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Abstract: The lubrication performance of bearings is greatly influenced by the distribution of the
lubricant. In this study, a cylindrical rolling bearing test rig was constructed and presented. The
distribution of grease and lubricating oil along the contact region was examined using the laser-
induced fluorescence technique, and the thickness of the layer was determined. The lubricating oil
and grease layer thickness distribution map was acquired. The effects of supply amount, thickener
content, and speed on grease distribution were examined. Mechanisms for replenishing the line
contact area were investigated.

Keywords: cylindrical roller bearings; laser-induced fluorescence; grease distribution; layer thickness
distribution

1. Introduction

Rolling bearings are key components in mechanical equipment. About 80% of rolling
bearings use grease as a lubricant. Traditional research mostly focuses on film formation in
the contact area. Wilson [1] thought that the thickness of the grease film can be calculated by
using “apparent viscosity”, which was approximately 35% to 50% higher than the viscosity
of the corresponding base oil. Astrom et al. [2], under identical conditions, found that
the grease film thickness in the contact area was greater than the base oil film thickness.
In a ball-on-disc test, the grease’s film thickness is significantly thicker than the base
oil’s at very low speeds [3,4]. In bearing experiments, Dong et al. [5] noted the same
effect. Cann [6] discovered that increasing speed, viscosity, or base oil viscosity would
increase the grease film thickness, while increasing the temperature or working time would
decrease it. The aforementioned findings are mostly predicated on an assumption of fully
flooded conditions.

Poon [7] found that the film thickness of grease decreased over time. When Coy
et al. [8] compared the thrust bearing film thickness measurements with the ball-on-disc
test, they found that the major cause of the bearing’s decreasing thickness was an inadequate
supply of grease in the contact region. Utilizing the optical method, Chennaui M et al. [9]
found that the oil film thickness in the contact area of a model bearing is lower than
that predicted by the elastohydrodynamic lubrication (EHL) theory due to oil starvation.
Gonçalves et al. [10] discovered that as soon as starvation starts, the grease film thickness
decreases with increasing speed. Once the supply is limited, the central film thickness in
the contact starts to decrease. This indicates that the distribution of the supply layer outside
the contact has an impact on the film thickness. Liang et al. [11] found that the geometric
structure and wetting performance of the cage directly affect the distribution of lubricating
oil in ball bearings. Aamer et al.’s [12] combination of experimental investigation and
multiphase CFD model calculations demonstrated the importance of lubricant surface
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tension in the striation patterns across the ball surface. In roller bearings, it can be found
that the selection of cage geometry significantly affects lubrication [13]. Sakai et al. [14]
found that the type of thickener affects the distribution of the film. The thinner and longer
the fibers of the thickener, the easier it is to enter the contact area, thereby increasing the
film thickness. Tichy et al. [15] proposed a new model for grease lubrication, which takes
into account the fact that grease is a two-component mixture consisting of a thickener and
a base oil. Fischer, Jacobs, and colleagues [16] examined how the capillary number (Ca)
affected the replenishment and dispersion of oil. Chen et al. [17] developed an air–oil
interfacial flow pattern for ball bearings based on Computational Fluid Dynamics (CFD),
and found a direct correlation between the capillary number (Ca) and the distribution
pattern of lubricating oil around the ball bearing contact region.

By setting a small sapphire window on the rolling track, Pemberton et al. [18] in-
vestigated film formation in the contact area between the rollers and the outer ring for
cylindrical roller bearings. The experimental results indicated that the oil ribs at the two
sides of the contact have little effect on the inlet oil supply. As the rollers orbit in the
bearing, they pass the loaded section and the unloaded section. Layers can be generated on
the track due to the rollers’ passage through the unloaded section and then can replenish
the contact directly. As a result, the oil is primarily supplied circumferentially rather than
axially from the roller ends. Chen et al. [19] captured images of the distribution of grease
near the inlet and found that the degree of oil starvation is related to the distribution of
grease fingers on the track. Huang et al.’s ball-on-disc test [20,21] suggested that during
rotation, the grease in the outlet may return to the vicinity of the track, resulting in an
additional layer of grease and an increase in film thickness. Jiang et al. [22] found that the
distribution is an important factor in oil supply at the inlet. Under the oil starvation state,
the effect of the capillary force on oil supply in the contact area cannot be ignored. Han
et al. [23] found that micro forces such as capillary forces might be a mechanism for oil
supply in the contact area under oil starvation.

