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Abstract: Triple-negative breast cancer (TNBC) poses a significant challenge in terms of prognosis and
disease recurrence. The limited treatment options and the development of resistance to chemotherapy
make it particularly difficult to manage these patients. However, recent research has been shifting
its focus towards biomarker-based approaches for TNBC, with a particular emphasis on the tumor
immune landscape. Immune biomarkers in TNBC are now a subject of great interest due to the
presence of tumor-infiltrating lymphocytes (TILs) in these tumors. This characteristic often coincides
with the presence of PD-L1 expression on both neoplastic cells and immune cells within the tumor
microenvironment. Furthermore, a subset of TNBC harbor mismatch repair deficient (dMMR) TNBC,
which is frequently accompanied by microsatellite instability (MSI). All of these immune biomarkers
hold actionable potential for guiding patient selection in immunotherapy. To fully capitalize on these
opportunities, the identification of additional or complementary biomarkers and the implementation
of highly customized testing strategies are of paramount importance in TNBC. In this regard, this
article aims to provide an overview of the current state of the art in immune-related biomarkers
for TNBC. Specifically, it focuses on the various testing methodologies available and sheds light on
the immediate future perspectives for patient selection. By delving into the advancements made
in understanding the immune landscape of TNBC, this study aims to contribute to the growing
body of knowledge in the field. The ultimate goal is to pave the way for the development of more
personalized testing strategies, ultimately improving outcomes for TNBC patients.

Keywords: breast cancer; TNBC; biomarkers; immune landscape; PD-L1; tumor-infiltrating
lymphocytes; mismatch repair; microsatellite instability; artificial intelligence

1. Introduction: Immune Actionability of TNBC

Triple-negative breast cancer (TNBC) represents a highly aggressive and heteroge-
neous subtype of breast cancer (BC), characterized by the absence of estrogen receptor
(ER), progesterone receptor (PgR), and HER2 expression [1,2]. The management of these
patients poses significant challenges, primarily due to the scarcity of effective treatment
choices and the development of resistance to chemotherapy [2,3]. However, an avenue of
hope lies in immunotherapy, harnessing the remarkable adaptability of the immune system,
particularly in the context of TNBC, which exhibits the highest level of immunogenicity
among breast-cancer subtypes [4,5]. In particular, immune-checkpoint inhibitors (ICIs)
have broadened the treatment landscape of TNBC, both in the neoadjuvant and adjuvant
settings [6]. This type of immunotherapy in metastatic TNBC (mTNBC) is biomarker-
based [7]. Numerous immune-related biomarkers are currently approved in the clinical
management of mTNBC, such as programmed death-ligand 1 (PD-L1), tumor-infiltrating
lymphocytes (TILs), and mismatch repair (MMR) system [8–10]. Accurate pathological
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testing holds utmost significance in the assessment of patients with these biomarkers;
however, testing strategies may differ depending on the specific diagnostic scenario, en-
compassing sample availability and diagnostic assays. The key to improving the outcome
of TNBC lies in the harmonization and complementation of current testing strategies for
actionable biomarkers. Here, we offer an updated overview of the present advancements
in immune-related biomarkers for TNBC to identify personalized testing strategies.

2. PD-L1

The assessment of PD-L1 has become a routine clinical practice to predict the efficacy
of ICIs in mTNBC [11,12]. Depending on the assay and scoring system used, the prevalence
of PD-L1 positivity in TNBC varies between 17% and 59% [13]. Two immunotherapy
compounds are currently approved for PD-L1-positive TNBC, namely, atezolizumab (an
anti-PD-L1 monoclonal antibody) and pembrolizumab (an anti-PD-1). The gold standard
for the evaluation of PD-L1 expression consists of immunohistochemical (IHC) staining on
formalin-fixed paraffin-embedded (FFPE) sections [14]. Research conducted on mTNBC
has demonstrated that the expression of PD-L1 may be observed on either tumor cells
(TCs) or TILs [15–17]. Depending on the specific assay used for the test, different cellular
compartments should be evaluated for PD-L1 expression. For this reason, various types of
PD-L1 tests are available, accompanied by different scoring systems, each having distinct
threshold values that determine patient eligibility for specific drugs [7,18–20]. In particular,
a combined positive score (CPS) cut-off value of 10 is used to identify patients who are
suitable for pembrolizumab treatment, while a 1% immune-cell (IC) cut-off value guides the
selection for atezolizumab treatment [2,10,21,22]. There are currently four FDA-registered
PD-L1 IHC assays that employ four distinct PD-L1 antibodies (22C3, 28–8, SP263, SP142)
and are implemented on two different IHC platforms (i.e., Dako and Ventana). Moreover,
these assays use four different scoring systems with distinct threshold values, determining
the eligibility of patients for different medications [17,19,23–25]. The presence of multiple
assays requiring diverse platforms can pose considerable technical hurdles for numerous
laboratories, thereby introducing the potential for interlaboratory variability in the obtained
results. Furthermore, the utilization of multiple scoring systems demands specialized
training to minimize interobserver variability among pathologists. [26].

