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Abstract: The recent integration of open-source data with machine learning models, especially in the
medical field, has opened new doors to studying disease progression and/or regression. However,
the ability to use medical data for machine learning approaches is limited by the specificity of data
for a particular medical condition. In this context, the most recent technologies, like generative
adversarial networks (GANs), are being looked upon as a potential way to generate high-quality
synthetic data that preserve the clinical variability of a condition. However, despite some success,
GAN model usage remains largely minimal when depicting the heterogeneity of a disease such
as prostate cancer. Previous studies from our group members have focused on automating the
quantitative multi-parametric magnetic resonance imaging (mpMRI) using habitat risk scoring (HRS)
maps on the prostate cancer patients in the BLaStM trial. In the current study, we aimed to use the
images from the BLaStM trial and other sources to train the GAN models, generate synthetic images,
and validate their quality. In this context, we used T2-weighted prostate MRI images as training
data for Single Natural Image GANs (SinGANs) to make a generative model. A deep learning
semantic segmentation pipeline trained the model to segment the prostate boundary on 2D MRI
slices. Synthetic images with a high-level segmentation boundary of the prostate were filtered and
used in the quality control assessment by participating scientists with varying degrees of experience
(more than ten years, one year, or no experience) to work with MRI images. Results showed that the
most experienced participating group correctly identified conventional vs. synthetic images with 67%
accuracy, the group with one year of experience correctly identified the images with 58% accuracy,
and the group with no prior experience reached 50% accuracy. Nearly half (47%) of the synthetic
images were mistakenly evaluated as conventional. Interestingly, in a blinded quality assessment,
a board-certified radiologist did not significantly differentiate between conventional and synthetic
images in the context of the mean quality of synthetic and conventional images. Furthermore, to
validate the usability of the generated synthetic images from prostate cancer MRIs, we subjected
these to anomaly detection along with the original images. Importantly, the success rate of anomaly
detection for quality control-approved synthetic data in phase one corresponded to that of the
conventional images. In sum, this study shows promise that high-quality synthetic images from MRIs
can be generated using GANs. Such an AI model may contribute significantly to various clinical
applications which involve supervised machine-learning approaches.
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1. Introduction

Prostate cancer is the most common cancer among men and the second most common
cause of cancer-related death for men in the US [1]. A relatively high incidence of prostate
cancer has invoked discussion about a national screening program [2]. The National Cancer
Institute alone was estimated in 2020 to have spent $209.4 million on prostate cancer
research and $233.2 million on clinical trials [3]. Despite this, the costs of treating prostate
cancer are increasing more rapidly than for any other cancer [4]. Multiple studies have
suggested that the high cost and time investment of prostate cancer clinical trials pose a
significant barrier to research, as well as hindering the formation of large cohorts of patients
with multiple years of follow-up that facilitate the drawing of high-value conclusions [5].

The use of Magnetic Resonance Imaging (MRI) in prostate cancer research and treat-
ment is effective for prognosis, diagnosis, and active surveillance, and contributes to a
reduced need for biopsy procedures in lower-risk patients [6]. Additional benefits of MRI
usage include ease of visualization, staging, tumor localization, risk stratification, active
surveillance monitoring, and detection of local failure after radiation therapy [7]. Prostate
MRIs provide clearer and more detailed images of soft-tissue structures of the prostate
gland than other imaging methods, making them valuable data for the research [8].

The Prostate Imaging Reporting and Data System (PI-RADS) is an established image-
based scoring system that scores the probability of clinically significant prostate cancer
on MRIs to guide the management of the disease [9]. Image fusion technology allows
the combination of the high-quality soft tissue contrast resolution of MRIs with real-
time anatomical depictions using computed tomography or ultrasounds [10,11]. This
allows the precise mapping of PCa for biopsy and treatment. Artificial intelligence (AI)
provides numerous opportunities for automating the lesion depiction that could increase
the reproducibility of the PI-RADS and enhance diagnostic and treatment methods [12]. In
this context, we have also developed an automated, quantitative mpMRI-based method
to objectively guide dose escalation for high-risk habitat volumes based on prostatectomy
GS [13]. Like other machine learning models, our mpMRI-based models were also trained
with clinical data. There are a few limitations to relying on clinical data for training the
models, including the time it takes to capture the data, the specificity of data with respect
to the question being focused on, and the cost associated with conducting trials [14]. The
solutions to these questions are being sought through the use of advanced machine learning
models.

