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Abstract: The layered double hydroxide (LDH) has been practically applied in the field of tribology
and materials science due to its unique physicochemical properties, weak bonding, flexible structural
composition, and adjustable interlayer space. In this work, a series of ultrathin and flexible compo-
sition of Ni-Fe LDH samples were prepared via a cost-effective room-temperature co-precipitation
process. Then, they were mechanically dispersed into GTL base oil and their lubricating performance
were tested by a four-ball tribometer. It is found that the variation of Ni-Fe ratio of Ni-Fe LDH
has a great influence on the improvement of lubricating performance of GTL base oil. At the same
concentration (0.3 mg/mL), the Ni-Fe LDH with Ni/Fe ratio of 6 was demonstrated to exhibit the
best lubricating performance and the AFC, WSD, the wear volume, surface roughness and average
wear scar depth decreased 51.3%, 30.8%, 78.4%, 6.7% and 50.0%, respectively. SEM-EDS and X-ray
photoelectron spectra illustrated that the tribo-chemical film consisting of iron oxides and NiO with
better mechanical properties formed and slowly replaced the physical film, which resists scuffing
and protect solid surface from severe collisions.

Keywords: gas to liquid; lubricating oil; lubricating performance; layered double hydroxide

1. Introduction

Friction and wear are widely used in the chemical industry, aerospace, machinery man-
ufacturing, transportation, metallurgy, oceanography, bioengineering, renewable energy
and daily life [1–5]. Along with the development of modern industry, friction and wear not
only cause energy loss and mechanical failure, but also metal corrosion and environmental
pollution [6,7]. To address these problems, lubricants are utilized extensively and have been
proven as an efficient means of minimizing friction and wear in the fields of transportation,
metal cutting, mining, construction, power generation, power transmission, and so on [8,9].
Modern commercial lubricants can be grouped as lubricating oils, lubricating greases, solid
lubricants and compressed air or other gases, and the first one accounts for about 80% of
them [10]. Lubricating oil is generally composed of two parts, a base oil and an additive.
The former is the primary component of lubricating oil and typically makes up the majority
of its composition (usually 70–95%), which determines the basic properties of lubricating
oil [11].

With the progression of contemporary economy and technology, friction and wear
not only culminate in energyipation and mechanical malfunction, also instigate metal
corrosion and environmental contamination [6]. To address these predicaments, lubri-
cants are extensively employed and have been substantiated as an efficacious means of
minimizing friction and wear in the realms of transportation, metal cutting, mining, con-
struction, power generation, power transmission, and so forth [8,9]. Modern commercial
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lubricants can be categorized as lubricating oils, lubricating greases, solid lubricants, and
compressed air or other gases, wherein the former constitutes approximately 80% of the
aforementioned [10]. Lubricating oil is generally comprised of two constituents, namely a
base oil and an additive. The former serves as the principal component of lubricating oil
and predominantly constitutes its composition (usually 70–95%), thereby determining the
fundamental properties of the lubricating oil [11]. As a synthetic product produced from
natural gas using the Fischer-Tropsch process, gas to liquid (GTL) base oil have excellent
characteristics, including ultra-high VIs (VI > 140), originally no sulphur and nitrogen, very
low evaporative losses and inappreciable aromatic content [12]. In light of this, GTL base
oil is a promising and environmentally friendly alternative to traditional mineral base oil,
which contains nitride and sulfide. Additives can compensate and improve the lubricating
properties of base oils. Over the past decades, extensive research has been conducted on
various forms of additives such as composites, nanoparticles, liquids and two-dimensional
(2D) materials. Among them, 2D materials are expected to be an alternative to liquid lubri-
cant additives due to their high specific surface area, chemical stability, and continuous
formation of protective films on friction surfaces. Due to the characteristics of high specific
surface area, remarkable chemical stability, and the ability to continuously form a protec-
tive film on the friction surface, a variety of two-dimensional (2D) materials have been
extensively studied in the field of tribology, including graphene [13,14], black phosphorus
(BP) [15,16], h-BN [17,18], MoS2 [19–21], WS2 [22,23], MXene [24–26], and layered double
hydroxides (LDHs) [27,28]. As with other 2D materials, the synthesis strategies for layered
double hydroxide nanosheets can be divided into two main categories: bottom-up direct
synthesis processes and top-down exfoliation processes. Various bottom-up strategies
have been developed for the direct preparation of LDHs from suitable precursors, includ-
ing hydrothermal, co-precipitation, microemulsion, sol-gel, and reconstruction methods,
through which LDHs with tunable dimensions, thicknesses, crystallinity, and shapes have
been prepared. The top-down exfoliation process usually involves swelling/interpolation
to enlarge the interlayer distance, followed by exfoliation of bulk LDHs. From the syn-
thesis of the LDHs are indeed suitable candidates for tribological applications from the
point of view of simplicity of process, flexibility of control and low cost [2,29]. More
importantly, LDHs are environmentally friendly materials that meet the requirements of
sustainable development, and have become potential environmentally friendly lubricant
additives, replacing traditional lubricant additives, such as zinc dialkyl dithiophosphate
(T202), isobutylene sulphide (T308), di-n-butyl phosphite (T304), chlorinated paraffin wax
(T301), and molybdenum dithiocarbamate (MoDTC), etc.

