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Simple Summary: Insect-specific viruses (ISVs) are increasingly recognised for their role in causing
severe illnesses and mortality in both humans and animals. In this study, the full genome of ISV (Rice
thrips ollusvirus 1, RTOV1) was revealed in rice thrips using metatranscriptome sequencing, RT-PCR,
and RACE, respectively. RTOV1 has a typical linear G-N-L genome structure of the order Jingchuvirales.
Phylogenetic analysis categorised this virus as an Ollusvirus. The infection of host insects with RTOV1
triggered antiviral RNA interference (RNAi), resulting in a significant accumulation of 22-nt virus-
derived small interfering RNAs (vsiRNAs), with a notable bias towards the A/U content. Our study
provides valuable information on ISVs in thrips that may be useful for pest management.

Abstract: Insects constitute the largest proportion of animals on Earth and act as significant reservoirs
and vectors in disease transmission. Rice thrips (Haplothrips aculeatus, family Phlaeothripidae)
are one of the most common pests in agriculture. In this study, the full genome sequence of a
novel Ollusvirus, provisionally named “Rice thrips ollusvirus 1” (RTOV1), was elucidated using
transcriptome sequencing and the rapid amplification of cDNA ends (RACE). A homology search
and phylogenetic tree analysis revealed that the newly identified virus is a member of the family
Aliusviridae (order Jingchuvirales). The genome of RTOV1 contains four predicted open reading frames
(ORFs), including a polymerase protein (L, 7590 nt), a glycoprotein (G, 4206 nt), a nucleocapsid protein
(N, 2415 nt) and a small protein of unknown function (291 nt). All of the ORFs are encoded by the
complementary genome, suggesting that the virus is a negative-stranded RNA virus. Phylogenetic
analysis using polymerase sequences suggested that RTOV1 was closely related to ollusvirus 1.
Deep small RNA sequencing analysis reveals a significant accumulation of small RNAs derived
from RTOV1, indicating that the virus replicated in the insect. According to our understanding,
this is the first report of an Ollusvirus identified in a member of the insect family Phlaeothripidae.
The characterisation and discovery of RTOV1 is a significant contribution to the understanding of
Ollusvirus diversity in insects.

Keywords: Haplothrips aculeatus; thrips; metatranscriptomic sequencing; Ollusvirus; negative-strand
RNA virus; RdRp

1. Introduction

An increasing number of novel ISVs are being discovered using next-generation
sequencing (NGS) technology and transcriptome analysis [1–3]. The identification of a
large number of viral sequences has led to the realisation that the presence of viruses in
ecosystems is ecologically and evolutionarily important [4,5]. Some insects have been
shown to serve as viral vectors for animals or plants, and the viruses in insects mainly
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include insect-specific viruses (ISVs), vector-borne pathogenic viruses, and viruses from
insect endosymbiotic microorganisms or digestive matter [6,7].

Negative-strand RNA viruses (NSVs) cause various diseases in plants, animals and
humans and are broadly classified into segmented and non-segmented viruses [8]. An
increasing number of plant- and insect-infecting NSVs are being discovered, and they are
considered emerging pathogens. The new NSVs in the family of Aliusviridae belong to the
order Jingchuvirale, which was created by the International Committee on Classification of
Viruses (ICTV) in 2018 [9,10]. The order Jingchuvirale presents a diverse array of genome
organisations, encompassing unsegmented, bi-segmented and circular configurations [11].
The viral genomes encode a glycoprotein (G), a nucleoprotein (N) and a polymerase (L),
though some viral genomes may lack the glycoprotein. It has been reported that the loss
of the G gene may have occurred during the virus’s long-term evolution [1]. Ollusvirus
belongs to the family Aliusviridae, with a genome structure of G-N-L, and it is a genus with
relatively few viruses [10].