Academics are still looking for more efficient ways to show the flow and distribution
of grease in rolling bearings. The capacitance approach was employed by Cen et al. [24,25]
to determine the film thickness of deep groove ball bearings subjected to radial loading.
Even though just the average value is available, it is nevertheless able to depict the change
in film thickness at high speeds. The thickness of films can also be measured using the
ultrasonic approach [26,27]. Li et al.’s [28] results for cylindrical roller bearings showed
that the minimum film thickness would grow with increasing speed and decrease with
increasing load. Noda et al. [29] observed the interior grease distribution of bearings using
the X-ray approach. This method merely observes the stationary situation.

In order to investigate lubrication mechanisms, optical techniques are frequently
employed in laboratories because of their great accuracy and spatial resolution. Distribution
information may be immediately observed using an optical microscope [30,31]. Under an
isoviscous elastic regime, Fowell et al. [32] used the laser-induced fluorescence technique to
measure lubricant film thickness in compliant contacts. Franken et al. [33] added different
fluorescent dyes to the lubricating medium, and used fluorescence emission spectroscopy
to analyze the migration of grease. Our research group has developed a new calibration
method for the laser-induced fluorescence technique [34] to improve its precision. The
method has successfully been used to detect the distribution characteristics in ball bearings
and to obtain the film thickness distribution near the contact and on the free surface [34].

At present, theoretical research can clearly express the relationship between inlet
supply conditions and film formation in the contact area. However, for rolling bearings, the
distribution and migration of grease cause changes in inlet supply conditions and have an
important influence on the bearing lubrication mechanism. This article mainly studies the
lubrication distribution of grease in cylindrical roller bearings. Laser-induced fluorescence
technology was used to measure the layer thickness, and a high-speed camera was used to
directly observe the distribution of grease near the contact area between the roller and the
outer ring. The distribution characteristics of lubricating oil and grease were compared,
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and the effects of speed, thickener content, and grease filling amount on the distribution
of grease were analyzed. The reflow behavior of the line contact area was discovered
and verified.

2. Experimental

Figure 1 shows a custom-made rolling bearing test rig. The inner ring was driven
by a servo motor and the rotating speed ranged from 10 to 1000 r/min in this study. The
test bearing was a cylindrical roller bearing (type: N208; number of rollers: z = 14). It has
flanges at both ends on the inner ring but no flanges on the outer ring. The outer ring
was replaced by a glass flat ring with no grooves for optical observation. The bearing
was radially loaded upwards by a stepper motor. The radial load was 380 N and the
corresponding maximum Hertzian contact pressure was 169 MPa. The test temperature
was 24 ± 1 ◦C. The experimental conditions are shown in Table 1. PAO8 and lithium grease
based on PAO8 were utilized as the lubricating medium. The content of the thickener
ranged from 5% to 15%, labeled as Li5%, Li10%, and Li15%. The supply amount of grease
was 1 g~3 g, with a volume proportion of 4–13% for grease filling. The grease was supplied
to the space between the cage and the inner track, as shown in Figure 1.
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Table 1. Experimental conditions and parameters.

Roller of the Bearing Glass Ring

Elastic Young’s modulus (GPa) 210 75
Poisson ratio 0.293 0.215
Radius (mm) 5.5 35.75

Grease supply (g) 1~3
Temperature t0 (◦C) 24 ± 1

The laser-induced fluorescence technique was applied to observe the distribution of
the lubricating medium on cylindrical roller bearings. The optical system is also shown in
Figure 1. The fluorescent image of the lubrication medium was excited by a 532 nm laser
light source, gathered by a fluorescence microscope, and finally recorded by a high-speed
image sensor (CCD).

When fluorescent substances are irradiated by a laser, the electrons surrounding the
nucleus absorb energy and transition to an excited state. This excited state is unstable
and electrons will return to the ground state, release photons, and generate fluorescence.
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There is a corresponding relationship between fluorescence intensity and fluorescence fluid
thickness as follows [35]:

If(h) = kI0Φ{1 − exp[−ε(λlaser)Ch]} (1)

where If is the fluorescence intensity captured by the camera, k is the monitoring efficiency
of the camera, I0 is the intensity of the excitation light at wavelength λlaser, Φ is the dye’s
quantum efficiency, ε(λlaser) is the molar extinction coefficient of the dye, C is the molar
concentration of the dye dissolved in the fluid, and h is the oil layer thickness. According
to Equation (1), the layer thickness h at a certain point is exponentially related to the
fluorescence intensity received by the camera.