When applied to diagnostic imaging, AI has shown high accuracy in prostate lesion
detection and prediction of patient outcomes such as survival and treatment response [15].
Machine learning can help medical experts in early disease detection; for prostate cancer,
for example, machine learning classifiers predicted Gleason pattern 4 with approximately
the same, if not more, accuracy than experienced radiologists [16]. Other deep learning
approaches, such as convolutional neural networks (CNNs) and generative adversarial
networks (GANs), have been used in various applications of medical image synthesis
of PET, CT, MRI, ultrasound, and X-ray imaging, particularly in the brain, abdomen,
and chest [17]. A recent study using synthetic MRI in colorectal cancer also found no
difference in signal-to-noise ratio, contrast-to-noise ratio, and overall image quality between
conventional and synthetic T2-weighted images [18]. GANs have also been shown to create
realistic synthetic brain MRIs [19]. All these facts combined contribute to our hypothesis
that we can use deep learning image synthesis to create medical images that translate
into clinical use while avoiding the tremendous costs associated with repeat follow-ups.
Synthetic prostate MRI using GANs is a possibility for large-scale machine learning projects,
where millions of image samples can be generated without the need for millions of patients.

Therefore, the present study is the first step towards demonstrating that GANs have
the potential to create synthetic images capable of simulating conventional prostate MRIs.
With further development, GANSs will also decrease the number of patient follow-ups,
reduce the costs associated with conducting/capturing data, and assist the radiologists in
making decisions.
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2. Materials and Methods
2.1. Prostate MRI Images

Prostate MRI images used in this study were obtained from three sources: (1) T2W
tse (T2 weighted Turbo-Spin-Echo) images downloaded from the first 60 patients of the
Cancer Imaging Archive’s ProstateX challenge repository [20]; (2) T2W fse (T2 weighted
Fast-Spin-Echo Transversal) images, including manually segmented contour data from
45 patients enrolled in the fusion database from the University of Miami’s Sylvester Cancer
Center; and (3) T2W fse images from 79 patients enrolled in the fusion database from the
University of Miami Department of Urology. All images used were displayed in the axial
plane. All human investigations were carried out after the IRB approval by a local Human
Investigations Committee and in accordance with an assurance filed with and approved by
the Department of Health and Human Services. Data have been anonymized to protect the
privacy of the participants. Investigators obtained informed consent from each participant.

2.2. Image Preprocessing

Digital Imaging and Communications in Medical Science (Dicom) information for
prostate MRIs from each dataset was converted into a nearly raw raster data (NRRD)
format for better data processing, normalized to intensity values from 0–1, and then saved
into 2D images from slices of the prostate along the z-axis using Python’s Matplotlib [21]
package. To control MRIs of different dimensions and pixel sizing, images were cropped
proportionally to the smallest dimension (x or y) into a square and then resized to a
500 × 500-pixel image using Python’s Pillow package.

2.3. Synthetic Image Generation

For each prostate, the 2D image used to train a generative model was the slice from the
z-axis index with the largest manually identified prostate. Synthetic images were created
using Generative Adversarial Networks for each preprocessed image with SinGAN [22]
[https://github.com/tamarott/SinGAN] (accessed on 10 January 2022) under default
settings. Using the 500 × 500 images in SinGAN would result in 10 generative models
for each image. The random sample synthetic images produced in the 8th, 9th, and 10th
editions of the models were considered for further analysis.

SinGAN created synthetic images that maintained the resolution of conventional
MRIs. The images created used generative adversarial networks, invented by Goodfellow
et al. [23]. SinGAN takes advantage of two neural networks: a Generator to generate image
samples and a Discriminator to discriminate between conventional and synthetic samples.
The training was performed on one image in a course-to-fine manner to make a model that
could generate random samples (Figure 1).

We used a dataset of 790 conventional prostate MRIs and employed SinGAN to
generate 237 synthetic images. From these images, 592 conventional and 178 synthetic
images were selected for the training dataset. Additionally, a random selection of 25% from
both the conventional and synthetic images, resulting in 198 conventional and 59 synthetic
images, was used for testing purposes. Synthetic images appear to be topologically similar
to the training image but have noticeable realistic variation, especially in the prostate
and peripheral zone (PZ). Prostate and peripheral zone image and radiomic statistics are
commonly used in studies involving prostate cancer risk, progression, tumor analysis, and
clinical trial studies using radiation therapies [24]. This is due to prostate cancer appearing
as a hypo-intense signal compared to a higher signal depicting a normal prostatic tissue [25].

https://github.com/tamarott/SinGAN
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Figure 1. Image generation using SinGAN. SinGAN trains a model using generative adversarial
networks in a course-to-fine manner. At each scale, the generator makes sample images that cannot
be distinguished in down-sampled training images by the discriminator. The 8th, 9th, and 10th scale
images (the three rightmost images) of the model were resized and used in all quality control tests.