2.1. IC Score

Immune cell score (IC) is used to evaluate PD-L1 expression using the VENTANA
PD-L1 (SP142) assay [17,27]. It is defined as the proportion of tumor area (the area occupied
by viable tumor cells and their associated intra- and peritumoral stroma) occupied by PD-L1
stained ICs [28]. All immune cells (lymphocytes, macrophages, dendritic cells, and granu-
locytes) exhibiting any degree of staining, regardless of type and intensity, are considered
positive for PD-L1 expression [15,29]. Tumor-cell staining may be observed, but should
be disregarded. The cut-off value, making the TNBC patient eligible for atezolizumab
therapy, is IC ≥ 1% [26]. From the results of the IMpassion-130 trial (NCT02425891) [11],
atezolizumab has been recommended as a first-line therapy option for PD-L1-positive
TNBC, either de novo or after at least 12 months since (neo)adjuvant chemotherapy, using
the companion test of SP142 PD-L1 immunohistochemical assay [12]. Subsequently, using
the same assay, atezolizumab plus nab-paclitaxel therapy has been approved for locally
advanced breast cancer or mTNBC in cases where the tumor-associated immune cells ex-
press PD-L1 with the IC score ≥ 1% [29]. Assessment of PD-L1 expression via IC score has
been demonstrated to have high validity and reproducibility when performed through the
provided diagnostic kit and strictly following the manufacturer’s operating procedures and
by specifically trained pathologists [30]. However, its use may present certain difficulties
when evaluating suboptimal material. It could be challenging to correctly identify tumor
area and peritumoral stroma on fragmented tissue samples or small biopsies. Previously, it
has been highlighted that PD-L1 status assessments on biopsy specimens may not provide
an accurate representation of the immunologic landscape and may differ from a surgical
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specimen’s results, thus depriving the patient of a treatment option [31,32]. Overall, the
expression of PD-L1 in ICs has been found to be significantly higher in primary tumors
compared to metastatic ones [33]. This is a common instance in routine clinical practice,
where patients eligible for ICI therapy often present with advanced-stage disease and mul-
tiple comorbidities, making them unsuitable for the invasive procedures required to obtain
larger tumor samples. In addition, this assay has been validated for use on lymph node
metastases, where intratumoral ICs may not be easily distinguishable from the resident
immune population [33,34]. Another weakness of this scoring algorithm is its sole reliance
on IC positivity. It has been observed that interpathologist concordance in IC evaluation is
lower with respect to tumor cell score (TC) [35,36]. This could be explained by the intrinsic
difficulty in identifying ICs such as macrophages or dendritic cells within areas of closely
packed tumor cells on both hematoxylin and eosin and IHC slides [14]. These data have
been supported by the results of the Impassion130 study, showing that stromal TIL levels
are synergistic with PD-L1 expression [37].