A growing body of research suggests that arthropods may be important reservoirs for
a wide range of viruses and may play an important role in virus evolution [1,12]. Haplothrips
aculeatus, belonging to the family Phlaeothripidae and order Thysanoptera, is a rice pest
that directly feeds on rice and can transmit plant viruses, causing significant damage to
agricultural production [13,14]. H. aculeatus is distributed in all the rice-growing areas of
Asia and in most of China. It is widely parasitic on cereal crops and a variety of grass
weeds. To further evaluate the potential causes of rice losses caused by H. aculeatus, we
analysed the possible insect-transmitted pathogens using RNA-seq. In this paper, we have
successfully identified a new ISV from H. aculeatus and classified it as the genus Ollusvirus
in the family Aliusviridae. This is of significant importance for expanding our understanding
of viruses and provides a theoretical basis for future research on whether the disease caused
by this virus will become prevalent.

2. Materials and Methods
2.1. Sample Preparation and RNA Extraction

Insect samples of H. aculeatus were collected from a rice field in Shandong, China,
in July 2021. The extraction of total RNA proceeded as previously described, with some
modifications for optimisation [15]. Specifically, each sample consisted of 50 adult thrips,
and RNA extraction was performed using AG RNAex Pro Reagent (agbio, Changsha,
Hunan, China) instead of Trizol reagent (Invitrogen, Carlsbad, CA, USA). The methods
used were exactly the same as previously described. The quality of the RNA was confirmed
using a NanoDrop spectrophotometer (Thermo Scientific, Waltham, MA, USA). The cDNA
synthesis for whole-genome sequence determination, transcriptomic sequencing and small
RNA (sRNA) sequencing, respectively, used 2 µg of RNA each, while 500 ng of RNA was
used for first-strand cDNA synthesis in RACE.

2.2. Host Insect Identification

The assembled contigs were first compared with the Barcode of Life Data Systems
(accessed on 14 December 2019, https://www.boldsystems.org/) to determine the mito-
chondrial cytochrome coxidase subunit I (COI) sequence of the rice thrips species. The COI
sequence was then confirmed via a BLASTn search against the nucleotide database of the
National Center for Biotechnology Information (NCBI).

2.3. Transcriptomic and Small RNA (sRNA) Sequencing

Novogene (Tianjin, China) conducted transcriptomic and small RNA (sRNA) sequenc-
ing on the aforementioned insect RNA samples. The transcriptome and sRNA libraries
were prepared as described previously [16]. In brief, sequencing was performed on the
constructed paired-end (150 bp) libraries using the Illumina HiSeq 4000 platform. The raw
reads were quality trimmed using Trimmomatic software (version 0.39), and subsequently
de novo assembled [17]. The Illumina TruSeq Small RNA Sample Preparation Kit (Illumina,

https://www.boldsystems.org/
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USA) was used to prepare the sRNA libraries for sequencing. Subsequently, sRNA sequenc-
ing was carried out on the Illumina HiSeq 2500 platform. The Cutadapt tool was then used
to remove the adapters and low-quality sequences from the raw output data [18].

2.4. Virus Discovery and Confirmation by Reverse Transcription-PCR (RT-PCR)

The identification of the viral contig involved the following steps: Initially, the assem-
bled contigs were aligned against a locally downloaded virus database sourced from the
NCBI viral reference database (accessed on 9 July 2023, https://www.ncbi.nlm.nih.gov/
genome/viruses). Afterward, in order to prevent false positives, the putative viral sequence
was subjected to comparison against both the NCBI nucleotide (NT) and non-redundant
(NR) protein databases. Finally, the identified viral contigs were validated using RT-PCR,
followed by Sanger sequencing using specific primers (Supplementary Table S1).

2.5. Determination of Viral Genome Termini and Transcript Abundance

The full genome sequence of the virus was obtained by rapid amplification using
cDNA ends (RACE) technology. Briefly, the 5′-RACE and 3′-RACE cDNA were synthe-
sised using the 5′/3′ RACE kit (agbio, Changsha, China) according to the manufacturer’s
instructions. Subsequently, the PCR products were cloned into the pTO vector (Generalbiol,
Chuzhou, Anhui, China), and Sanger sequencing was performed on the positive recombi-
nant plasmids. The primers utilised for RACE are detailed in Supplementary Table S1.