In the present article, a series of ultrathin and flexible composition of Ni-Fe LDH
samples were produced via a cost-effective room-temperature co-precipitation process.
The obtained Ni-Fe LDH samples were characterized by various tools such as powder
X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimet-
ric/differential thermal analysis (TG/DTA). The anti-wear and friction-reducing properties
of the as-synthesized Ni-Fe LDH samples in GTL base oil were systematically studied by a
four-ball tribometer. White light interferometer (WLI) methods were applied to analyze
the wear surface. The composition and microstructure of the tribo-chemical film were ana-
lyzed by scanning electron microscope, energy dispersion spectrum (SEM-EDS), and X-ray
photoelectron spectroscopy (XPS). The lubrication mechanism of GTL base oil improved by
Ni-Fe LDH was presented. The lubrication mechanism of Ni-Fe LDH in GTL base oil was
further discussed.

2. Materials and Methods
2.1. Materials

Sodium bicarbonate (NaHCO3), nickel nitrate hexahydrate (Ni(NO3)2·6H2O), iron ni-
trate nonahydrate (Fe(NO3)3·9H2O), methyl alcohol (CH3OH), methyl alcohol (CH3CH2OH),
and petroleum ether (90–120 ◦C) were of analytical grade and purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). The Risella X 430 base oil
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(GTL 430) supplied by Shell was used as fluid lubricant to formulate dispersions (Typical
characteristics showed in Table 1). All chemicals were used as received without further
purification and distilled water was used during all experiments.

Table 1. Typical characteristics of the Risella X 430 base oil (GTL 430).

Test Description Result Method

Kinematic viscosity (mm2/s) (40 ◦C) 44.23 ASTM D445
Kinematic viscosity (mm2/s) (100 ◦C) 7.62 ASTM D445

Viscosity Index 140 ASTM D2270
Appearance Clear to bright Visual

Colour saybolt 30 ASTM D156
Colour (ASTM) (Quantitative) 0.50 ASTM D1500

Density (kg/m3) (15 ◦C) 827.70 ASTM D4052
Refractive index (20 ◦C) 1.46 ASTM D1218