2.2. CPS

Combined positive score (CPS) is the scoring system developed for the 22C3 (Dako
pharmDx) IHC assay. It is implemented to select patients who could benefit from pem-
brolizumab therapy [12,38]. CPS is calculated by summing the number of PD-L1 stained
TCs and a subset of ICs (lymphocytes and macrophages) and dividing the result by the total
number of viable TCs, multiplied by 100. Even though its value could theoretically exceed
100, CPS is expressed on a scale from 0 to 100 [12,26]. In TNBC, PD-L1 IHC 22C3 pharmDx
is an FDA-approved diagnostic test for pembrolizumab treatment (in CPS ≥ 10) based on
the results of the KEYNOTE-355 study [39–41]. One of the points of strength of this scoring
system is that it takes into account both TCs and ICs, providing a more comprehensive
assessment of the tumor microenvironment in relation to ICI status. In addition, since
this assay requires only the quantitative assessment of cells and not the definition of a
tumor area, it may also be used on very small or fragmented tissue samples as well as
cytological samples, provided that a minimum of 100 cells can be evaluated [38]. Based
on the meta-analysis of 57 studies on the accuracy of laboratory-developed PD-L1 tests,
the 22C3 tests achieved the best results, with both sensitivity and specificity of 100% in
eight out of nine studies [39], with good pathologists’ interobserver reproducibility [42,43].
The challenges of CPS scoring may be evoked by the spatial heterogeneity of PD-L1, po-
tentially leading to missed scoring due to poorly circumscribed cells, misinterpretation
of cytoplasmic/background staining or endogenous pigments, making the asessment of
borderline cases challenging [42,44]. Some clones used for CPS (such as 28-8, 22C3) may
demonstrate weak cytoplasmic staining of the tumor cells, which should be disregarded, as
only membrane staining is taken into account [26]. The presence of a dense inflammatory
infiltrate surrounding tumors may also complicate the assessment of cell proportions [44].
Nevertheless, Beckers et al. have demonstrated that PD-L1 expression in ICs may reflect an
association with tumor-infiltrating-lymphocyte (TIL)-mediated antitumor inflammatory
responses, even if not independently prognostic in TNBC alone [45,46].

2.3. Harmonization of PD-L1 Test

Attempts at harmonization of PD-L1 IHC antibodies and staining platforms are ongo-
ing [23] While PD-L1 IHC can be used to predict the likelihood of response to anti-PD-1 or
anti-PD-L1 therapy, a subset of patients who test negative for PD-L1 expression may still
exhibit a favorable response to these treatments [47]. The comparative evaluation of CPS
and IC scoring systems has generated conflicting findings and inadequate agreement across
multiple studies [17,25,48–50]. These results indicate that different PD-L1 assays cannot be
considered interchangeable or equivalent in the selection of patients affected by mTNBC
who would benefit from therapy. Therefore, a careful selection of an appropriate assay is
essential for effective treatment, considering the potential toxicity associated with combina-
tion therapies [49,51]. Standardized guidelines and thresholds for interpreting PD-L1 scores
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vary across different tumor types and specific assays used for evaluation. It is crucial to fol-
low the specific guidelines provided by regulatory agencies, or professional organizations,
to ensure consistent and accurate interpretation of PD-L1 in clinical practice [52]. Given
these challenges, the identification of additional alternative biomarkers assumes critical
importance in refining the selection of patients who are most likely to respond positively
to specific therapies. By exploring and incorporating additional biomarkers, the precision
and accuracy of patient stratification can be improved, thus enabling the administration of
personalized treatments that optimize therapeutic outcomes.

The comparison of immunohistochemical companion diagnostic assays for PD-L1
assessment in TNBC are given in Table 1.

Table 1. Comparison of immunohistochemical companion diagnostic assays for PD-L1 assessment
in TNBC.

Assay VENTANA PD-L1 (SP142) PD-L1 IHC 22C3 pharmDx
Manufacturer Roche Diagnostics Agilent (Dako)
Scoring system IC CPS
Cut-off value ≥1% ≥10

Evaluation

Area occupied by PD-L1 stained immune
cells (lymphocytes, macrophages, dendritic
cells, and granulocytes) as a percentage of
the whole tumor area

Summing up PD-L1 stained tumor cells and
PD-L1 stained immune cells (lymphocytes
and macrophages), divided by the total
number of viable tumor cells, and multiplied
by 100

Immune checkpoint inhibitor Atezolizumab (Tecentriq©) Pembrolizumab (Keytruda©)

IC: immune-cell score; CPS: combined positive score.

3. Tumor-Infiltrating Lymphocytes (TILs)

Tumor-infiltrating lymphocytes (TILs) comprise a heterogeneous group of immune
cells, predominantly consisting of T cells, along with smaller proportions of B cells and
NK cells, playing an important part in the TME [53]. The presence of TILs holds fa-
vorable prognostic significance for TNBC [54,55]. Research demonstrates, that targeting
the regulation of immune checkpoints between tumor cells and T lymphocytes has the
potential to enhance the prognosis of TNBC [56]. A high TIL count has been linked to fa-
vorable outcomes in terms of disease-free survival (DFS), OS, and response to neoadjuvant
chemotherapy [56,57].