2.4. Deep Learning Image Segmentation

Deep learning image segmentation of prostate MRI has been used in past years with
relative success [26]. We hypothesized that a neural network could successfully segment
high-quality synthetic images. Therefore, an image segmentation neural network was
trained on the prostate contours of 45 patients from the University of Miami’s Sylvester
Cancer Center dataset. For each patient’s prostate MRI, the three middle slices of the
contour and corresponding T2 image were used to train the network, totaling 135 images in
the training set. The neural network was trained using the PyTorch [27] machine learning
package, and the code was adapted from the existing code [28]. The learning rate for each
step of the model’s gradient descent was 0.00001, and the batch size was 3.

The trained model subjected the synthetic images to a quality control check. For the
synthetic image to pass the deep learning image segmentation quality check, the output
prediction boundary for the prostate had to have been at least 10,000 pixels and be a single,
unbroken boundary. The rationale for 10,000 pixels comes from our training dataset having
a minimum contour pixel size of 10,932.

2.5. Quality Control Study

A blind quality control test was given to selected participants with varying expertise
in prostate cancer MRI research to test the realism of the synthetic images. The first group
consisted of two scientists considered experts in the field who had 9 and 13 years of
experience with prostate cancer MRIs. The second group consisted of 2 scientists who
each had approximately one year research experience in prostate cancer MRIs, which we
classified as having some experience but not yet expertise. Negative control was given to a
third group of 4 scientists with no experience working with prostate cancer MRIs. The first
quality control test was used on synthetic images manually selected from the output of the
trained models from the 79 images obtained from the Urology department training set. In
this first test, high-quality synthetic images were manually selected, while synthetic images
with high distortion were excluded. A total of 60 images were used for this test, including
25 conventional and 35 synthetic images. The radiation oncology team members were given
five seconds to study each image before they recorded their prediction as conventional or
synthetic.

To improve the fidelity of the study, a second quality control test was given to the
same participants to test for variance and to see if they would have learned to better
differentiate between conventional and synthetic images with more exposure. The images
used this time were subjected to the deep learning image segmentation pipeline and then
randomly selected without replacement for inclusion to both automate the process and
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control for human bias in image selection. Synthetic images that were generated from
images and passed the neural network criterion but were not in the training data were
pooled and randomly selected for this test. The test consisted of 26 conventional images and
36 synthetic images, and participants were given the same format as the first assessment.

3. Results
3.1. Deep Learning Image Segmentation

To create a pipeline that automates a process for determining if a synthetic image was
high enough quality to be included for grading by fellow scientists and in future projects,
as well as to test whether synthetic prostate MRIs can be used in similar machine learning
contexts as conventional prostate MRIs, the image segmentation neural network model
was trained on 135 images from 45 patients for 3000 steps. For each step of the training,
a T2W image and corresponding contour were given as inputs (Figure 2A). The contour
is a binary file of the same dimensions as the MRI. After 15 epochs of training, the neural
network predicted the contour with a Dice similarity coefficient (DSC = 2TP

(2TP+FP+FN)
) of

0.8857 and accuracy ( TP+TN
TP+TN+FP+FN ) of 0.9795 (Figure 2B). The 1000th step was predicted

with a DSC of 0.9574 and an accuracy of 0.9945. The 3000th step was predicted with
a DSC of 0.9991 and an accuracy of 0.9988. Although the model over-fit the training
data, we still saw an increase in the prediction accuracy on synthetic images with more
epochs of training and decided to use the 3000th step model for this analysis. For a
synthetic prostate MRI image to pass the neural network segmentation pipeline’s criteria,
the predicted segmentation had to have 10,000 pixels (4%) and one unbroken contour
(Figure 2C). The 10,000-pixel cutoff was based on the training data contours’ minimum
10,932 pixels (4.3%) and median 19,481 pixels (7.8%). The segmentation pipeline performed
well in not predicting segmentation in synthetic images which subjectively had obscured
and malformed prostates. Out of 654 synthetically generated images, close to 39% (253, or
38.6%) passed the neural network pipeline’s criteria. The images that did pass the criteria
were used in the further analysis of this study (Figure 2D).