Pour point (◦C) −45 ASTM D6749
Flash point (◦C) (PMcc) 234 ASTM D93

2.2. Sample Preparation

Ni(NO3)2·6H2O, urea, Fe(NO3)3·9H2O and TEA were added into a 200 mL solution
using deionized water such that their typical concentrations were 7.5 mM, 2.5 mM, 17.5 mM
and 10 mM. A magnetic stir bar was added to the flask and the resulting solution was
stirred at 300 rpm for 24 h at room temperature. The reaction mixture was heated to
reflux at 100 ◦C with continuous stirring in a silicone oil bath for 48 h. Subsequently, the
system was cooled to room temperature in the air. The dispersion was centrifuged at
3000 rpm for 10 to 15 min at room temperature to separate the precipitate from the solvent.
The precipitate was then washed three times with deionized water by shaking and then
centrifuging to separate. The clean precipitate was then redispersed in isopropanol with an
additional two washing steps. The as-produced platelets were subsequently tip-sonicated
for 1 h using a Fischer Scientific Sonic Dismembrator Ultrasonic Processor at 40% power at
a frequency of 37 kHz (with Fisher Scientific Isotemp refrigerated bath circulator cooling
system held at 5 ◦C). Further modification of the solid lubricant is necessary for stable
dispersion in lubricating oils. Ni-Fe LDH powders were added to an ethanol solution
containing 15 wt.% oleic acid and sonicated for 30 min. The resulting mixture was then
dried to obtain the modified powder. The 0.wt.%, 0.1 wt.%, 0.2 wt.%, 0.3 wt.%, 0.4 wt.%,
0.5 wt.% modified powders were then added to GTL 430 and dispersed for 30 min using an
ultrasonic immersion probe sonicator.

2.3. Characterization of Ni-Fe LDH

The as synthesized Ni-Fe LDH powders were characterized by using different analysis
techniques. The crystal structure of Ni-Fe LDH powders was recorded using a powder
X-ray diffraction (XRD, Bruker D8 ADVANCE, Karlsruhe, Germany) with Cu Kα radiation
in the 2θ range from 5◦to 90◦ and scan step 0: 02◦. The infrared spectroscopy of Ni-Fe LDH
powders was performed on Fourier transform infrared spectroscopy (FT-IR PerkinElmer
Spectrum, Shelton, CT, USA) at a resolution of 4 cm−1. Thermal stability of Ni-Fe LDH
powders was evaluated using thermogravimetric analysis instrument (TG/DSC, SDT-Q600,
TA Instruments, New Castle, DE, USA) under pure N2 flow (100 mL min−1) to study the
weight changes with temperature. The samples were heated from room temperature to
850 ◦C at a heating rate of 10 ◦C/min.

2.4. Tribological Experiments and Evaluation

The friction and wear properties of the lubricant were examined on an SHM-1A four-
ball tester (Jinan Shunmao test instrument Co., Ltd., Jinan, China) with a rotational speed
of 1200 rpm, pressure loads of 200 N, 300 N, 400 N, 500 N, and 600 N, and a test time of 1 h
at room temperature. Before friction test, the steel balls were successively ultrasonicated in



Lubricants 2024, 12, 146 4 of 17

acetone and anhydrous ethanol to remove a wide variety of contaminants on the surface,
then washed with deionized water and dried in a nitrogen atmosphere. For each friction
test, 100 mL of lubricant was added to the contact area of the ball friction pair to ensure
that the friction pair was lubricated throughout the sliding process.

In order to obtain accurate and reliable tribological data, each set of experiments was
repeated three times and the coefficient of friction of the friction tester was recorded with
an accuracy of ±0.01. All the tests were carried out in humid air at room temperature and
relative humidity of 30–50%. The parameters of the tested steel balls are shown in Table 2.

Table 2. Experimental parameters and basic characteristics of the steel balls used.

Parameter GTL 430 0.1 mg/mL
Ni-Fe LDH

0.2 mg/mL
Ni-Fe LDH

0.3 mg/mL
Ni-Fe LDH

0.4 mg/mL
Ni-Fe LDH

0.5 mg/mL
Ni-Fe LDH

Speed 1200 rpm 1200 rpm 1200 rpm 1200 rpm 1200 rpm 1200 rpm

Load

200 N - - - - -
300 N - - - - -
400 N - - - - -
500 N - - - - -
600 N 600 N 600 N 600 N 600 N 600 N

Temperature RT RT RT RT RT RT
Test Duration 60 min 60 min 60 min 60 min 60 min 60 min
Component Elastic modulus (MPa) Poisson ratio Diameter Rockwell Surface roughness

