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Simple Summary: This review explores the potential of black soldier fly larval frass (which is a
mixture of insect excrements and leftover substrates) in organic agriculture. Frass can work as a
natural fertilizer for agriculture, enriching soil with nutrients and beneficial bacteria. The study
investigates how the composition of frass depends on the substrate for larval feed, and how it affects
different crops. By categorizing crops and evaluating the impact of frass, the research sheds light on
its potential benefits and drawbacks in farming practices. Overall, understanding how black soldier
fly frass can enhance soil fertility offers a sustainable solution for agriculture, reducing waste while
promoting healthier crop growth.

Abstract: Hermetia illucens has received a lot of attention as its larval stage can grow on organic
substrates, even those that are decomposing. Black soldier fly breeding provides a variety of
valuable products, including frass, a mixture of larval excrements, larval exuviae, and leftover
feedstock, that can be used as a fertilizer in agriculture. Organic fertilizers, such as frass, bringing
beneficial bacteria and organic materials into the soil, improves its health and fertility. This
comprehensive review delves into a comparative analysis of frass derived from larvae fed on
different substrates. The composition of micro- and macro-nutrients, pH levels, organic matter
content, electrical conductivity, moisture levels, and the proportion of dry matter are under
consideration. The effect of different feeding substrates on the presence of potentially beneficial
bacteria for plant growth within the frass is also reported. A critical feature examined in this
review is the post-application beneficial impacts of frass on crops, highlighting the agricultural
benefits and drawbacks of introducing Hermetia illucens frass into cultivation operations. One
notable feature of this review is the categorization of the crops studied into distinct groups, which
is useful to simplify comparisons in future research.

Keywords: insects; bioconversion; agriculture

1. Introduction

In an era of global climate change and land degradation, ensuring food security for
an ever-growing world population of nearly 10 billion people projected in 20–30 years
is a significant issue [1]. In this context, fertilizers are important in food production
systems [2]. On the one hand, fertilizers can increase agricultural production [3], but
on the other hand, they can cause damage to the ecosystem [1,3]. Farmers can adapt
fertilization to environmental conditions by replacing chemical fertilizers with organic
ones, such as animal waste (e.g., slurry, manure) and crop residues [3]. Another organic
fertilizer that has been gaining particular interest in recent years is larval frass (consisting
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of larval excrements, larval exuviae, and unconsumed feedstock), one of the byproducts
of insect breeding systems [4]. Insect farming has many environmental advantages:
indeed, if compared with livestock, less land and water are required, and greenhouse gas
emissions are lower [5,6]. A particular category of insects is the bioconverter, which can
convert large amounts of organic waste into a biomass rich in proteins and fats suitable
for animal nutrition [7–12]. As one-third of global agricultural and food production
is wasted, the possibility of growing insects on former foodstuffs represents a critical
solution for reducing food waste by converting it into valuable products relevant for dif-
ferent industrial sectors, including animal feed, human food, cosmetics, pharmaceuticals,
and biofuel [13–16].

The chemical fertilizer sector needs innovative and sustainable production systems
to reduce waste and environmental pollution. Considering the speed of the process and
the high-value products obtained, the bioconversion of waste by insect larvae has gained
significant attention in recent years [17,18]. One of the most promising insect species
for bioconversion is Hermetia illucens (Diptera: Stratiomyidae), also known as Black
Soldier Fly (BSF) [19,20]. Insect bioconversion systems can upcycle a high amount of
heterogeneous substrates from organic waste streams into high value proteins and lipids
in the form of insect larval biomass, suitable for food and feed. Other products obtained
from the insects rearing, in addition to protein and lipids, are antimicrobial peptides [21],
chitin, and its derived chitosan [22–24]. Larvae can be used as feed to chickens, fish, and
pigs because of their high protein content [25,26]. Another application of BSF-derived lar-
val biomass, due to the high amount of lipids, is the production of biodiesel [27]. Chitin
and its derivatives due to their numerous applications in several sectors (food, cosmetics,
pharmaceuticals, textiles, etc.) have great economic value [28–31]. Finally, another inter-
esting product deriving from BSF breeding is frass that can be used as fertilizer [32,33].
There is a significant worldwide interest in employing insect larvae to convert organic
waste into excellent frass fertilizer using a circular economy strategy [34]. In accordance
with the current regulation, in order to meet the microbiological requirements for the
use of insect frass as a biofertilizer or soil improver, a heat treatment of 70 ◦C for 60 min
is appropriate (Figure 1) [35]. Indeed, in addition to beneficial microorganisms, there are
groups of microorganisms that could pose a problem when utilizing organic fertilizers
in agriculture, such as harmful bacteria and fungi; for this reason, several laws ban the
use of fertilizers containing Salmonella spp., Escherichia coli, thermotolerant coliforms,
and other microorganisms at specified concentrations on farmed land. In addition,
it is extremely important, from an agronomic and financial standpoint, that specific
microorganisms are present in organic agriculture fertilizers [36]. It is necessary to
identify and understand the most effective heating method for preserving the beneficial
microorganism present in insect frass and, at the same time, ensuring that no infections
or live larvae are released into the environment [37]. Heating, pelleting, or extrusion
of insect frass are examples of possible hygienization procedures, as they may reach
the temperature (70 ◦C) indicated by the European regulation [35]. However, all these
procedures require a significant amount of energy input. In order to explore a cheaper
and sustainable alternative, the biogas system could be considered a valid technology to
be utilized for waste biomass treatment that has a proven sanitization efficacy [38].