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. (A) Example of training data for the image segmentation neural network and the desired 
result. The top left is the T2 tse training image, and the bottom left is the corresponding binary 
contour. (B) The deep learning image segmentation training progression is shown for one image of 
the training set. The final predicted contour had a dice similarity coefficient of 0.99 to the real con-
tour. (C) To pass the deep learning segmentation pipeline, the predicted contour had to be one con-
tinuous contour greater than 10,000 pixels. (D) Examples of the 253 synthetic images that passed the 
deep learning segmentation pipeline, shown with the prediction boundary. 

3.2. CNN Quality Control and Applicability Validation 
Next, to delineate the usability of the synthetic images from prostate cancer MRIs, 

we used a simple convolutional neural network. The first query the CNN was subjected 
to was to differentiate between conventional and synthetic images. For this, the CNN 
reached an accuracy of 76.4% in differentiating between the two image types. The second 
query the CNN was subjected to was to differentiate between tumor and normal images. 
For this, the CNN reached an accuracy of 77.67% in differentiating between the two image 
types. Together, no real difference was detected with regard to the sample source. The 
third query the CNN was subjected to was to evaluate if the synthetically generated im-
ages were of good enough quality. For this, the images (synthetic and conventional) were 
subjected to anomaly detection, where the anomaly represents a cancerous growth. From 
within the real images, the CNN was 84.37% accurate in detecting tumor images. Simi-
larly, the CNN was 88.86% accurate in detecting tumor images from within the real im-
ages. Importantly, even though we used phase one, quality control-approved synthetic 
images, the rate of anomaly detection of CNN on synthetic images corresponded to that 
of the conventional images (Figure 3). 

 

Figure 2. (A) Example of training data for the image segmentation neural network and the desired
result. The top left is the T2 tse training image, and the bottom left is the corresponding binary
contour. (B) The deep learning image segmentation training progression is shown for one image of
the training set. The final predicted contour had a dice similarity coefficient of 0.99 to the real contour.
(C) To pass the deep learning segmentation pipeline, the predicted contour had to be one continuous
contour greater than 10,000 pixels. (D) Examples of the 253 synthetic images that passed the deep
learning segmentation pipeline, shown with the prediction boundary.
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3.2. CNN Quality Control and Applicability Validation

Next, to delineate the usability of the synthetic images from prostate cancer MRIs, we
used a simple convolutional neural network. The first query the CNN was subjected to
was to differentiate between conventional and synthetic images. For this, the CNN reached
an accuracy of 76.4% in differentiating between the two image types. The second query the
CNN was subjected to was to differentiate between tumor and normal images. For this,
the CNN reached an accuracy of 77.67% in differentiating between the two image types.
Together, no real difference was detected with regard to the sample source. The third query
the CNN was subjected to was to evaluate if the synthetically generated images were of
good enough quality. For this, the images (synthetic and conventional) were subjected to
anomaly detection, where the anomaly represents a cancerous growth. From within the
real images, the CNN was 84.37% accurate in detecting tumor images. Similarly, the CNN
was 88.86% accurate in detecting tumor images from within the real images. Importantly,
even though we used phase one, quality control-approved synthetic images, the rate of
anomaly detection of CNN on synthetic images corresponded to that of the conventional
images (Figure 3).
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Figure 3. Boxplots depicting the minimum, median, interquartile range, maximum and potential
outliers of image intensity for both synthetic and conventional samples. Highlighting the convolu-
tional neural network quality control and applicability validation steps in evaluating the distribution
of intensity for synthetic and conventional images, mean intensity for synthetic and conventional
images, and distribution of synthetic image intensity by cancer stage. Here “N” represents normal
and 1–5 represents the increasing progression of the disease.

3.3. Round 1 Quality Control Test

The first-round quality control test was given to selected participants based on their
experience with prostate cancer MRIs. Two participants had roughly a decade of experience
(nine years, thirteen years), two participants had about a year of experience, and four
participants had no experience. Participants were shown 60 hand-picked images, both
synthetic and conventional, and asked after 5 s to give their opinion if the image was
synthetic or conventional. Results from this experiment are summarized in Table 1. The
accuracy for groups were 62%, 55%, and 53%, respectively. A Pearson’s Chi-square test
showed no significant association between experience level and the number of correct
predictions (p = 0.2855), no association between experience level and the number of false
negatives (p = 0.4125), and no association between experience level and the number of false
positives (p = 0.6675); however, a significant association was found for concordance within
groups when all groups were considered. No significant association in concordance was de-
termined when comparing the participants with ten years of experience to participants with
one year of experience. These results demonstrate that for all levels, correctly identifying
the difference between synthetic and conventional prostate MRI images is challenging.
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Table 1. The results from the first and second rounds of quality control tests. The second round used
the deep learning segmentation pipeline and random sampling for the test creation. False positives
are defined as conventional images that participants labeled as synthetic. False negatives are defined
as synthetic images that participants labeled as conventional. Concordance between the participants
is defined as the proportion of the same answers.