GCr15 2.085 × 105 0.3 12.7 mm 60 ± 1 0.256 µm

To explore the friction mechanism of the Ni-Fe LDH, the morphology of the worn
surface was observed using a JEOL JSM-6610LV scanning electron microscope (JEOL,
Tokyo, Japan) and a white light interferometer (WLI) with a Contour GT-X 3D optical
profiler (Bruker, Karlsruhe, Germany), and the elemental distribution and composition of
the worn surface was identified and quantified using an Oxford X-Max 20 mm2 energy
dispersive X-ray spectrometer (Oxford Instruments, Oxford, UK). In order to further
determine the elemental composition and chemical state of the ternary films on the worn
surfaces, X-ray photoelectron spectroscopy replication (XPS) tests were carried out using
an ESCALAB 250Xi X-ray photoelectron spectrometer (Bruker, Karlsruhe, Germany) to
probe the deposition of the ternary films.

3. Results and Discussion
3.1. Material Characterization

As can be seen from the XRD pattern of the Ni-Fe LDH powders with various Ni/Fe
ratio (Figure 1a,b), the characteristic diffraction peaks of the as-prepared samples at 11.3◦,
22.7◦, 34.4◦, 38.9◦, and 60.1◦ corresponded to the (003) (006), (012) (015), and (110) crystal
planes of NiFe-LDHs (PDF#40–0215), respectively, indicating that these samples have
typical hydrotalcite-like crystal structure [27]. Most noteworthy, the XRD patterns of the
samples with smaller Ni-Fe ratio (2:1, 3:1) displayed sharper and narrower peaks, implying
higher degrees of crystallinity increase [2]. All the characteristic peaks of the LDH structure
appeared in the XRD pattern of the samples can be well indexed to the characteristic Ni-Fe
LDH structure (JCPDS no. 40-0215), conforming the successful preparation of NiFe-LDHs.

The FT-IR spectra of the Ni-Fe LDHs are shown in Figure 1c. The infrared bands
around 3500 cm−1 corresponds to the OH-stretching vibration and the one at 1627 cm−1 is
attributed to the H-O-H deformation, which are the evidence of the hydration of the LDH
samples. The peak located at 1341 cm−1, which originates from the ν stretching vibration
of the NO3 groups in the LDH interlayer. Bands under 1000 cm−1 can be ascribed to bonds
between O and metallic atoms forming the hydroxide layers.

Figure 2 displays the TG and DTG curves. The DTG curve exhibited endothermic
peaks at a temperature lower than 100 ◦C, which could be related to the release of absorbed
H2O molecules. The endothermic peaks at the temperature range of 200–500 ◦C are believed
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to result from the dissipation of -OH groups in the Ni-Fe LDH. Accordingly, assuming
that the dissipation of interlayer H2O molecules occurred at the temperature range of
100–200 ◦C, the H2O content in the interlayer was calculated from the weight loss of 5.4%
which occurred between 100 ◦C and 200 ◦C.

Lubricants 2024, 12, x FOR PEER REVIEW 5 of 18 
 

 

Ni-Fe LDH structure (JCPDS no. 40-0215), conforming the successful preparation of NiFe-
LDHs. 

  
Figure 1. The powder X-ray patterns of the four as-prepared Ni-Fe LDH samples (a,b). FTIR meas-
urement of the four synthesized Ni-Fe LDH samples (c). 

The FT-IR spectra of the Ni-Fe LDHs are shown in Figure 1c. The infrared bands 
around 3500 cm−1 corresponds to the OH-stretching vibration and the one at 1627 cm−1 is 
attributed to the H-O-H deformation, which are the evidence of the hydration of the LDH 
samples. The peak located at 1341 cm−1, which originates from the ν stretching vibration 
of the NO3 groups in the LDH interlayer. Bands under 1000 cm−1 can be ascribed to bonds 
between O and metallic atoms forming the hydroxide layers. 