The correlation between the fluorescence intensity and the thickness of the layer may
be determined by following these steps: First, the bearing is kept in a fixed position, and
then, the grease is injected into the bearing. Once the bearing is subjected to radial load, a
line contact area can be established between the roller and the glass ring, and the grease
around this contact can create a reservoir. Since the roller is symmetrical, just half of the
contact between the roller and the ring is depicted in Figure 2a. A white dashed line
delineates the geometry of the reservoir. By defining the center of the roller as the origin,
the roller axis as the x-axis, and the radial direction as the y-axis, we can visually represent
the gap between the cylindrical roller and the glass ring along the y-axis cross-section in
Figure 2b. The layer thickness at a specific location in the reservoir is considered equal to
the gap between the roller and the glass ring. The clearance may be determined using the
geometric profile and Hertz contact theory, while the fluorescence intensity can be extracted
from the pictures recorded by a high-speed camera and analyzed as grayscale values using
image processing software.
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The relationship between the grayscale values measured in the experiment and the
corresponding layer thickness can be found, and one example is shown in Figure 2c, which
is the calibration procedure necessary for the following tests. According to Equation (1),
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kI0Φ and ε(λlaser)C are considered constant, and the fitting result can be given by the
following expression:

h = −0.16338 ∗ ln(1 − 0.03009 ∗ If(h)) (2)

The fitting degree R2 = 0.99601. Equation (2) has a good fit with the experimental
data. Recalibration is performed for each experiment to avoid the influence of external
environmental changes on the fitting parameters.

3. Experimental Results
3.1. The Preparation of the Lubricating Medium

To increase the fluorescence intensity, a fluorescent dye was dissolved in the lubricant.
For the lubricating oil, the powder of the fluorescent dye was added into the oil directly, and
then, they were sonicated at 60 ◦C for 30 min or longer so that the dye was dissolved evenly.

Fluorescent dye cannot be directly dissolved in grease. The mechanical rolling method
was used among the various tried methods: a certain amount of fluorescent dye was mixed
and stirred with grease first, and then, the mixture was grounded on a three-roll grinder
until it became uniform. Figure 3 shows the images of the oil and grease tagged with
fluorescent dyes; the color has changed from colorless or white to dark red. The lubricating
oil/grease with fluorescent dyes are represented as PAO8-F, Li5%-F, Li10%-F, and Li15%-F.
The emission spectra of the lubricating medium tagged with dyes were measured using
a spectrometer (Ocean Optics, USB2000+, Orlando, FL, USA) and are shown in Figure 3.
Under the irradiation of a 532 nm laser light source, the lubricating medium tagged with
dyes can generate fluorescence signals with a wavelength of approximately 650 nm. Figure 4
compares the changes in rheological properties of PAO8 and Li10% as examples. An Anton
Paar 301 rheometer was used, with a testing temperature of 24 ◦C and a shear rate ranging
from 0 to 8000·s−1. It can be observed that the overall rheological properties of PAO8
and Li10% show a similar trend after the addition of fluorescent dyes, and their viscosity
slightly decreases. The viscosity of the grease is much higher than its base oil viscosity. The
yield stresses of Li5%-F, Li10%-F, and Li15%-F are 128 Pa, 1017 Pa, and 1770 Pa, respectively.
The higher the thickener content, the greater the yield stress.
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fluorescent dyes.

3.2. The Distribution of the Lubricating Oil

In this section, PAO8 was used as the test lubricating medium, and the area near the
contact which was formed by the most loaded roller and the outer ring in the cylindrical
roller bearings was mainly focused on. Figure 5 shows the fluorescent image near the
contact. The line contact zone is shown by the dashed line. The width of the contact area is
approximately 75 µm. Assuming that the distribution of the oil reservoirs along the x-axis
can be approximated as a symmetrical distribution, only half of the contact area and the oil
reservoir distribution are shown here. According to Equation (1), the fluorescence intensity
is positively correlated with the layer thickness. The fluorescence intensity near the contact
area is low, indicating that the oil layer is thin. The fluorescence intensity away from the
contact area increases gradually, indicating that the oil layer thickness increases gradually.
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Figure 5. Fluorescent images near the contact area formed by the roller and outer ring at the maximum
radial loading point of cylindrical roller bearings: PAO8, 1 g.