Insects 2024, 15, 293 3 of 17
Insects 2024, 15, x FOR PEER REVIEW 3 of 18 
 

 

 
Figure 1. Steps of heat treatment on a small scale. Freshly produced frass were placed in containers 
and heat-treated in a pre-heated oven for 1 h at 70 °C. After the treatment, the frass can be used in 
the agricultural field. 
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improves its quality and simplifies the subsequent separation of larvae and residual ma-
terial [40]. BSFL can feed on a variety of organic substrates, both vegetable and animal in 
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and can thus be perceived as a time-consuming and difficult operation [45]. In addition, 
insect farming is more environmentally friendly than conventional livestock, requiring 
less natural resources in terms of land, water, and fertilization [46]. As already mentioned, 
the main waste product from BSF farming is frass, which can be used in agriculture as an 
organic fertilizer. This review focuses on frass derived from different substrates, their 
chemical compositions, thermal treatment, and their applications in agriculture. 

  

Figure 1. Steps of heat treatment on a small scale. Freshly produced frass were placed in containers
and heat-treated in a pre-heated oven for 1 h at 70 ◦C. After the treatment, the frass can be used in
the agricultural field.

Insect Rearing

The European Commission issued Commission Regulations (EU) 2017/893 and 2021/1372
which authorized the use of insect protein in aquaculture, poultry, and pig feed. This au-
thorization is limited to eight species, including BSF, which must be reared on ‘food quality’
substrates [38]. Processed animal proteins derived from farmed insects may be imported
into the EU, provided that the substrate for insect feeding contains only non-animal products
or the following animal derivative: fishmeal, blood products of non-ruminants—dicalcium
phosphate and tricalcium phosphate of animal origin—hydrolyzed proteins of non-ruminants,
hydrolyzed proteins of ruminant hides and skins, gelatin and collagen of non-ruminants, eggs
and egg products, milk, milk products, milk products and colostrum, honey, and rendered
fats. Furthermore, the substrate for insect feeding and the insects themselves must not be
exposed to any other animal-derived components than those listed above. Additionally, the
substrate must not contain manure, kitchen garbage, or other animal waste. In addition to
these authorized substrates, several studies have been conducted on other types of substrates.
It is essential to ensure that the starting material is devoid of dangerous elements and inorganic
compounds. Moreover, it is important to reduce the particle size of the material to a diameter
of 1–2 cm, since BSF larvae (BSFL) are unable to break down substantial substrate particles,
and increasing the surface area of the substrate promotes the proliferation of the related
beneficial bacteria [39]. Efficient shredding of diet ingredients also increases the homogeneity
of the residue, which improves its quality and simplifies the subsequent separation of larvae
and residual material [40]. BSFL can feed on a variety of organic substrates, both vegetable and
animal in origin. Under optimal growth conditions (27 ◦C temperature and 70% humidity),
they bioconvert feed into larvae biomass in about 14 days [41–44]. Since the prospects for
rearing BSFL are so promising, many farmers are turning to both the local and large-scale
production and breeding of larvae. The rearing process normally entails a lot of human effort,
and can thus be perceived as a time-consuming and difficult operation [45]. In addition, insect
farming is more environmentally friendly than conventional livestock, requiring less natural
resources in terms of land, water, and fertilization [46]. As already mentioned, the main waste
product from BSF farming is frass, which can be used in agriculture as an organic fertilizer.
This review focuses on frass derived from different substrates, their chemical compositions,
thermal treatment, and their applications in agriculture.

2. Frass

Insect excrements, known as “frass”, are a significant byproduct of the bioconversion
process, consisting of larval excreta, larval exuviae, and unconsumed feedstock. This
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combination of components yields a substance capable of supplying nutrients and organic
matter to soil, modifying soil microbiota, and manipulating plant behavior [47].

Except for BSF and Tenebrio molitor, studies on the use of frass from edible and com-
mercial insects as organic fertilizer are currently scarce [48–54]. Frass has a high potential
as a valuable plant biofertilizer (improving soil nutrient content, with a direct effect on
plant growth) and/or improving other physical properties of the soil, such as structure,
with an indirect effect on plant growth [55,56]. When the majority of the larvae has stopped
the feeding period, frass and larval biomass are collected by sieving them [52,57]. Insect
frass is gaining popularity as an organic fertilizer due to its high concentration of vital plant
nutrients and the presence of chitin, a component of the insect exoskeleton, which seems to
stimulate plant defense mechanisms and growth [58]. Since insect farming is expanding
as a sustainable alternative element for terrestrial and aquatic animal feed production,
and for food waste management, the availability of frass also increases [59]. Frass can
be considered a value product to use as biofertilizer, having demonstrating comparable
efficacy to organic fertilizers, even when BSFL are fed on various types of substrates.