Figure 2 displays the TG and DTG curves. The DTG curve exhibited endothermic 
peaks at a temperature lower than 100 °C, which could be related to the release of ab-
sorbed H2O molecules. The endothermic peaks at the temperature range of 200–500 °C are 
believed to result from the dissipation of -OH groups in the Ni-Fe LDH. Accordingly, as-
suming that the dissipation of interlayer H2O molecules occurred at the temperature range 
of 100–200 °C, the H2O content in the interlayer was calculated from the weight loss of 
5.4% which occurred between 100 °C and 200 °C. 

  

10 20 30 40 50 60 70 8 9 10 11 12

2θ (°)

 Ni/Fe ratio of 2:1
 Ni/Fe ratio of 3:1
 Ni/Fe ratio of 4:1
 Ni/Fe ratio of 6:1

(006) (101)

(012)
(015) (113)

(110)
(200)

(018)
(003)

In
te

ns
ity

(a
.u

.)

2θ (°)

(003)

(b)(a)
4000 3500 3000 2500 2000 1500 1000 500

Tr
an

sm
itt

an
ce

 %

Wavenumber cm-1

 Ni/Fe ratio of 2:1
 Ni/Fe ratio of 3:1
 Ni/Fe ratio of 4:1
 Ni/Fe ratio of 6:1

O-H stretching

H-O-H deformation

N-O stretching

M-OH
M-O

(c)

100 200 300 400 500 600 700 800
94

95

96

97

98

99

100

101

Temperatute / °C

W
ei

gh
t l

os
s /

 %

(a)Ni/Fe ratio of 2:1

0.5%

1.5%

3.0%

-0.4

-0.2

0.0

0.2

0.4

0.6

D
TG

 / 
(%

 / 
m

in
)

100 200 300 400 500 600 700 800

90

92

94

96

98

100

Temperatute / °C

W
ei

gh
t l

os
s /

 %

(b)Ni/Fe ratio of 3:1

3.7%

1.5%

4.3%

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
D

TG
 / 

(%
 / 

m
in

)

Figure 1. The powder X-ray patterns of the four as-prepared Ni-Fe LDH samples (a,b). FTIR
measurement of the four synthesized Ni-Fe LDH samples (c).
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Figure 2. TG and DTG curves of Ni-Fe LDH samples. Ni/Fe ratios of 2 (a), 3 (b), 4 (c) and 6 (d).
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3.2. Friction and Wear Performance

Figure 3 provided the variations of the friction coefficient (COF), the average friction
coefficient (AFC) and the wear scar diameter (WSD) of GTL base oil with load, as well as
the variations of COF, AFC and WSD of GTL base oil with Ni-Fe ratio and concentration.
The lubricating performance of GTL base oil was tested under 200–600 N in Figure 3a,b. All
the COF curves of GTL base oil remained stable under the loads of 200, 300,400, 500, and
600 N. As the load increases, the AFC decreases and then increases, and the WSD gradually
increases from 0.54 mm to 0.91 mm. This is because, the increase in load will result in the
lubrication state in the metal-to-metal contact zone transition from boundary lubrication
to mixed lubrication according to the Stribeck curve. In order to study the tribological
performance of Ni-Fe LDHs, the variations of COF, AFC and WSD of GTL base oil with
different Ni-Fe ratio and concentration are shown in Figure 3c–j. It can be seen that as the
Ni-Fe ratio increases from 2:1 to 6:1, the AFC and WSD of GTL base oil with Ni-Fe LDHs
presents similar variations. As the concentration of Ni-Fe LDHs increased from 0 mg/mL to
0.3 mg/mL, the AFC and WSD decreases, while the concentration of Ni-Fe LDHs increased
from 0.4 mg/mL to 0.5 mg/mL, the AFC and WSD increases. At the same concentration
(0.3 mg/mL), the AFC and WSD of Ni-Fe LDH (Ni/Fe ratio of 6) are the smallest, reducing
by 51.3% and 30.8%, respectively, which shows the best lubricating performance.