The oil reservoir near the contact area can be divided into two parts: the center part
and the end part. When the rotating speed is 10 r/min, the center part of the oil reservoir is
distributed as a rectangular shape. As the rotating speed increases, the inlet area gradually
protrudes, while the outlet area shows fingers. The higher the rotating speed, the thinner
the fingers. The end part of the oil reservoir is relatively brighter. As the rotating speed
increases, the width of the end part of the oil reservoir gradually decreases, and the length
also gradually elongates until it connects to the next oil reservoir and forms an oil belt.

Figure 6 shows the distribution of layer thickness corresponding to the fluorescent
images in Figure 5. Due to the obvious variation in layer thickness with rotating speed,
two color bars with different thickness ranges were selected. It can be seen that the farther
away from the contact area the oil is, the thicker the oil layer. Along the x-axis, the layer
thickness distribution is relatively uniform, which conforms to the characteristics of the
line contact area. The thickness near the end part is relatively large. When the rotating
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speed increases to 500 r/min, the layer thickness near the end part is much greater than the
layer thickness in the central part. This indicates that a large amount of lubricating oil is
concentrated at the end of the roller.
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Figure 7 shows the cross-profile of oil layer thickness along the y-axis. The origin
of the coordinates is the center of the contact area. The layer thickness in the inlet area
gradually increases and remains consistent with the clearance between the roller and the
outer ring. The oil film drops sharply after it reaches the maximum thickness, and the layer
thickness on the free surface is only a few micrometers. This indicates that the lubricating
oil at the center of the track is mainly concentrated in the oil reservoir and is very thin on
free surfaces. The thickest oil film in the central section along the y-axis can be defined
as the inlet layer thickness hinlet. The variation in the inlet layer thickness with velocity
is shown in Figure 7. The change in the inlet layer thickness is basically consistent with
the clearance between the roller and the outer ring. At a speed of 100 r/min, the inlet
layer thickness reaches up to 500 µm and fully ensures the oil supply of the contact area.
However, as the speed increases, the inlet layer thickness rapidly decreases.
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3.3. The Distribution of the Grease

In this section, lithium grease was used as the test lubricating medium. Figure 8
shows the fluorescent images of grease near the contact area. The grease reservoir can also
be divided into a center part and an end part. The grease reservoir in the center part is
generally distributed in a rectangular shape. It is similar to the lubricating oil reservoir, but
the layer is much thinner. Differently, a large number of grease fingers occur in the outlet
area. The grease fingers on the side of the outlet area are thicker and longer than those
in the center. The grease fingers become thinner and longer with higher rotating speeds.
When the rotating speed exceeds 500 r/min, the layer thickness becomes a few micrometers,
and the fluorescent signal is quite weak to distinguish. The grease distribution at the end
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part is different from that of oil lubrication, as a grease belt can be formed with a layer
thickness up to 200 µm. As the rotating speed increases, both the width of the grease belt
and the layer thickness gradually decrease.
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Figure 8. Fluorescent images and the corresponding distribution of layer thickness near the contact
area lubricated by the grease. Li10%-F, 1 g.

Figure 9 shows the distribution of the grease layer affected by different thickener
contents. The content of the thickener ranges from 5% to 15%. When the thickener content
is 5%, the shape of the grease reservoir is similar to that of its base oil, which is rectangular.
Short grease fingers can be seen in the outlet area. Most of the grease at the end area
concentrates near the contact area to form the grease reservoir. A grease belt is formed
at higher rotating speeds when the tail flow of the grease reservoir is elongated. For the
thickener content of 10%, the fluidity of the grease deteriorates, and the grease reservoir
becomes obviously smaller than that of 5%. The grease fingers in the outlet area have a
denser and thinner distribution, and a grease belt is formed in the end area. The fluidity of
the grease further deteriorates by increasing the content of the thickener to 15%, and the
grease reservoir is almost invisible. Most of the grease is squeezed to the sides of the end
and forms a thick grease ridge.
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Figure 10a shows the variation in the inlet layer thickness hinlet with different rotating
speeds when using grease with different thickener contents. Basically, the thickness of
the inlet film gradually decreases with increasing speed except for that of Li15%-F, which
slightly increases at low rotating speeds and then rapidly decreases. The inlet layer thick-
ness of PAO8 base oil is the largest, and the higher the content of thickener, the smaller
the inlet layer thickness. The y1 axis is defined at the center of the grease belt, as shown
in Figure 9, and the maximum oil layer along the center section of the y1 axis is defined
as hend. Figure 10b compares the effect of thickener content on the thickness hend. hend of
Li5%-F and Li10%-F shows an overall decreasing trend with increasing speed, while hend
of Li15%-F decreases at low speeds and gradually increases thereafter. hend of Li10%-F is
the smallest in all situations.
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Figure 11 shows the distribution of the grease film affected by the grease filling amount.
The observation window was moved 1 mm to the right to observe the full view of the
grease belt at the end. The x-axis coordinate range changes to 1~5 mm. At 50 r/min, the
increase in grease infillings greatly affects the distribution of the grease layer. The greater
the grease infillings, the larger the grease reservoir, the thicker the grease fingers, and the
wider the grease belt at the end. At 500 r/min, different grease filling amounts may not
cause significant changes in the size of the grease reservoir; the grease layer on the track,
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however, gradually thickens with greater grease infillings. The thickness of the grease belt
at the end changes imperceptibly, while the width gradually increases.
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4. Discussion