2.1. Frass Composition

Frass is not a uniform product; its quality and composition are heavily influenced by
the feed substrates used in the rearing process [52], and also by post-processing, which
may be recommended for sanitation reasons [60] and which can significantly alter its
properties [61]. Given that BSFL can consume a variety of feeding substrates, the frass
composition can likewise vary [47].

Different frass characteristics have a significant impact on plant growth [62].
BSFL actively alter the pH of the substrate towards an alkaline environment; while

BSFL may grow at a variety of pH levels, their performance appears to be optimal at
higher pH levels of the feeding substrate [63–65]. Indeed, Ma et al. [64] found that the best
pH value for the BSF production system appears to be slightly acidic (6.0) or somewhat
basic (8.0 and 10.0). Adjusting the pH at the beginning of feeding effectively improves
larval growth.

The feed substrate initial pH influences the frass pH [53,65]. Ma et al. [64] evaluated
that starting from substrates with initial pH values of 6.0, 7.0, 8.0, and 10.0, at the end of
the larval feeding phase, frass had pH values ranging from 8.0 to 8.5, while in substrates
with initial pH of 2.0 and 4.0, the obtained frass had a pH of 6.0. The reduction in substrate
pH caused by BSFL could be attributed to the gut microbes responsible for organic acid
generation [64]. Increases in substrate pH, on the other hand, recorded the alkalization of
the substrate produced by the release of ammonium ions (NH4

+) and ammonia [66].
Meneguz et al. [65] observed that feeding diets with different pH values (4, 6.1, 7.5,

and 9.5) resulted in frass with pH values between 8.9 and 9.4, while Ma et al. [64] recorded
frass pH values of 6.0 in larvae reared on diets with pH value 4.

The different pH values could be associated with a different larval density [67]. Indeed,
in Meneguz et al. [65], the density was 60 larvae per liter of diet, with 0.96 g of food per
larva, while for Ma et al. [64], the density was 100 larvae per liter, with 1.6 g of food per larva.
In addition to this hypothesis, the breeding box dimensions, its height, and the amount of
provided feed could influence the pH [65]. We could not compare these parameters, since
Ma et al. [64] did not report the container dimensions, but only the volume.

Differences in BSF production systems (breeding procedures, feeding substrate, sieving
processes, and frass post-processing) can all have an impact on frass DM content, also
complicating the comparison of results inter-studies [68].

Optimal conditions for larval growth are 70% of relative humidity and a temperature
of 27 ◦C; at lower temperatures, larvae consume food more slowly [42]. Cheng et al. [69]
discovered that although a higher moisture content of food waste results in a faster larval
growth rate, it also complicates the separation of the residue from the BSFL biomass. Indeed,
the moisture content of the residue is very important in order to facilitate the separation of
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BSFL biomass. A moisture content between 82% and 86% makes separation difficult and
can cause clumping, which can result in subpar sieving results [69,70].

The starting substrate moisture content should be 70–75% for successful sieving of the
residue; moreover, separation is better when BSFL are able to reduce the frass moisture
content to around 50% [69]. In general, also, the color could be an indicator of optimal
sieving property; freshly produced frass has a darker color and a higher moisture content,
while dried frass has a lighter color and a lower moisture content.

Gärttling and Schulz [68] averaged the composition of different frass obtained from
the larval rearing on different initial substrates (Table 1).

Table 1. Average composition of different frass obtained from different initial substrates. Data are
reported on dry matter (DM) values [68].

Physical Parameters

Dry matter (DM) 69.6%
Organic matter (OM) 86.2% DM
pH 7.46
C:N ratio 14.7
Electrical conductivity (EC) 4.0 mS cm−1

Macronutrients

Total nitrogen (Nt) 32.2 g kg−1 DM
Ammonium nitrogen (NH4

+-N) 5.6 g kg−1 DM
Phosphorus (P) 12.4 g kg−1 DM
Potassium (K) 29.3 g kg−1 DM

Micronutrients

Magnesium (Mg) 4.7 g kg−1 DM
Sodium (Na) 5.7 g kg−1 DM
Calcium (Ca) 8.8 g kg−1 DM
Sulfur (S) 6.3 g kg−1 DM
Copper (Cu) 43.8 mg kg−1 DM
Boron (B) 34.5 mg kg−1 DM
Zinc (Zn) 136.3 mg kg−1 DM
Iron (Fe) 1808.4 mg kg−1 DM
Manganese (Mn) 79.5 mg kg−1 DM

2.1.1. Macronutrients

Macronutrients such as nitrogen (N), phosphorus (P), and potassium (K) are equally
vital for plant growth as sunlight, CO2, and H2O [71]. The macronutrient composition of
frass is strongly influenced by the type of food substrate provided to larvae. In Table 2,
chemical characteristics (particularly for macronutrients) of frass derived from larvae fed
on different feeding substrates are reported.

Table 2. Macronutrients composition of BSFL frass deriving from different initial substrates.

Feeding Substrate Macronutrient (%) References

C N P K

Gainesville diet * 35.2 3.8 5.2 4.1 [72]
Distiller grains * – 3.4 0.8 1.1 [73]
Brewery spent grain **** 38.6 3.6 0.5 0.3 [61]
Okara and wheat bran *** 37.1 4.8 1.0 0.9 [62]
Okara and wheat bran ****** 30.6 3.2 0.8 0.5 [62]
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Table 2. Cont.