3.1. TIL Evaluation

Although the significance of TILs is widely acknowledged, there are certain chal-
lenges associated with their assessment, particularly for patients with recurrent breast
cancer. Typically, TILs are evaluated in the primary tumor, as obtaining biopsies from
recurrent lesions can be problematic [37]. Even if a biopsy from a recurrent site is obtained
and evaluated, it remains uncertain whether it can be interpreted in the same manner
as the primary lesion due to potential variations in the degree of TIL infiltration and the
immune-cell profile concerning the metastatic organ [37]. Consequently, there is a press-
ing need to establish simple approaches for assessing the real-time antitumor immune
response in patients with recurrent disease, such as liquid biopsies through peripheral
blood sampling [58]. In routine practice, TILs are evaluated using hematoxylin-and-eosin
(H&E)-stained tissue slides and classified into stromal TILs (sTILs) and intratumoral TILs
(iTILs) [59]. According to original guidelines presented by Denkert et al. [60], the scoring of
TILs should be performed exclusively based on the percentage of stromal areas, excluding
the areas occupied by carcinoma cells from the total surface area assessed to avoid tumor
growth pattern having an impact on the final score. Furthermore, scoring of TILs in regions
affected by crush artifacts, necrosis, inflammation around biopsy sites, or extensive central
regressive hyalinization should be avoided [60]. Biopsies displaying extent necrosis are
deemed unsuitable for TIL assessments and should not be scored [60]. To enhance the
consistency of TIL assessments and facilitate their integration and interpretation in clinical
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trials, the International Immuno-Oncology Biomarker Working Group on Breast Cancer
has formulated guidelines for standardized TIL scoring in BC [61]. The level of detail pro-
vided in the methodology is comprehensive enough to establish a consistent and practical
foundation for TIL assessments in future studies [62].