To assess the transcript coverage and abundance of the viruses, we utilised both
Bowtie2 and Samtools to align the adaptor-trimmed and quality-trimmed reads of the
transcriptome back to the complete viral genomes [19,20]. Subsequently, the coverage
of the aligned reads on the viral genomes was visualised using the Integrated Genomics
Viewer (IGV) [21].

2.6. Small RNA Analysis

Small RNA analysis was carried out as described previously [22]. First, an sRNA
library was prepared using the Illumina TruSeq sRNA Sample Preparation Kit (Illumina,
San Diego, USA) and sequenced on the Illumina HiSeq 2500 platform. Next, the raw data
were processed to obtain clean reads, from which sRNAs with lengths ranging from 18 to
30 nucleotides were extracted for further analysis. Finally, the sRNA reads from the previ-
ous step were mapped back to the entire viral genome sequence using Bowtie (allowing
for zero mismatches) to identify vsiRNAs. The results were then further analysed using
custom Perl scripts and Linux Bash scripts to analyse the obtained vsiRNAs [23].

2.7. Genome Annotation and Phylogenetic Analysis

The ORF Finder program at the NCBI (accessed on 20 January 2024, https://www.
ncbi.nlm.nih.gov/orffinder/) was utilised to predict potential open reading frames (ORFs)
within the virus genomes. The conserved protein structural domains were predicted using
InterProScan (version InterPro 98.0, https://www.ebi.ac.uk/interpro; accessed on 20 Jan-
uary 2024). The amino acid sequence of the predicted Ollusvirus RdRp was obtained from
the NCBI. Sequences were aligned using MAFFT (version 7.450) with Gblock [24]. The alter-
native model was evaluated using ModelTest-NG according to the default parameters [25].
Subsequently, maximum likelihood (ML) trees were constructed using RAxMLNG (version
0.9.0) with 1000 bootstrap replications [26].

3. Results
3.1. Discovery of RNA Virus-Related Sequences in H. aculeatus

To identify the RNA virus-related sequences in H. aculeatus, NGS was used to analyse
the total RNA samples by RNA sequencing. The results show that 13.08 Gbp of the raw
data from the cDNA library of insect samples were obtained by deep sequencing using
the Illumina HiSeq 4000 platform (150 bp paired-end reads) of Novogene. A total of
23,001,625 clean reads were obtained. The assembled contigs were first compared with
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the Barcode of Life Data Systems to determine the cytochrome coxidase subunit I (COI)
sequence of the rice thrips species. Then, the COI sequence was confirmed by a BLASTn
search against the nucleotide database of the National Center for Biotechnology Information
(NCBI). The result showed that the COI sequence was 99.66% identical to that of H. aculeatus
(GenBank: MF716896.1) (Supplementary File S1). A total of 2054 virus-like reads were
found in this thrips RNA library. To identify the viral contig, the assembled contigs were
searched against the NCBI viral reference database. The result revealed the presence of a
new RNA virus belonging to the genus Ollusvirus. The viral sequence was validated using
RT-PCR, and the complete genome sequence of Ollusvirus was obtained by RACE.