In order to better understand the wear characteristic of GTL base oil before and after
enhanced with 0.3 mg/mL Ni-Fe LDH with Ni/Fe ratio of 6, wear surface morphology
was observed by WLI. The steel ball with wear scars was firstly cleaned by ultrasonic
with ethanol. A wear scar with the wear volume of 3,076,504 µm3, surface roughness (Ra)
value of 3.0 µm and the average wear scar depth of 38 µm were formed for GTL based
oil as seen in Figure 4a–c. It was obvious that the wear volume, the surface roughness
and the average depth of the wear marks on the steel balls differed when using GTL base
oil + 0.3 mg/mL Ni-Fe LDH (Ni/Fe ratio of 6). The obtained results showed that GTL
based oil + 0.3 mg/mL Ni-Fe LDH with Ni/Fe ratio of 6 which had smaller AFC and WSD
displayed the wear scar with lower wear volume, surface roughness and average wear scar
depth (se Figure 4d–f). In a comparison, the wear volume, surface roughness and average
wear scar depth decreased 78.4%, 6.7% and 50.0%, respectively. It was believed that the
effects of Ni-Fe LDH alleviated adhesion.
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Figure 3. Tribological performance of Ni-Fe LDHs. (a,b) variations of COF, AFC and WSD of GTL
base oil with load (60 min, RT, 1200 rpm), (c–j) variations of COF, AFC and WSD of GTL base oil with
Ni-Fe ratio and concentration (600 N, 60 min, RT, 1200 rpm).

3.3. Worn Surface Analysis

In order to investigate the lubrication effect of Ni-Fe LDHs as lubricant additives on
the contact area of steel balls during the friction test, the morphology of the wear marks
was observed using an optical microscope and a scanning electron microscope equipped
with an EDS detector to detect the distribution of the corresponding elements on the wear
mark surface after the friction test. As shown in Figure 5, deep grooves and flaking pits
were observed on the wear surfaces lubricated with GTL base oil. The elements C, O and
Fe were detected on the surface of the wear marks, with O coming from air and C from
thermal decomposition of GTL base oil.
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Figure 4. 3D morphology and average depth of steel ball wear scar surfaces, (a–c) lubricated by GTL
base oil, (d–f) lubricated by GTL base oil + 0.3 mg/ml Ni−Fe LDH with Ni/Fe ratio of 6.

After that, the morphology and the corresponding element distribution on the wear
scar surface lubricated by GTL base oil + 0.3 mg/mL Ni-Fe LDH with Ni/Fe ratio of 6 is
shown in Figure 6 to prove the lubricating effect of Ni-Fe LDHs on the two sliding surfaces.
It can be readily found that the worn surface looks very smooth with little visible wear
after adding the Ni-Fe LDHs into GTL base oil. The C, O, Fe, and Ni four kinds of elements
were detected on the wear scar surface. In addition, after adding Ni-Fe LDHs, elemental
O is obviously increased compared with the GTL base oil, which certifies that the wear
scar surface of the steel ball produced a tribofilm after the addition of Ni-Fe LDHs. The
detected Ni elements were primarily from the Ni-Fe LDHs. Additionally, Ni observed on
the wear scar surface, indicating that the adsorption of Ni-Fe LDHs occured on the surface
of the bottom balls from tests.
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Figure 5. SEM images and EDS mapping of worn surface of steel ball lubricated by GTL base oil.
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To further clarify the composition of the tribochemical or adsorption film, the XPS was
used to characterize the contact area on the steel ball worn surface. Figure 7 presents that
the survey spectra of the steel ball worn surface and the high resolution spectra of C 1s, Fe
2p, Ni 2p, O 1s. According to Figure 7a, the peaks of C1s, Fe2p, and O1s were founded on
the survey spectrum lubricated by GTL base oil. While the peaks of C1s, Fe2p, and O1s and
Ni 2p were founded on the survey spectrum lubricated by GTL base oil + 0.3 mg/mL Ni-Fe
LDH with Ni/Fe ratio of 6. According to Figure 7b, the peaks of element C near 284.63 and
288.78 eV respectively assigned to C=C and C=O, suggesting that some carbon-containing
material on the worn surface originates from thermal cracking and coke deposition of the
GTL base oil. In Figure 7c, the subpeak at a higher binding energy (725.13 eV) is attributed
to Fe3O4, while the lower subpeak (710.83 eV) is contributed by Fe2O3. The Ni2p spectrum
(Figure 7d) with subpeak at 854.88 eV suggests that Ni exists as NiO on the rubbing surface
by tribochemical reaction. In Figure 7e, the peaks near 529.63 eV and 531.43 eV of the
O1s spectrum lubricated by GTL base oil + 0.3 mg/mL Ni-Fe LDH with Ni/Fe ratio of
6 attributed to the NiO and iron oxides, respectively. While the peak near 531.88 eV of
the O1s spectrum lubricated by GTL base oil attributed to the iron oxides. Therefore, it
is justified to conclude that the tribofilm deposited on the worn surface of the steel ball
uniformly and densely, which was primarily made up of of iron oxides and NiO, proving
that Ni-Fe LDHs indeed benefited to enhance the tribological behavior of GTL base oil.