Round 1 Round 2

Amount Conventional 25 26

Amount Synthetic 35 34

Experience Level 10 Years 1 Year No
Experience 10 Years 1 Year No

Experience

% Correct 62 55 53 67 58 50

% FP 46 46 54 25 35 47

% FN 33 44 42 40 47 54

% Concordance 67 57 42 80 60 30

3.4. Round 2 Quality Control Test

Figure 4 shows the workflow of this second quality control test. The second quality
control test aimed to eliminate human bias in image selection (selecting the most realistic
synthetic images and the lower quality conventional images), to automate the process,
and to test if the participants had learned the difference since participating in the first
test. The second quality control test was given to the same team of scientists. Out of
654 generated synthetic images, 253 met the criteria from the deep learning image seg-
mentation pipeline and were randomly selected for the test. Table 1 illustrates the results
of our quality control tests. Our three groups of participants scored correctly 67%, 58%,
and 50%, respectively. A Wilcoxon signed ranked test shows that the number of correct
scores between participants’ first and second surveys is not statistically different (p = 0.725),
regardless of group. A Pearson’s Chi-Square test shows that there is an association between
experience and group when considering all three groups (p = 0.005682); however, there
was no significant association between those with ten years of experience and those with
one year of experience (p = 0.1824). Furthermore, the group with no experience studying
prostate cancer MRIs had high variance between scores, with the highest score matching
the average of the expert group (67%), yet the lowest score was 35%. There was no signifi-
cant association between false negatives (p = 0.2766) or false positives between experience
levels (p = 0.06051). These results mirror a similar study where expert and basic prostate
radiologists found no difference in diagnostic performance between conventional MRI and
synthetic MRI [29]. They also show a similar result to another study where synthetic brain
MRIs were created using a different GAN called DCGAN [20]. There was an association
between the data’s experience and the respondents’ concordance (p = 0.001). Between the
first and second tests, the number of false positives decreased as expected; however, the
number of false negatives increased, where 47% of all synthetic images were incorrectly
reported as true, with 40% of false negatives in the expert group. These results further
support that synthetic prostate MRIs have realistic quality and that the process for selecting
higher quality synthetic prostate MRIs can be automated.

3.5. Radiologist Quality Control Check

To further assess the quality of the synthetic images, we enlisted the help of a board-
certified radiologist to grade our prostate MRIs based on quality. Thirty images (20 syn-
thetic, 10 conventional) that met the criteria of the deep learning segmentation pipeline
were randomly selected and given to the radiologist, who graded the images on a 1 to
10 scale based on the quality of being able to read and make a report (10 being best). The
radiologist was NOT informed that the image set contained synthetic images. The mean
grading was 6.2 for synthetic images and 5.5 for conventional images. A student t-test fails
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to reject the null hypothesis that the mean quality of synthetic and conventional images
equals (p = 0.4839). The minimum, median, and maximum for synthetic and conventional
images are (1, 6, 10) and (1, 5.5, 10), respectively. These results suggest that the synthetic
images are of equal quality when blindly given to a radiologist. Figure 5 summarizes the
pipeline of the corresponding generators and discriminators in the SinGAN network.
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4. Discussion

Our studies show that current machine learning technologies such as Generative
Adversarial Networks can be used to generate synthetic prostate cancer MRIs that mimic
conventional data, which could have important implications for research and clinical
practice in the field. Other machine learning applications, such as deep learning semantic
segmentation, can be used to automate the process of filtering out higher-quality synthetic
images. Due to the availability of sophisticated GAN models capable of performing
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lesion classification and tumor segmentation, the present study focused on the functional
applications of GAN models and how they can improve the efficacy of digital imagery.

The present study is the first to compare the accuracy of synthetic and conventional
MRIs of prostate cancer using different radiologists’ experiences. Moreover, we demon-
strated that participants did not have better performance on the quality control assessment
when synthetic images were manually selected compared to when the images were ran-
domly pooled after passing the segmentation pipeline. This demonstrates the success of
the pipeline because the human selection of the best synthetic images in the first visual
assessment showed no difference in scores compared to the AI-segmented synthetic images
in the second assessment. Additionally, the synthetic images that passed the deep segmen-
tation pipeline showed no difference compared to conventional images when graded based
on quality by a board-certified radiologist. Our results show promise for future studies that
involve synthetic imaging.

