight into the patella-femoral joint and do not account for dynamic factors, such as
quadriceps activation.

The latest literature suggests using a pulley system as a loading device [6,10,14]. Due
to limited space in the scanner bore, and to enable load adjustment from the scanner control
room, we decided to employ a pneumatic loading device. Motion artefacts were mitigated
with camera-based prospective motion correction to optimize the image quality for robust
segmentation [32,33].

The main findings of the present research were that the MPFL graft significantly
increases the CCA in patients with a mildly dysplastic trochlea for flexion angles of
0◦–15◦ (loaded and unloaded) and significantly decreases patellar tilt with quadriceps
activation (loaded) at 15◦ knee flexion in a mildly and a severely dysplastic trochlea.

In their 2021 study, Stevens et al. reported an increase in the patellofemoral CCA when
comparing patients before and after patellofemoral-stabilizing surgery using axial 5 mm
slices in loaded dynamic MRI imaging. The greatest differences were shown over a range
of 11–20◦ in active flexion [34]. The results of our study visualize a significant increase in
CCA for early flexion angles (0–15◦) as well but only in patients with mild dysplasia.

However, the surgical treatment of Stevens et al. comprised trochlea augmentation,
tibial tubercule osteotomy and MPFL reconstruction, but in later analysis no distinction
between treatment methods was found.

The patella-stabilization process is complex, involving static (joint geometry), passive
(supportive retinacula) and active (quadriceps muscles) stabilizers [35]. During the first
20 degrees of knee flexion, the patella is given no bony support, but stabilization is provided
by the medial and lateral retinacula—the passive stabilizers [36]. Most of the lateral
retinaculum arises from the iliotibial band. Its tightness affects lateral tracking and patella
tilt, primarily at around 20◦ flexion [35,36]. The medial retinaculum is thinner than its
lateral counterpart. The MPFL is the primary restrainer to lateral patellar translation. The
MPFL contributes up to 60% of the restraint to patellar lateral displacement from full
extension to 20◦ flexion [37]. Beyond 20◦ flexion, the joint geometry increasingly gains
influence on patellar tracking with each degree of flexion [4,38,39]. Whereas the active
stabilizer loses influence at higher degrees of flexion, the impact of passive and static
stabilizers rises [40,41]. In converse conclusion, the influence of a dysplastic trochlea rises
during flexion, causing an alteration in the patellar tilt and reducing the cartilage contact
area (CCA), as illustrated by our results. In patients with severe dysplasia, it appears that
the degree of dysplasia exceeds the MFPL graft’s capacity to improve the CCA.
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Limitations

This study’s results are limited by the small number of cases. Thus, the results
should be understood as exploratory and may vary for larger study populations. As seen
and faced by other studies, motion artefacts are major disadvantages of dynamic MRI
imaging [22,28,34]. In anticipation we used a prospective motion correction system, which
led to a lower rate of “unusable” MRI scans due to motion artefacts.

5. Conclusions

This study demonstrates a significant effect of the MPFL graft on cartilage contact
area, as well as patella tilt in patients with mild dysplasia of the trochlea. Thus, the MPFL
can be used as a single treatment for patients with Dejour type A and B dysplasia.

However, in patients with severe dysplasia the MPFL graft alone does not significantly
increase CCA during the flexion phase of the knee. The influence of the trochlea dysplasia
does not seem to be compensable with the MPFL alone. Hence, adjunctive measures, such
as a surgical trochlea augmentation, seem to be needed with Dejour type C and D.

However, this exploratory study only reports results for very small cohorts. For a
better understanding of in situ patella dynamics, more investigations with larger cohorts
are needed.
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