There are two forms to supply the line contact area: one is the circumferential supply
(along the y axis), which means that the grease dispersed on the track can directly supply
the line contact area; another form is axial supply (along the x axis), which means that the
grease at the end gradually migrates to the reservoir, thereby supplementing the contact
area. From the experimental results, the grease reservoir for the line contact area has a
rectangular shape for most of the time. It is more like a grease reservoir formed based
on circumferential supply, as the grease on the track can be evenly squeezed during axial
loading. This result is consistent with the experimental results in reference [18]. Figures 6–10
illustrate that rotating speed is the most important factor in determining the layer thickness
of the grease reservoir. The higher the rotating speed, the smaller the hinlet. Figure 11 shows
that the grease filling amount has a positive effect on the layer thickness. More grease
added to the bearing results in a thicker oil layer on the track.

The experimental results also show that the axial supply for the line contact area
cannot be ignored when the grease filling amount is small. As shown in Figure 9, Li5%-F
shows a significant decrease in the inlet oil film from the end to the center at 1000 r/min.
In Figure 11, a similar situation exists for Li10%-F at a supply of 0.5 g. Taking Li10%-F
at supply of 0.5 g in Figure 11 as an example, a small grease reservoir is formed at the
end area, and grease fingers are formed in the outlet area developing inward, which may
continuously transport grease to the central area. In addition, the position of the tail flow
is closer to the center compared to the end of the grease reservoir, which also helps to
migrate the grease from the end to the central area during the rolling processes. During
the movement of the contact area, the grease reservoir can be replenished by the tail flow
left by the previous contact area while leaving a new tail flow. During this process, the
lubricating media in different contact areas are replenished and balanced with each other.
However, Li15%-F has poor fluidity and lacks such flow and replenishment. It can be seen
that the position of the grease belt at the end is basically unchanged, making it difficult to
replenish the contact area.
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The clearance of the roller end has an adsorption effect on the lubricating medium.
According to the analysis in reference [17], it is mainly the effect of capillary force. However,
the viscous force prevents the lubricating medium from migrating. For the lubricating oil,
PAO8 can quickly converge to the end and forms an oil reservoir. For lithium-based grease,
Figure 11 shows that the grease reservoir can be formed at the end at different speeds
and with different filling amounts. The layer thickness at the end is thicker than that in
the central area. The lower the content of the thickener, the less viscous the lubricating
medium is, and the easier it is to converge to the roller end and form a grease reservoir.
Figure 9 shows that the shape of the Li5%-F oil reservoir is closer to that of the lubricating
oil. On the contrary, the higher the content of the thickener, the greater the viscosity of the
lubricating medium. For Li15%-F, there is a thick oil belt near the end, but it is difficult to
converge to the roller end for replenishment.

5. Conclusions

By comparing the grease and oil, this work experimentally studied the distribution
of supply layers for the line contact area in a cylindrical roller bearing. The laser-induced
fluorescence technique was used to measure the layer thickness. The effects of speed,
thickener content, and filling amount were studied.

1. The reservoir around the line contact area in a cylindrical roller bearing mainly has a
rectangular shape. Rotating speed is the most important factor influencing the layer
thickness of the reservoir. Higher speeds lead to smaller reservoirs.

2. There are two lubricant supply modes for the line contact area in a cylindrical roller
bearing: circumferential and axial. In general, circumferential supply is the main form;
when the supply is very small or when there are higher speeds, it can be observed
that the axial supply cannot be ignored.

3. For axial supply, a small grease reservoir can be formed at the end area, and grease
fingers are formed in the outlet area developing inward. In addition, different contact
areas can be supplemented by the tail flow exchange while migrating to the center.
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