3.4. Lubrication Mechanism of Ni-Fe LDH

In this paper, the four-sphere point contact model in contact mechanics is used to
investigate the contact stress pattern of a point contact object under pressure in order to
assess its tribological behaviour (Figure 8a).
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(e) O 1s.
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Figure 8. Schematic diagrams of lubrication mechanism for GTL base oil enhanced with Ni-Fe LDH
with Ni/Fe ratio of 6: (a) schematic illustration of the four-sphere point contact model, (b,d) boundary
lubrication between two sliding surfaces of a solid rough peaks and ridges, (c,e) hydrodynamic
lubrication in the area of fluid contact.

The rotating upper ball was located on a spindle, whereas the lower three stationary
balls were fixed in an oil cup. Based on Hertz contact theory, the maximum contact pressure
at the center of the circular contact area is given by:

qmax =
3p

2πa2 (1)

a =

(
3
4
× pR′

E∗

) 1
3

(2)

Herein, qmax is the maximum contact stress between the steel balls, p is the effective
load, a is the radius of the steel balls contact area, E* is the equivalent Young’s modulus, R’
is the comprehensive radius. p, E*, and R’ are defined as:

w = 3pcos θ (3)

1
R′ =

1
Rabove

+
1

Rbelow
(4)

E∗ =

(
1 − v2

above
Eabove

+
1 − v2

below
Ebelow

)−1

(5)

In this model contact, the polygon of the steel ball friction pair is a regular triangular
pyramid with four ball centers as vertices, according to which cosθ =

√
6/3, and the effective

load (p) of every steel ball is calculated by the equation (Equation (3)), where w is the total
load, Rabove is the radius of the rotating upper ball, Rbelow are the radii of the lower three
stationary balls, vabove and Eabove are Poisson’s ratio and Young’s modulus of the rotating
upper ball, respectively, vbelow and Ebelow are Poisson’s ratio and Young’s modulus of the
lower three stationary balls, respectively.

The effective load of each ball is estimated to be 245 N for the total applied load of
600 N and the maximum contact pressure calculated by the Hertz contact stress formula
(Equations (1) and (2)) was 3.51 GPa.
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For further understanding of the lubrication state between friction pairs and to investi-
gate the tribological properties of Ni-Fe LDH in GTL base oil, the thickness of the lubricating
film (hmin) was calculated from the Hamrock-Dowson equation (Equation (6)) [30–32]:

hmin = 3.63
G0.49U0.68R′

W0.073

(
1 − 0.61e−0.68k

)
(6)

where G = αE′, U = η0u/E′R′, W = p/E′R′2, k = 1.03(Ry/Rx)0.64 = 1.03 were dimension-
less material parameter, dimensionless speed parameter, dimensionless load parameter,
ellipticity parameter, respectively. α and η0 were the viscosity-pressure coefficient and the
dynamic viscosity at 25 ◦C of GTL base oil + 0.3 mg/mL Ni-Fe LDH with Ni/Fe ratio of 6,
respectively. u (0.461 m/s) was the relative sliding velocity of the two friction pairs, k was
the ellipticity parameter, E′ = 2E* was the effective modulus of elasticity.