Feeding Substrate Macronutrient (%) References

C N P K

Household waste * 35.8 2.2 0.5 0.7 [74]
Wheat bran * 35.7 2.8 1.4 2.3 [75]
Brewery spent grain **** 35.2 2.1 1.2 0.2 [54]
Fresh okara * 37.1 5.1 0.3 1.9 [76]
Chicken manure * 23.6 2.3 1.1 1.8 [77]
Pig manure * 26.8 2.4 2.1 1.0 [77]
Chicken feed * 47.9 2.6 – – [52]
Grass cuttings * 44.3 2.4 – – [52]
Fruits and vegetables * 48.8 1.8 – – [52]
Cow manure * 27.7 1.9 1.0 0.2 [77]
Vegetables * 38.7 2.8 1.5 3.3 [53]
Kitchen waste * - 3.3 3.1 4.5 [78]
Gainesville diet * 50.8 2.0 1.9 3.7 [79]
Fruit/vegetable/bakery/brewery * 51.4 2.7 1.3 2.9 [79]
Ratios of water hyacinth, fruit waste, and manure (65:25:10) * 23.5 0.8 0.4 2.6 [80]
Ratios of water hyacinth, fruit waste, and manure (50:40:10) * 24.8 1.4 0.4 2.5 [80]
Ratios of water hyacinth, fruit waste, and manure (35:55:10) * 25.3 1.6 0.3 2.2 [80]
Ratios of water hyacinth, fruit waste, and manure (15:75:10) * 27.0 1.7 0.3 1.7 [80]
Ratios of water hyacinth, fruit waste, and manure (10:80:10) * 29.1 1.9 0.2 0.2 [80]
Food waste, chicken feces, and sawdust (3:2:1 ratio) * - 1.7 1.1 2.1 [81]
Maize straw * - 0.6 2.5 2.1 [57]
Spent malted barley grain * 40.1 3.2 0.6 0.3 [82]
Hemp waste * - 2.0 0.7 1.5 [83]
Mix grains, fruits, and vegetables ***** - - 1.4 1.8 [84]
Food waste * - 1.5 0.9 1.1 [85]
Gainesville diet ** 51.5 1.3 0.9 1.9 [86]
Gainesville diet *** 51.1 1.9 0.9 1.9 [86]
43% sheep whey + 57% seeds ** 54.3 1.6 0.5 1.1 [86]
43% sheep whey + 57% seeds *** 54.3 1.9 0.5 1.2 [86]
Gainesville diet * 24.0 1.5 1.2 2.1 [87]
Gainesville diet * - - 0.9 2.9 [88]

Asterisks refer to treatment of frass derived from larval rearing on the specific substrate: * not available; ** with
thermal treatment at 70 ◦C for 1 h in according to Reg UE 2021/1925; *** without thermal treatment; **** composted
for 5 weeks; ***** treated at 100◦ C for 48 h; ****** aerated compost.

The larval frass exhibits varying levels of nitrogen, phosphorus, and potassium, de-
pending on the diet fed to the larvae. Frass obtained from feeding larvae with fresh okara
yields the highest nitrogen content at 5.1% [76]. The highest percentage of phosphorus
(5.2%) was observed in frass obtained by feeding the larvae the Gainesville diet [72], while
the highest presence of potassium (4.5%) was detected in frass obtained by feeding the
larvae with kitchen waste [78]. The frass obtained by the Gainesville diet showed the
better composition in terms of the combined macronutrients nitrogen, phosphorus, and
potassium [72]. This diet, together with chicken feed, as highlighted in Table 2, shows
its excellent nutritional characteristics for larval growth. Both diets are usually used as
controls to evaluate larval growth and to attribute any variations in growth factors solely
to the food substrate, although the most widely used, considered as the actual standard
diet, is the Gainesville diet. This can be confirmed, as the rearing of BSFL on this diet
results in frass with better quality compared to those obtained from larvae fed on the other
control diet. Moreover, in Labella et al. [86] investigation, the interest is not only focused
on the two tested diets (the Gainesville diet and the 43% sheep whey + 57% seeds diet),
but also on the thermal treatment applied to the analyzed larval frass. Indeed, the analyses
were performed on frass without any thermal treatment and on the same frass after being
treated at 70 ◦C for 1 h, as reported by the abovementioned European regulations in order
to reduce the possible presence of dangerous bacteria/pathogens.
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2.1.2. Micronutrients

For the optimal growth of the plant, in addition to macronutrients and also micronu-
trients, including calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), copper (Cu),
manganese (Mn), and zinc (Zn), are fundamental. Table 3 shows the micronutrient compo-
sition of the different frass obtained from larvae reared on different feeding substrates.

Table 3. Micronutrient composition of BSFL frass deriving from different initial substrates.