3.2. TILs in Breast Cancer

There is a differential immune microenvironment in advanced- compared with early
stage TNBC. TILs have been detected in the stroma of up to 60% of BC cases, with the
highest frequencies in HER2+ and TNBC [63]. The tumor-infiltrating lymphocyte quantity
is significantly lower in metastatic disease compared with primary tumors, demonstrating
prognostic significance and its potential predictive value [62,64]. Recent clinical trials have
indicated a correlation between TILs and the response to multiple treatment modalities,
including both cytotoxic and immune therapies, with a particular emphasis on patients with
TNBC, due to their complex clinical management [63]. Emerging evidence provides support
for the clinical relevance of TILs in predicting favorable responses to immunotherapy in
both early and advanced TNBC cases [63]. In early BC, the presence of higher stromal TIL
levels has been associated with a better response to the ICIs in numerous trials, indicating
that fluctuation of TIL levels over time holds promise as a potential indicator for predicting
the efficacy of ICI treatment [65,66]. In the context of metastatic spread, elevated TIL levels
have been associated with an increased probability of positive response to ICI treatment, as
well as improved OS and DFS in patients with TNBC [53,67–69]. In locally advanced TNBC,
a high TIL count has demonstrated noteworthy predictive and prognostic implications.
Patients with high TIL counts exhibit a remarkable response rate of 88% to neoadjuvant
chemotherapy, whereas those with low TIL counts display a significantly diminished
response [70]. The phase III IMpassion130 trial demonstrated that the combination of
atezolizumab and nab-paclitaxel resulted in a longer PFS in TNBC patients with a TIL
level of 10% or higher [37]. When TIL levels were combined with PD-L1 positivity, the
difference in PFS became even more significant, indicating a stronger therapeutic effect (HR:
0.54, 95% CI = 0.39–0.75) [37]. Immunotherapy shows great promise as a viable strategy
for TNBC due to its relatively higher levels of TILs and PD-L1 expression compared to
other BC subtypes [71]. However, considering the retrospective nature of most available
data, additional independent prospective studies are necessary to validate these findings.
Of note, PD-L1 expression and TIL levels have been found to strongly correlate with
each other, suggesting a surrogate of the activated host antitumor immune response [72].
Interestingly, some research provides evidence that both PD-L1 expression and TILs in
TNBC are associated with better patient outcomes [45]. However, it is worth noting that
high TIL levels alone have been an independent prognostic factor for breast-cancer-specific
mortality [45]. Specific cell subsets composition of different TILs has been shown to impact
the response to ICIs as well, where regulatory T cells seem to be a key immunosuppressive
player in the TME [66,73]. A study with a continuous evaluation through baseline and
on-treatment biopsies revealed that advanced TNBC patients who responded positively to
nivolumab monotherapy following an immune induction phase exhibited higher levels of
TILs and CD8+ T lymphocytes compared to nonresponders [74]. The prognostic value of
different TIL subsets has been further explored in a study of 259 stage I–III TNBC patients,
demonstrating that additionally to stromal TILs, total and intratumoral CD8+ T cells are
the independent prognostic factors for DFS [75]. Detailed analyses of TIL compositions
have revealed a correlation between the presence of CD8+ T cells and T regulatory cells
with improved treatment outcomes in chemoimmunotherapy, as observed in various
trials [74,76,77]. Notably, single-cell data have suggested a potential connection between
tertiary lymphoid structures, characterized by the aggregation of lymphoid cells and the
colocalization of CXCL13+ CD8+ T cells, CD4+ T cells, and CXCR5+ B cells, with the
response to ICI [53]. Overall, these data indicate that the contribution of different immune-
cell subsets in TME may aid to refine the prognostic model for TNBCs, where in-depth
genetic studies are likely warranted and underway. A study of nine treatment-naïve TNBCs
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has subjected the patients to next-generation sequencing (NGS), subdividing them into TIL-
high and -low groups [78]. There was no significant difference in gene expression between
patient groups, except Phosphatase and Tensin Homolog (PTEN) loss in the TIL-high group
simultaneously with high PD-L1 levels, suggesting PTEN loss and high expression of
PD-L1 in TIL-high TNBC to be a biomarker for ICI therapy [78]. Future research endeavors
aiming to uncover the clinical actionability of TILs in BC, with a particular focus on TNBC,
rely on achieving a comprehensive understanding of the breast cancer pathology specifics
and the significance of TIL subtyping. Considering the cost-effectiveness and robust
prognostic value, TILs may become a reliable biomarker to be used in antitumor T-cell-
mediated immunity assessments. Given the complex nature of clinical management in
TNBC, the integration of TILs into routine clinical practice should be seriously contemplated.
Furthermore, ongoing investigations on combined immunotherapy present a promising
evolution towards a tailored approach to this particular patient subgroup. The overview of
major clinical trials assessing immunotherapy-specific biomarkers in TNBC is represented
in Table 2.

Table 2. Overview of major clinical trials assessing immunotherapy-specific biomarkers in TNBC.

Study/NCT Phase Tumor Type Drug Number of
Patients Status

O
bs

er
va

ti
on

al

PERCEPTION
(NCT04068623) - TNBC - 90 Recruiting

NCT03165487 - TNBC - 30 Recruiting

TNBCbrazil
(NCT03539965) - TNBC - 239 Completed

NCT05230186 - Multiple solid
tumors - 200 Recruiting

TIP
(NCT05831553) - TNBC - 100 Recruiting

In
te

rv
en

ti
on

al

TILS001
(NCT05451784) I/II Advanced

TNBC NUMARZU-001 20 Not yet
recruiting

Pembro/IORT
(NCT02977468) I TNBC Pembrolizumab 15 Recruiting

NCT04331067 I/II Localized
TNBC Nivolumab 15 Active, not

recruiting

NCT05556200 II Early stage
TNBC Camrelizumab 58 Recruiting

NCT03449108 II Multiple solid
tumors

Autologous tumor
infiltrating
lymphocytes
LN-145

95 Recruiting

IMpALA
(NCT04188119) II TNBC Avelumab 42 Not yet

recruiting

NIB
(NCT03289819) II TNBC Pembrolizumab 53 Completed

START
(NCT05492682) I Multiple solid

tumors PeptiCRAd-1 15 Recruiting

NCT03911453 I TNBC Rucaparib 20 Active, not
recruiting
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Table 2. Cont.