3.2. Characterisation of Rice Thrips Ollusvirus 1

The full genome sequence of RTOV1 is 16,282 nt long, including a 223 nt 5′ un-
translated region (UTR), with four non-overlapping predicted ORFs (ORF1, 224–7813 nt;
ORF2, 8148–10,562 nt; ORF3, 12,018–16,223 nt; ORF4, 12,018–16,223 nt), and a 59 nt
3′ UTR (Figure 1A). Based on the InterProScan prediction of conserved domains for
RTOV1, ORF4 contains a Mononegavirales RNA-directed RNA polymerase catalytic do-
main (Mo-noneg_RNA_pol_cat) and a Mononegavirales mRNA-capping domain V (Mo-
noneg_mRNAcap) (Figure 1A). To characterise the proteins encoded by these ORFs, we
used the NCBI Open Reading Frame Finder. Three of these ORFs encode major viral
proteins. ORF1 was predicted to encode a 155.32 kDa glycoprotein (Gp), ORF3 was pre-
dicted to encode an 88.33 kDa nucleoprotein (N), and ORF4 was predicted to encode a
289.1 kDa polymerase protein (RdRp) (Supplementary File S2). However, no biological
function could be attributed to ORF2 on the basis of protein homology (Figure 1A). The
virus was tentatively named “Rice thrips ollusvirus 1” (RTOV1), and the full genome se-
quence was submitted to the GenBank database (GenBank: OR886228) (Supplementary File
S3). The genome structure of RTOV1 was highly similar to that of Atractomorpha sinensis
ollusvirus 1 (ASOV1, genus: Ollusvirus), which was previously detected by in Pink-Winged
Grasshopper, Atractomorpha sinensis (genus: Atractomorpha; family: Pyrgomorphidae)
(Figure 1B) [27].

RTOV1 shared 21.61% identity in the capsid protein (CP, also named nucleoprotein in
NSVs) region with its closest homologue, ollusvirus 1 (ASOV1, GenBank: WAB51682.1),
meeting the delimitation criterion for establishing a new species (less than 90% CP identity).
The abundance and coverage of RTOV1 were assessed by realigning RNA-seq reads with
the full genome sequence of RTOV1 obtained. A total of 22,701,157 reads were perfectly
aligned to the RTOV1 genome, representing 0.0048% of the total RNA-seq reads (Figure 1A).
As shown in Figure 1A, the transcripts were distributed across the viral genome, with a
particularly high level of abundance at the 3′ terminus, indicating that RTOV1 efficiently
replicated in the insects.

3.3. Phylogenetic Analysis of RTOV1 and Related Jingchuvirals

For a full insight into the evolution of RTOV1, phylogenetic trees of the viral Gp, N
and RdRp proteins were generated, respectively. As illustrated in Figure 2A, RTOV1 RdRp
is on a branch with ollusvirus 1 of the genus Ollusvirus in a phylogenetic tree based on
the jingchuviral RdRp protein sequences. The N protein tree indicated that RTOV1 was
related to ollusvirus 1 (Figure 2B). Similarly, the RTOV1 GP was found to be closely related
to ollusvirus 1 (Figure 2C).
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Figure 1. Characterisation of Rice thrips ollusvirus 1 (RTOV1). (A) High-quality reads were mapped
against the validated, near full-length genome sequence of RTOV1. Predicted ORFs were manually
annotated (green). The readmap depicts the nucleotide coverage by viral genomes RNA reads. Note
the relatively higher RNA fraction towards the 3′ end of the genome. (B) Comparison of the genome
organisation (not to scale) of RTOV1 and its closest relative ollusvirus 1 (ASOV1). The genomes of
RTOV1 and ASOV1 are unsegmented negative-sense RNA, and RdRp (L), nucleoprotein (N), ORF2
(unknown biological function) and glycoprotein (Gp) have similar positions and mass ranges.

In addition, a BLASTp search of the NCBI reference viral sequence database was
performed to identify the viruses related to RTOV1. The results showed that the ORF1
(Gp) sequence shared the highest sequence similarity with Beetle aliusvirus (GenBank:
WPR17560.1) of the family Aliusviridae with 21.74% amino acid sequence identity. With
21.61% amino acid sequence identity, the N protein sequence showed the highest sequence
similarity to ollusvirus 1. Similarly, the RTOV1 RdRp protein sequences exhibited the
highest sequence similarity to Osmia-associated bee chuvirus (OABV-49, also named
Chuviridae sp. GenBank: BDG58444.1), a novel Ollusvirus identified in wild bees, O. taurus
(32.09% amino acid sequence identity) (Supplementary Table S2) [28].