Feeding Substrate Micronutrients References

Ca Mg Na Fe Cu Mn Zn

(g kg−1) (mg kg−1)

Gainesville diet * 45 8.0 3.0 600 46.1 − 140 [72]
Distillers grains * 13 3.0 5.0 125 15 45 90 [73]
Brewery spent grain **** 9.7 1.0 – 310 25 109 182 [61]
Okara and wheat bran *** 1.3 0.1 – 26 2.2 4.2 0.1 [62]
Okara and wheat bran ****** 0.8 0.2 – 26 0.7 2.3 0.1 [62]
Household waste * 10 0.9 0.8 240 10 10 10 [74]
Wheat bran * – 0.3 – 15 8.9 19.4 15 [75]
Brewery spent grain **** 0.2 0.2 – – – – – [54]
Fresh okara * 16.8 10.5 – 3.7 0.9 0.2 1.7 [76]
Vegetables * 15 7.0 0.3 896 19 149 137 [53]
Fruit/vegetable/bakery/brewery * 0.4 4.2 9.7 150.5 9.0 17.0 57.3 [79]
Ratios of water hyacinth, fruit waste, and
manure (65:25:10) * 1.4 1.9 - 537 42.9 55.7 78.2 [80]

Ratios of water hyacinth, fruit waste, and
manure (50:40:10) * 1.4 1.5 - 534.3 36.6 33.7 68.3 [80]

Ratios of water hyacinth, fruit waste, and
manure (35:55:10) * 0.9 1.1 - 415.7 34.5 32.0 60.2 [80]

Ratios of water hyacinth, fruit waste, and
manure (15:75:10) * 0.6 0.9 - 95.0 32.6 30.9 43.3 [80]

Ratios of water hyacinth, fruit waste, and
manure (10:80:10) * 0.3 0.7 - 290.3 22.7 21.5 38.0 [80]

Spent malted barley grain * 6.4 2.2 0.2 4100 12.8 100 100 [82]
Hemp waste * 19.2 4.6 7.3 1111 26.1 163.9 187.5 [83]
Mix grains, fruits, and vegetables ***** 18.1 3.8 6.2 - 44 76 372 [84]
Food waste * - - - - 57 - 206 [85]
Gainesville diet ** 2.1 6.8 0.9 - - - 89.3 [86]
Gainesville diet *** 4.4 7.2 0.9 - - - 93.2 [86]
43% sheep whey + 57% seeds ** 1.1 3.7 1.9 - - - 50.1 [86]
43% sheep whey + 57% seeds *** 1.3 3.8 2.0 - - - 55.2 [86]
Gainesville diet * 5.0 5.0 - - - - - [87]
Gainesville diet * 8.9 5.2 0.9 507 9.8 66.0 58.2 [88]

Asterisks refer to treatment of frass derived from larval rearing on the specific substrate: * not available; ** with
thermal treatment at 70 ◦C for 1 h in according to Reg UE 2021/1925; *** without thermal treatment; **** composted
for 5 weeks. ***** treated at 100 ◦C for 48 h; ****** aerated compost.

As can be seen from the values reported in Table 3, the missing analysis for some
micronutrients in literature leads to a less accurate analysis than for macronutrients. Many
authors do not determine the presence of sodium in the analysis of frass, but knowing the
amount of sodium is important to understand for which crops and which type of soil frass
would be useful. For instance, when the concentration of sodium in the substrate increases,
its concentration also increases in plant tissue, reducing plant fitness, particularly in plants
that are very susceptible to salt stress [89,90].

2.2. Microbiological Composition of BSFL Frass

Microorganisms included in organic plant fertilizers can have several benefits [36]:
they can boost nutrient usage, promote plant development, tolerance to abiotic stress, and
resistance to diseases and pest attacks [36,49,91]. The use of beneficial microorganisms in
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agriculture [92] is an essential alternative method for supplying healthy food in a sustain-
able way by minimizing the use of chemical fertilizers, pesticides, and herbicides [93,94].
Among the interesting microorganisms, genera such as Azospirillum, Bacillus, Mycorrhizae,
Pseudomonas, Rhizobia, Streptomyces, Trichoderma, and Bacillus species are the most encour-
aged for their easy production and application among these regularly utilized microbes [95].
Insects have a rich biodiversity of microorganisms (protists, fungi, archaea, and bacteria)
in their gut that play critical roles in several aspects of insect physiology [96,97]. The
microbiome dynamics of BSFL are of particular interest in order to gain insight into the
physiology of the insect and, furthermore, to boost the yield of the rearing or conversion
process [98]. The composition of BSFL gut microbiota varies according to the feeding
substrate [98] and other breeding variables, such as the temperature [99]. Yue et al. [100]
fed BSFL on chicken and pig manure, and they found 10 genera persisting in all samples:
Enterococcus (average relative abundance of 24.1%), Providencia (21.7%), Morganella (14.5%),
Klebsiella (4.9%), Ignatzschineria (3.3%), Clostridium (2.4%), unclassified Enterobacteriaceae
(1.8%), Actinomyces (1.6%), Proteus (1.1%), and Vagococcus (0.6%). Gold et al. [101] identified
several bacteria characteristic of the gut and BSFL frass, including the Firmicutes, Proteobacte-
ria, Bacteroidetes phyla, and Dysgonomonas, Morganella, Providencia, Proteus, Sphingobacterium,
Pseudomonas, and Bacillus genera. Raimondi et al. [101] determined the microbial composi-
tion of frass obtained from BSFL reared on a diet composed of 25% maize meal (milling
waste), 15% wheat bran, 10% alpha meal, and 50% water. The microbial composition was
represented by Proteobacteria, Actinobacteria, Firmicutes, and Enterobacteriaceae. Another
example is reported by Fuhrmann et al. [82], in which BSFL were fed on spent malted
barley grain, and the frass was used as a soil conditioner for growing clover grass, affecting
the soil microbial population, which increased microbial activity (basal respiration) and
crop output. The most abundant phyla found in that study were the groups of Proteobacteria
(31%), Actinobacteria (24%), Bacteroidetes (15%), Firmicutes (15%), and Chloroflexi (11%).