Study/NCT Phase Tumor Type Drug Number of
Patients Status

ASTEROID
(NCT05082259) I TNBC Pembrolizumab 48 Recruiting

NCT02276443 - TNBC Chemotherapy
Immunotherapy 1000 Recruiting

NCT03106415 I/II Advanced
TNBC Binimetinib 38 Active, not

recruiting

NCT02981303 II Advanced
TNBC Pembrolizumab 64 Completed

PAveMenT
(NCT04360941) I Metastatic

TNBC
Palbociclib,
Avelumab 45 Recruiting

NCT05929768 III Early TNBC Cyclophosphamide 2400 Not yet
recruiting

NCT03606967 II Metastatic
TNBC Carboplatin 70 Recruiting

GeparSixto
(NCT01426880) II/III Early TNBC Carboplatin 595 Completed

ATRC-101
(NCT04244552) I Multiple solid

tumors
ATRC-101,
Pembrolizumab 240 Recruiting

TNBC: triple-negative breast cancer.

4. Mismatch Repair System (MMR)

The mismatch-repair (MMR) system serves as a natural defense mechanism against
DNA base mispairing, playing a vital role in human physiology [79]. This intricate cellular
process is influenced by both external factors and internal mechanisms, working together
to maintain the integrity of DNA [80]. Disruptions in the MMR complex can lead to
genome instability, creating a favorable environment for the development of cancer [81]. In
recent years, the clinical significance of MMR alterations in TNBC has gained significant
attention [82]. It not only aids in the identification of inherited conditions, but also plays a
crucial role in patient prognosis, predicting the effectiveness of ICIs, and early detection
of therapy resistance [83]. The presence of MMR deficiency is exceptionally rare in breast
cancer, accounting for only 1 to 2% of cases, and around 6% in TNBCs [84]. The evaluation
of this condition can be accomplished through the analysis of MMR protein expression or
by identifying microsatellite instability (MSI), which serves as an observable outcome of
deficient mismatch repair (dMMR) [71,85].

The diagnosis of dMMR is typically performed through IHC on FFPE tissue sections,
where the loss of nuclear immunostaining for at least one of the four routinely examined
MMR proteins (MSH2, MSH6, MLH1, and PMS2) is observed. The available methods for de-
tecting MSI include polymerase chain reaction (PCR), multiplex PCR, and next-generation
sequencing (NGS). Typically, for these tests, DNA is extracted from both tumor and normal
control FFPE tissue samples [85]. The presence of high-frequency microsatellite instability
(MSI-H) in tumors triggers specific immune responses mediated by TILs, which possess
antitumor properties. As a result, MSI-H/dMMR tumors have a higher likelihood of re-
sponding to ICI therapy [51]. Based on this evidence, the FDA approval of pembrolizumab
includes all solid tumors that exhibit this specific genetic alteration [86]. Consequently,
there is are increasing recommendations for the routine oncological care of patients with
solid tumors to include universal screening for MMR and MSI status, regardless of the
cancer’s origin [87]. The reported low percentage of dMMR breast-cancer cases may be
attributed to the lack of companion diagnostics assays (CDx) and/or specific guidelines
for MMR analysis in breast tumors, as well as the utilization of different testing methods,
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such as the direct sequencing of microsatellite markers, NGS, and IHC for the four MMR
proteins. In breast cancer, the loss of MMR proteins is more frequently detected compared
to MSI [87,88]. Therefore, it is important to note that IHC for MMR proteins and MSI