To investigate the conserved motifs of the viral RdRp, we identified five conserved
motifs in the RdRp sequences of RTOV1 and the four homologous Ollusviruses using the
default parameters of MEME (Version 5.5.5, https://meme-suite.org/meme/tools/meme;
accessed on 20 January 2024) (Supplementary Figure S1). In conclusion, the aforementioned
results suggest that the newly identified RTOV1 could be added to the family Aliusviridae.

https://meme-suite.org/meme/tools/meme
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Figure 2. Phylogenetic analysis of RTOV1 and related jingchuvirals based on the putative amino se-
quences for RdRp (A), nucleoproteins (B) and glycoproteins (C). Phylogenetic trees were constructed
using the maximum likelihood method, with bootstrap values calculated for 1000 replicates. The
best-fit models were the LG (Le and Gascual) + G (gamma distributed) + F (Fregs.) model for the
RdRp and nucleoprotein tree and the WAG (Whelan and Goldman) + G + F model for the glycoprotein
tree. The RTOV1 isolate identified in this study is indicated by red text. RdRp, nucleoproteins and
glycoproteins of a typical negative-sense RNA virus, Tomato spotted wilt virus (TSWV), were used
as the outgroups. The scale bars represent percentage divergence.
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3.4. Activation of Antiviral RNA Interference Pathway in H. aculeatus Responsive to ISVs

RNA silencing serves as a crucial antiviral immune response in insects, playing a
significant role in the elimination of viruses [29,30]. Viral dsRNA is cleaved by the insect
RNase III enzyme Dicer-2 (Dcr2), and subsequently generates large amounts of virus-
derived siRNAs (vsiRNAs) in the host [31]. To investigate siRNA-based antiviral im-
munity in response to the RTOV1 infection of H. aculeatus, small RNAs (sRNAs) of the
host insect were sequenced, and the vsiRNAs were comprehensively analysed. A total of
2,699,871 vsiRNA reads, including 1350 unique reads, were perfectly mapped to the assem-
bled RTOV1 genome sequence (Figure 3A). Of these vsiRNAs, more were derived from the
positive-sense strand than from the negative-sense strand of the viral genome (Figure 3B).
To provide further analyses of the types of these vsiRNAs, it was shown that vsiRNAs
from the viral positive-sense strand of the viral genome were predominantly 22 nt in length
(Figure 3B).
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RTOV1 siRNAs. (C) Five’-terminal nucleotide percentage of RTOV1 siRNAs.



Insects 2024, 15, 303 9 of 12

The vsiRNAs displayed a clear preference for A/U at their 5′-terminal nucleotides
and were evenly spread throughout the viral genome (Figure 3A,C). Notably, although the
RTOV1 vsiRNAs were distributed throughout the viral genome, there was an extremely
high abundance at the 5′-terminal nucleotides (Figure 3A). These results suggest that
RTOV1 replicated in H. aculeatus, and viral RNA was cleaved by the host antiviral RNA
interference pathway into predominantly 22 nt-sized small RNAs.