Impact of BSFL Frass Microorganisms

In addition to macro- and micro-nutrients and micro-organisms, frass can also have
an impact on soil micro-organisms [102,103]. Nurfikari [104] fed BSFL on agro-industrial
waste, and the resulting frass stimulated soil bacteria and fungi such as Bacilli, Actinobacteria,
Gammaproteobacteria, and Mortierellomycetes, as well as bacterial chitinase genes, which are
known to suppress some pathogens. Concerning the plant’s defense against pathogens,
the addition of frass to the soil is a viable treatment for Fusarium wilt in lettuce. Chitin-
rich exuviae absorption into soil has had even more positive benefits on disease control
than only frass. Another interesting study showed that the use of frass in a bean crop
reduced plant death due to Fusarium oxysporum [105]; in particular, frass obtained by
feeding BSFL on the Gainesville diet exhibits antifungal activity against F. oxysporum [79].
Gebremikael et al. [106] demonstrated that the addition of frass reduced the presence of
a soil pathogen Rhizoctonia solani. In tests on beans (Phaseolus vulgaris) infected with this
pathogen, the application of frass resulted in a 50% reduction in the disease rate, which
was attributed to chitinase activity [106]. Another study examined the extract of filtered
and unfiltered frass deriving from larvae fed on two distinct diets: the Gainesville diet, and
a diet consisting of a mix of fruits, vegetables, bakery, and beer waste (FVBB). The extract
of frass from the unfiltered Gainesville diet inhibited the mycelia Alternaria solani, Botrytis
cinerea, F. oxysporum, Pythium capsici, R. solani, and Sclerotinia sclerotiorum. In contrast,
the frass-derived extract from the FVBB diet inhibited only B. cinerea, S. sclerotiorum, and,
to a lesser extent, A. solani. Filtered extracts of both fractions revealed no change in
micellar growth [79]. The filtration probably resulted in the loss of inhibitory agents for
mycelial development.

3. Frass Application

Several works analyze the application of frass as a fertilizer for plants. The effects
of frass application depend on frass composition, dosage, and plant species. Below, the
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larval frass effects on different crops are described and reported in Tables 4 and 5. The
two tables are divided by plant family: Table 4 for Gramineae, and Table 5 for Asteraceae,
Cruciferous, Lamiaceae, Plantaginaceae, and Solanaceae. However, studies conducted
on species belonging to the families reported in Table 5 are limited compared to those on
Gramineae. In each Table, the initial feeding substrate of the BSFL, the dosage that gave
the best growth response, the duration of plant growth, the plant species tested, and the
effects of the optimum dose on the plant are reported.

Table 4. Larval growth substrate, optimal frass dosage, experiment duration, effect of frass doses and
plant species of Gramineae family.

Larval Growth
Substrate

Optimal Frass
Dosage Plant Species Experiment

Duration Effect of Frass Doses Reference

Fruit/vegetable
pulp + poultry litter * 4% by volume Hordeum vulgare 44 days

Increased shoot length,
increased biomass, and
increased photosynthetic
activity

[107]

Spent grain **** 2.5 t/ha Zea mays 125 days Increased plant height and
chlorophyll content [54]

Chicken manure * 4% by weight first year Oryza sativa About 180 days Increased productive yield [108]
Chicken manure * 8% by weight second year Oryza sativa About 180 days Increased productive yield [108]
Spent grain * 7.1 g for plot Avena sativa cv.

Apollon About 42–49 days Increased shoot growth [109]
Spent grain * 6.3 g for plot Triticum spelta About 42–49 days Increased shoot growth [109]
Spent grain * 6.8 g for plot Triticosecale cv.

Trisem About 42–49 days Increased shoot growth [109]

Spent grain * 7.8 g for plot Hordeum vulgare cv.
Westminster About 42–49 days Increased shoot growth [109]

Spent grain * 7.8 g for plot Hordeum vulgare cv.
Quadriga About 42–49 days Increased shoot growth [109]

Onion and potato
waste * 100% of nitrogen demand Lolium multiflorum About 210 days Increased production [53]

Gainesville diet ** frass extracts 25% Hordeum vulgare until the first leaf
was produced.

Increased root dry weight and
chlorophyll content [86]

Gainesville diet *** frass extracts 25% Hordeum vulgare until the first leaf
was produced.