testing cannot be used interchangeably, unlike in other tumor types [88]. One of the biggest
studies involved 1084 breast-invasive-carcinoma cases from the Breast Invasive Carcinoma
dataset of The Cancer Genome Atlas (TCGA) PanCancer Atlas, spanning samples using a
multisample protein–protein interaction analysis tool and utilizing the RNA-sequencing
data from cBioPortal in treatment-naïve patients [89]. Authors have found the highest
prevalence of dMMR in the TNBC group, which also correlated with improved patient
survival [89]. Owing to its rarity, MMR/MSI testing has been ambiguously discussed as
an ICI biomarker in TNBC [71]. Nevertheless, the predictive value of MMR deficiency
has been demonstrated in two separate studies that examined the response of mTNBC
and luminal BC patients to nivolumab and pembrolizumab, respectively [71]. More re-
cently, MMR testing has emerged as a molecular target in precision oncology for TNBC,
as it has been observed to exhibit high sensitivity to immunotherapy [90]. The infrequent
occurrence of MMR and MSI alterations in BC raises several questions regarding the most
effective testing strategy. To enhance the understanding of MMR deficiency and provide
more therapeutic options for TNBC patients, it has been studied in association with other
biomarkers. The study of forty-four TNBC patients revealed four (11%) dMMR cases, three
of which were PD-L1 negative and harbored high TILs [91]. These findings give rise to the
suggestion that the adoption of multiple-biomarker testing (e.g., PD-L1, TILs, and MMR)
may improve TNBC patients’ selection for immunotherapy eligibility [91]. On the contrary,
some research data have shown no association of MMR/MSI status with PD-L1 expression
in TNBC [87]. Furthermore, the study of 145 TIL-high TNBCs demonstrated the low MSI-H
prevalence in this cohort, suggesting there might be no specific distribution pattern of
MSI-H tumors across breast cancers at all [92]. Within this framework, the assessment of
PTEN expression, a critical tumor suppressor that regulates cell growth, proliferation, and
survival, and is also implicated in the MMR system and overall DNA damage response, has
been proposed as a method to identify MMR-proficient (pMMR) breast tumors. Its somatic
mutations were previously found more prevalent in BCs associated with MMR variant
carriers, which mostly result in dMMR and have an unfavorable prognosis [93]. However,
by now, the adoption of this approach has certain limitations and warrants approval [71].
One of the biggest published studies on BC aimed to identify mutational signatures in a
whole-genome-sequencing (WGS) dataset consisting of 640 patients. The objective was
to identify dMMR-deficient breast tumors [94]. Given that WGS may directly reflect the
disruption of the MMR pathway, the authors assume it may potentially surpass existing
biomarkers for detecting MMR deficiency, offering a greater level of sensitivity, which is of
utmost importance, especially in dMMR-rare tumor types [94]. Although the discrepancy
between MMR IHC and MSI has been demonstrated to be substantial [82], the validation
of IHC and its relationship to NGS results will be important for guiding diagnostic MMR
workflows in BC [89]. The molecular subtyping of the tumor-based MMR status holds
significance in characterizing tumors as dMMR, thereby guiding the selection of ICIs and
other targeted therapies for TNBC and BC overall [89].