4. Discussion

Many RNA viruses have been discovered through the application of HTS and sophis-
ticated bioinformatics techniques, leading to an enhanced comprehension of insect viromes
and the evolutionary dynamics of viruses. As an important agricultural pest, thrips can
transmit multiple viruses, leading to the occurrence of viral diseases. Western flower thrips,
Frankliniella occidentalis Pergande, primarily cause the spread of viruses belonging to the
genus Orthotospovirus (e.g., Tomato spotted wilt virus and Tomato chlorotic spot virus) and
Tobacco streak virus (TSV; genus Ilarvirus) [32,33]. Thrips palm Karny can cause the harm of
viruses like Watermelon silver mottle virus (WSMoV; genus Orthotospovirus), Peanut bud
necrosis virus (PBNV; genus Orthotospovirus) and Muskmelon yellow spot virus (MYSV;
genus Orthotospovirus) [34,35]. Thrips tabaci Lindeman play a crucial role in the prevalence
of diseases, such as Tobacco ringspot virus (TRSV; genus Nepovirus, family Secoviridae),
Sowbane mosaic virus (SoMV; genus Sobemovirus) and Iris yellow spot virus (IYSV; genus
Orthotospovirus) [36–38]. All the thrips species that transmit plant viruses belong to the
family Thripidae and the subfamily Thripinae. In this paper, we identified a new virus
belonging to the genus Ollusvirus in family Phlaeothripidae and named it RTOV1. At
present, 15 species of thrips have been confirmed to transmit viruses, accounting for just
0.2% of the total number of recorded thrips species [39]. In the future, investigating its
virulence in the host, host range, and potential transmission to rice would not only deepen
our understanding of the diversity and evolution of ISVs in insects, but also have significant
implications for pest management strategies. Additionally, this would help uncover the
potential reasons behind the damage caused to rice by thrip species.

The N, Gp and RdRp proteins are conserved throughout negative-sense RNA viruses,
except for a few viruses where the Gp protein is lost during long-term evolution [1].
From three phylogenetic tree of these proteins, both of them show close phylogenetic
relationships with ollusvirus 1. However, according to the results obtained from BLASTp
analysis, only the N protein exhibited more homology with ollusvirus 1. The Gp and RdRp
proteins showed strong homology with Beetle aliusvirus and Chuviridae sp, respectively.
Due to a recently discovered ISV, there are a few research reports on Beetle aliusvirus [40].
According to the information provided in the GenBank database, this virus belongs to
the order Jingchuvirales and the family Aliusviridae. Chuviridae sp, also known as Osmia-
associated bee chuvirus (OABV-49), is an ISV belonging to the family Aliusviridae and the
genus Ollusvirus [27]. According to the BLASTp data, we added this novel virus into the
family Aliusviridae. Considering the evolutionary tree relationships, we further categorised
this new virus into the genus Ollusvirus. Notably, the RdRp protein demonstrated a strong
phylogenetic affinity and homology with Ollusviruses.

The abundance of virus-induced small RNAs intuitively reflects the strength of the
host’s antiviral RNA interference response and, to some extent, indicates the level of viral
proliferation in the host. The typical characteristics of vsiRNAs strongly suggest that the
host antiviral RNAi plays an active role in responding to RTOV1 infection. More vsiRNAs
originate from the positive strand rather than the negative strand (Figure 3B). Such results
are likely due to the negative-sense RNA virus genome (minus strand) being protected
by the N protein, thereby reducing cleavage by the RNAi pathway. The complementary
strand (plus strand), however, may be extensively cleaved due to the lack of protection [41].
Interestingly, the vsiRNAs of TSWV generated from Frankliniella fusca (family Thripidae)
show a higher abundance of 22 nt sRNAs compared to 21 nt [42]. As shown in Figure 3B,
we also observed a higher quantity of 22 nt vsiRNAs from RTOV1 compared to 21 nt
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vsiRNAs. Although H. aculeatus and F. fusca do not belong to the same family, they both
seem to mediate the abundant production of 22 nt vsiRNAs. We speculate that this may be
due to a specific RNA cleavage mechanism in thrips.

5. Conclusions

In conclusion, a novel Ollusvirus was identified in H. aculeatu. The full-length genome
of RTOV1 was revealed using metatranscriptome sequencing and RACE technology. To the
best of our knowledge and the consulted literature, this is the first Ollusvirus identified in
family Phlaeothripidae [3]. RTOV1 is 16,282 nt long and encodes three major viral proteins
(RdRp, N and Gp). The host’s antiviral RNAi mechanism can target this virus, leading
to the accumulation of abundant 21–24 nt vsiRNAs. The discovery of this new Ollusvirus
not only enriches our understanding of insect microbial composition, but also helps reveal
the diversity, evolution and ecological significance of insect viruses, which are crucial for
agricultural production and ecosystem health.
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