Increased root dry weight and
chlorophyll content [86]

43% sheep whey +
57% seeds ** frass extracts 25% Hordeum vulgare until the first leaf

was produced.
Increased root dry weight and
chlorophyll content [86]

43% sheep whey +
57% seeds *** frass extracts 25% Hordeum vulgare until the first leaf

was produced.
Increased root dry weight and
chlorophyll content [86]

Asterisks refer to treatment of frass derived from larval rearing on the specific substrate: * not available;
** with thermal treatment at 70 ◦C for 1 h in according to Reg UE 2021/1925; *** without thermal treatment;
**** compostated for 5 weeks.

Mason [109] tested frass obtained from the bioconversion process of fruit/vegetable
pulp + poultry litter on barley crops (Hordeum vulgare). The two doses of frass tested
were 4% and 8%. The growth performances of the plants were evaluated at germination
and after 44 days, and biomass yield and chlorophyll content were evaluated. Hordeum
vulgare plants administered with 4% frass showed an increase in shoot length, biomass,
and photosynthetic activity. Carroll et al. [109] assessed the effects of frass derived from
feeding BSFL with spent grain on four cereals: oats (Avena sativa cv. Apollon), spelt (Triticum
spelta), triticale (Triticosecale cv. Trisem), and barley (Hordeum vulgare cvs. Westminster and
Quadriga), all belonging to the Gramineae family. The goal was to determine the optimal
frass dosage that would enhance plant growth. The doses of frass tested were 1, 2, 4, 8,
12, and 16 g per pot. The optimal frass dose for each plant species was between 6 and 8 g;
the exact value was determined on the basis of the fitted polynomial curves. The ideal
frass dosage varied among the tested cereal species: 7.1 g for oats, 6.3 g for spelt, 6.8 g for
triticale, and 7.8 g for barley. Beesigamukama et al. [54] tested the effect of frass obtained
by feeding BSFL with spent grain on maize variety H513. This trial was conducted in the
open field, so frass was distributed on the soil surface. The doses used were: 2.5 t/ha,
5.0 t/ha, and 7.5 t/ha. The 2.5 t/ha of frass resulted in an increase in plant height and
higher chlorophyll content. Wang et al. [108] fed BSFL on chicken manure, and the frass
obtained at the end of the bioconversion process was tested on rice crops (Oryza sativa).
The test was conducted in a bucket by homogeneously mixing soil and BSFL frass. The



Insects 2024, 15, 293 10 of 17

doses of frass applied were 2%, 4%, 6%, and 8% by weight to the soil. The production
yield in the first and in the second year of frass application were evaluated. The increase
in yield in the first year of application corresponded to the 4% dose by weight, while the
8% was considered almost lethal as it led to a reduction in yield; in the second year, a
better yield was observed with the 8% dose. Therefore, the frass may have a fertilizing
effect later in the year of application, and, in this particular case, provide nutrients for rice
growth in the second year. In another study carried out by Menino et al. [53], the frass
obtained by feeding BSFL with onion and potato waste was tested on Lolium multiflorum.
The doses of frass used for the test were: 25%, 50%, 75%, 100%, 125%, and 150% of the total
nitrogen requirement. The total nitrogen requirement was 140 kg/ha for the tested crop.
The trial was conducted in pots with a sand and soil content ratio of 1:2, and the weight
was 3.6 kg. For the whole production of Lolium multiflorum, a linear increase in biomass was
observed up to the 100% treatment (equivalent to 140 Kg/ha). With regard to the soil, an
increase in organic matter, phosphorus, and potassium was observed at the end of the trial,
especially for the higher-dose treatments. The application of frass on species belonging to
the Gramineae family in general resulted in a greater increase in height and biomass in
the right dose. In Labella et al. [86], the frass (thermally and not thermally treated) extract,
obtained by feeding larvae with the Gainesville diet and the 43% sheep whey + 57% seed
diet, was tested in different dilution percentage; for both diets, 25% diluted frass extract
showed on barley an increase in chlorophyll content and root dry weight. As shown in
Table 4, the optimal dose of frass to be applied in order to have beneficial effects is highly
variable in relation to the starting feeding substrate of the BSFL and the chosen cultivar.

Table 5. Larval growth substrate, optimal frass dosage, experiment duration, effect of frass doses and
plant species of different families (Asteraceae, Brassicaceae, Solanaceae, Plantaginaceae, and Labiate).

Larval Growth
Substrate

Optimal Frass
Dosage Plant Species Experiment

Duration Effect of Frass Doses Reference

Asteraceae

Okara * 10% by volume Lactuca sativa 45 days Development similar to control [76]

Gainesville Diet * 10–20% by volume Lactuca sativa 30 days Increased plant growth (height,
stem diameter, leaf number) [72]

Household waste * 30 t/ha Lactuca sativa 42 days Increased productive yield [110]
Spent grain * 4 g per pot Cichorium intybus L. 49 days Increased in DM shoot [111]

Brassicaceae

Household food
waste ** 0.37 kg/m3 Brassica oleracea var.

sabellica 35 days Increased plant weight and height [112]
Organic waste * 15% of the weight Brassica rapa L. 35 days Increased fresh plant weight [113]

Plantaginaceae

Spent grain * 4 g per pot Plantago lanceolata L. 49 days Increased in DM shoot [111]

Labiate

Unspecified * 10 g/L Ocimum basilicum 46 days Increased fresh weight and
photosynthetic activity [114]

Gainesville Diet * 10–20% by volume Ocimum basilicum 30 days
Increased plant growth
(height, stem diameter,
leaf number)

[72]

Solanaceae

Gainesville Diet * 10–20% by volume Solanum lycopersicum 30 days
Increased plant growth
(height, stem diameter,
leaf number)

[72]

Asterisks refer to treatment of frass derived from larval rearing on the specific substrate: * not available; ** treated
at 100 ◦C for 48 h.