The filtering process for high-quality synthetic images could be improved by using
more training data in the segmentation neural network. Other studies involving automatic
segmentation of the prostate with larger training databases show success in segmenting
2D and 3D prostate MRIs [30], as well as MRIs coming from multiple sources [26], such as
our dataset. With only three slices each from 45 patients, the training data were relatively
small and repetitive, which caused some visually realistic synthetic images to not meet the
criteria. Furthermore, the criteria that the predicted prostate boundary had to be unbroken
disqualified many otherwise realistic looking synthetic MRIs. Other studies that included
larger training databases also have predicted segmentations that were not one single
boundary, but were occasionally broken into pieces [31]. Since deep learning segmentation
is not completely accurate, quality scores can be given prediction boundaries that may
be a better criterion in the future than the criteria used in this preliminary study [31]. A
segmentation model that considers other organs of the MRI, such as the bladder, urethra,
gluteus maximus, rectum, or femur, can also be implemented to further select prostates with
no distortion, although it will make the model highly selective and prone to overfitting. In
turn, compressing the image more around the prostate can help reduce the amount of area
the model needs to consider, and the amount of potential distortion, leading to enhanced
segmentation. However, even with a very basic segmentation model, the model’s ability to
segment the prostate proved an effective method in selecting high-quality synthetic images.
This is shown in Table 1, where 47% of synthetic images were mistaken for conventional,
compared to 40% by experts. These results show promise of refinement of the model in
future studies, where more accurate detection of prostate segmentation and the surrounding
organs will enhance the filtering of high-quality synthetic images.

In our study, the vendor used for the MRI and normalization programs was not
stressed because we intended for participants to be presented with a wide variety of all
types of MRI modalities that they may encounter. Furthermore, different versions of
prostate MRI can be used, such as dynamic contrast-enhanced (DCE) perfusion imaging,
where apparent diffusion coefficients (ADC) are commonly taken together [32] on top of the
T2 diffusion-weighted imaging used in this study, or PET scans, commonly used in other
studies. The premise of this study can be extrapolated to these different image modalities,
which may yield better results due to the decreased complexity of ADC images compared
to T2W. Furthermore, the use of GANs in medical imaging studies is expanding to include
3-dimensional capabilities [33], where our study was limited to 2-dimensional slices of
prostate MRI. Furthermore, a survey with more scientists and radiologists would increase
the power of these results. There was no statistical difference in the ratings of the quality
of synthetic and conventional MRI by the board-certified radiologist, but we stressed the
promising results of the prostate cancer researchers due to their specificity with the prostate
cancer MRI in particular. A different questioning method could be used, similar to the
quality of reading recording we asked the board-certified radiologist, or a Likert scale could
be used as a scoring approach rather than binary responses [34]. Additionally, our study
had participants study images for 5 s; a longer assessment time per image should be tested
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to see if accuracy increases significantly with more consideration. Lastly, the 60 images used
in the quality control tests contain only a small proportion of the total generated synthetic
images (34 out of 253), so participants did not see the full array of synthetic images that
passed the neural network criterion.

Lesion classification and tumor segmentation are also newfound capabilities of AI,
where models such as random forest, naïve bayes, linear support vector machine (SVM),
and CNNs have been able to show Gleason grading accuracy comparable to patholo-
gists [35]. These results support SinGAN’s unsupervised model using one training image,
reducing tumor heterogeneity compared to models that combine multiple samples. Online
databases such as those of the prostateX [20] challenge combine multiple views and modal-
ities, such as the ADC image, Sagittal, and Coronal T2W images, on top of the T2W images
used in this study. They also include lesion data with all levels of Gleason grading that
can be potentially classified using the above solutions in synthetic images. Future machine
learning studies will be conducted to test if high-quality synthetic images can be integrated
and complement conventional images in classification, segmentation, and lesion detection.

5. Conclusions

We have demonstrated that synthetic prostate cancer MRI can be generated with high
quality, mimicking conventional images. This process can be scaled to generate millions of
unique synthetic samples. Other machine learning approaches, such as the deep learning
segmentation model, can be used to remove synthetic images with high levels of distortion.
This preliminary study suggests that synthetic prostate MRI images may be used in more
complex imaging studies with clinical applications in the future.
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