Here, the minimum oil film thickness (hmin) between the two friction pairs was
1.306 µm. The lubrication state under the four ball experiment could be subsequently
classified in accordance with the relationship between the film thickness and surface rough-
ness as follows equation (Equation (7)):

λ =
hmin√
σ2

1 + σ2
2

(7)

where σ1 (2.8 µm) and σ2 (2.8 µm) are the surface roughness of the worn area of the upper
rotating ball and the lower stationary ball, respectively. This showed that λ is about 2.56 for
GTL base oil + 0.3 mg/mL Ni-Fe LDH with Ni/Fe ratio of 6, indicating that the contact
area is in a mixed lubrication state which is an intermediary condition between boundary
lubrication (Figure 8b) and hydrodynamic lubrication (Figure 8c) [32,33].

Boundary lubrication occurs mainly between two sliding surfaces of a solid rough
peaks and ridges (Figure 8d). During the collision close to the cusp, the obvious microscopic
fold structure is firstly destroyed under high contact pressure. At the same time, a large
number of ultrathin Ni-Fe LDH nanosheets are formed. To some extent, the possibility
of direct contact of Ni-Fe LDH nanosheets with sliding solid surfaces is greatly increased.
During violent friction, the ultrathin Ni-Fe LDH nanosheets physically hinder the direct
collision of the pointed surface in the middle of the contact zone [33]. As sliding proceeds,
the physically adsorbed film ruptures under harsh conditions. At this point, the gradual
generation of heat, plastic deformation and defects on the worn surface also provide an
environment for the subsequent ternary chemical reaction [29]. The ternary chemical
reaction between the Ni-Fe LDH additive and the surface of the sliding steel ball generates
a new relatively dense ternary protective film, which has better mechanical properties, and
can greatly prevent scuffing and protect the solid surfaces from severe collisions.

At the same time, hydrodynamic lubrication occurs mainly in the area of fluid contact
(Figure 8e). The dynamic pressure effect caused by the relatively rapid movement of the
friction partner also produces a film of hydrodynamic lubrication between the two friction
partners. In hydrodynamic lubrication, this film completely separates the concave and
convex peaks, thus reducing friction and wear between the balls.

4. Conclusions

In this paper, some kinds of Ni-Fe LDH powders with various Ni/Fe ratio were syn-
thesized via a cost-effective room-temperature co-precipitation process, and its lubricating
performance as an oil-based additive in steel–steel contact was studied. It shows that the
Ni/Fe ratio of Ni-Fe LDH had a remarkable influence on the lubricating performance
improvement of GTL base oil. At the same concentration (0.3 mg/mL), the Ni-Fe LDH
with Ni/Fe ratio of 6 was demonstrated to exhibit the best lubricating performance and the
AFC, WSD, the wear volume, surface roughness and average wear scar depth decreased
51.3%, 30.8%78.4%, 6.7% and 50.0%, respectively. The lubrication mechanisms are summa-
rized as follows. (1) As a result of the benefit of nanoscale size and layered structure, the
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microstructure of Ni-Fe LDH is broken down under the action of high applied pressure
at the initial stage, producing a mass of ultrathin Ni-Fe LDH nanosheets, which form a
physical adsorption film on the worn surface of the steel ball, polishing and mending the
microbulges of worn surface and the defects resulted from harsh friction. (2) As friction
proceeds, the physical film described above ruptures under harsh conditions. As a result
of heating, plastic deformation and peeling of the worn surface of the steel ball, a new
triple chemical film consisting of iron and nickel oxides with better mechanical properties
is produced and gradually replaces the physical adsorption film, thus resisting scratches
and protecting the solid surface from extremely severe impacts.
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