Setti et al. [72] tested the frass obtained by feeding BSFL with the Gainesville diet, on
Solanaceae (Solanum lycopersicum), Labiate (Ocimum basilicum), and Asteraceae (Lactuca
sativa). The tests were conducted in pots, and the different doses of frass applied were:
10%, 20%, 30%, and 40%. The optimal dose that led to an increase in plant growth was
10–20% by volume, showing agronomic properties comparable to chemical fertilizer. The
results obtained by Setti et al. [72] were consistent with previous studies, which stated that
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partially substituting peat with agro-industrial byproducts results in an increase in plant
biomass [115–118]. Organic fertilizers can replace chemical ones as they can provide, in
addition to nutrients, microorganisms that stimulate crop growth [119]. Furthermore, Setti
et al. [72] deduced that a frass dosage of up to the 20% added to peat resulted in a favorable
response in crop growth. An important aspect of their findings is the potential reduction in
peat application and inorganic fertilizer.

Radzikowska-Kujawska et al. [114] used BSFL frass on Ocimum basilicum, with two
doses (10 g/L and 12.5 g/L). The plants were subjected to two conditions: ideal irrigation
conditions, and drought, the latter being an important condition to evaluate, as fertilizers
can be effectively used to improve plants stressed by water scarcity. Frass showed enhanced
fresh weight and photosynthetic activity in both the analyzed conditions.

Hodge and Conway [111] tested different doses (0.5, 1, 2, 4, 6, 8, and 10 g per pot) of
frass, obtained from larvae reared on spent grain, on two plant species: Plantaginaceae
(Plantago lanceolata L.), and Asteraceae (Cichorium intybus L.). The optimal dose (4 g per
pot) effectively improved plant development. These forage species may not respond well
to higher levels of frass application, particularly in soils with a high plant nutrient content
or organic matter, or when the plants do not exhibit major nutrient shortages. Indeed, they
detected a higher plant mortality at dosages superior to 4 g of frass.

Based on the different studies reported in literature, a direct comparison to evaluate
which combination of factors results in the frass with the best characteristics is difficult,
since frass are obtained from BSFL feed on different substrates coupled with variations
in the plant species. Moreover, there is no homogeneity in the units of measurement of
frass used; some researchers apply frass by expressing doses in weight (g), while others
apply frass doses by expressing them in volume (%). Moreover, the duration of the trials
on the different plant species is a further parameter that makes the comparison even more
difficult. For example, the duration time ranges from a minimum of 30 days for lettuce [72]
to a maximum of 180 days to assess the grain yield of rice [108].

4. Conclusions

The aim of this review is to compare frass obtained by feeding BSFL with different
feeding substrates. The comparison among the different frass was focused on the composi-
tion in macro and micronutrients useful for plants. The concentration of these nutrients
was found to be highly variable in relation to the type of feeding substrate provided to
the larvae. Knowing the chemical composition of the frass obtained by feeding BSFL with
different substrates could make it possible to understand, on the basis of the nutritional
requirements, to which plant species it is best to apply frass with specific characteristics.
Another important aspect explored in this review concerned the determination of the opti-
mal dose of frass to trigger a positive response in certain plant parameters. We reported and
critically analyzed the results obtained by applying frass produced from different feeding
substrates for BSFL and different plant species on which BSFL frass was tested. However,
in some cases, where the feeding substrate for BSFL was the same, the plant species on
which the frass was tested was different, complicating any comparison. In conclusion, it
is possible to state that several studies show that BSFL frass, when applied in the optimal
doses, which depends on the selected plant culture, has beneficial effects on plant growth;
meanwhile, when applied at high doses, it has a suppressive or deleterious effect.

In addition, BSFL residues, with high plant-nutritional value and microbial capabilities
to promote plant growth, have the potential to improve sustainable agricultural production,
particularly in low-income countries where BSFL rearing is a promising low-threshold
technology in the circular economy.

5. Future Perspective

Given the enormous interest in frass in recent years and its potential significance in
agriculture as a fertilizer and soil conditioner (how much it has good plant nutrient content)
or just as a soil conditioner (in case of low nutrient content), it would be interesting evaluate
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the whole microbiological component present in frass and how this varies in relation to
the starting substrate provided to BSFL, as reported for nutrients. Due to the limited
available literature, another interesting aspect to investigate is the impact of heat treatment
at 70 ◦C for 1 h on both the nutrient and microorganism content of frass. Additionally,
a promising avenue for future work could be to evaluate the influence of frass on soil
structure and stability. In order to get a comprehensive understanding of the potential of
frass, it is advisable to investigate all these aspects collectively rather than individually.
Future research is needed to further elucidate these correlations.
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