5. Role of AI to Complement Immune-Biomarker Testing

To ensure optimal therapeutic care for patients, clinically actionable biomarkers for
TNBC must be accurately and consistently characterized. However, there may be issues
with the standard methods (as IHC, RT-PCR, and NGS) for analyzing these biomarkers,
such as variability and repeatability between observers and platforms [95]. Effective reme-
dies continue to be subtle due to the extremely complex nature of this crucial task in
pathology [96,97]. From another point, the type and quantity of specimens to be tested
are continuously changing in breast cancer due to the widespread use of minimally inva-
sive/noninvasive techniques [96]. Conversely, there is an increasing need to undertake
a more thorough investigation using a wider range of biomarkers in this multifaceted
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situation. Even the use of theoretically more objective molecular-analysis techniques is
usually complicated by a number of issues [97]. Artificial intelligence (AI) has recently been
offered as a new possible tool to support diagnostic algorithms in clinical practice. Machine
learning (ML), deep learning (DL), and convolutional neural networks (CNNs) are a few of
the many subsets or approaches of AI that may be used to extract and evaluate data [98].
The application of these tools in digital pathology could enable the mining of subvisual
morphometric phenotypes, leading to advancements in patient management [97,99]. Un-
derstanding possible risk factors and improving treatment planning for precision oncology
may be accomplished by making predictions about patient outcomes based on charac-
teristics or grades generated from histopathologic tumor whole-slide images (WSI) [97].
AI-based computational pathology, in contrast to conventional image-based quantitative
analysis, uses a variety of histopathologic image sources and automatic feature-calculation
techniques to extract patterns and evaluate characteristics [98]. The development of com-
puter tools and algorithms has made it feasible to estimate cancer patient outcomes using
computational pathology, which is essential for modern medicine. However, it is not
possible to predict clinical results using pretreatment histopathologic imaging. Huang et al.
attempted this when they tested the viability of AI-based algorithms to forecast the effects
of neoadjuvant chemotherapy in patients with HER2+ and TNBC using H&E and multiplex
IHC (PD-L1, CD8+, and CD163+) images [100]. Although the use of AI in clinical pathol-
ogy is still in its infancy, this discipline has already demonstrated tremendous promise
for enhancing pathology practice in the identification/prediction of clinically actionable
biomarkers, such as PD-L1, TILs, and MMR proteins. Several studies have used the WSI
of PD-L1 slides and manual supervision to show that image-based scoring algorithms are
highly consistent with pathologist reports [101–103]. For instance, Wang et al. developed a
deep-learning-based AI-assisted model for PD-L1 IC scoring [104]. This study examined
the function of the AI-assisted model using 109 PD-L1 (SP142) IHC-stained pictures. The
consistency in grading among pathologists might be improved with this method. As a
result, the suggested AI-assisted technique may aid pathologists in increasing the accuracy
and concordance of the PD-L1 test IC evaluation in breast cancer [104]. In this regard, Sun
et al. created a computational TIL evaluation model based on deep learning and assessed
the tool’s predictive usefulness for TNBC patients. The authors suggested that pathologists
can fulfill risk management and decision-making duties by employing a methodology that
incorporates both visual and computational TIL evaluations [105]. They suggest that once
validated in larger studies, this algorithm has the potential to serve as a valuable tool for
assessing stromal TILs and evaluating prognosis in patients with TNBC. [105]. Moreover,
Le et. al. developed and evaluated customized convolutional-neural-network analysis
pipelines to generate combined maps of cancer regions and TILs in breast cancer WSI.
These combined maps provided insight into the structural patterns and spatial distribution
of lymphocytic infiltrates and facilitate improved quantification of TILs [106]. Further-
more, regarding the significant role that MSI/dMMR plays as a biomarker for determining
eligibility for immune-checkpoint inhibitors in advanced diseases, some attempts are in
progress to predict the MSI/dMMR status through histomorphological features on H&E
slides using AI technology [107]. For instance, in the work of Park et al., the authors re-
ported that the model with the highest performance for predicting MSI in colorectal cancer
was developed by Lee et al. [108]. In their study, Inception-V3 (a DL-based algorithm) was
trained on a cohort composed of images from TCGA and Saint Mary’s Hospital (SMH).
When this trained model was tested on an internal validation cohort (TCGA), AUC was
0.892; however, the AUC tested on a different cohort (SMH dataset) was 0.972, which is
the highest value reported in the included studies. AI is being increasingly recognized as a
promising method for biomarker identification and has subsequently improved clinical
management. However, to ensure its successful application, the establishment of robust and
standardized computational, clinical, and laboratory practices must be achieved concur-
rently and validated across multiple collaborating sites. Figure 1 provides an overview of
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the potential applications of computational pathology in the context of currently available
immune-related biomarkers.
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Figure 1. Overview and applications of digital and computational pathology to enhance testing
of immune-related biomarkers in TNBC. PD-L1 (CPS): programmed death-1 ligand (combined
positive score); PD-L1 (IC): programmed death-1 ligand (immune cell score); TILs: tumor-infiltrating
lymphocytes; MMR: mismatch repair; MSI: microsatellite instability.

6. Conclusions

The research on novel therapeutic approaches in TNBC is currently focusing on
immunotherapy-specific biomarkers, providing new treatment opportunities for numer-
ous TNBC patients. Although immunotherapy alone has shown limited success in a
small subset of TNBC patients, combination strategies are emerging as potential ways
to enhance immune responses against tumors. Currently, combining immunotherapy
with conventional chemotherapy as a first-line treatment for PD-L1-positive mTNBC has
demonstrated significant clinical benefits [109]. Nevertheless, the challenge of treatment
resistance, whether inherent from the onset or acquired over time, persists. The tumor
microenvironment, where tumor and immune cells interact, plays a crucial role in treatment
outcomes. The identification of response-associated biomarkers for ICI is crucial to identify
patients who are more likely to have long-lasting responses with minimal side effects. To
achieve this, standardized and independently validated assays should be employed in
larger prospective studies involving patients with TNBC who are receiving immunotherapy.
The identification of reliable prognostic and predictive biomarkers for treatment response
is a priority in clinical practice to improve patient selection.

The improvement of biomarker predictivity will be facilitated by the utilization of
advanced technologies capable of providing detailed information about the tumor microen-
vironment, such as spatial transcriptomics/proteomics and single-cell sequencing [53]. It
is probable that additional insights gained from studies on novel biomarkers in different
cancer types will contribute to this advancement.
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