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Simple Summary: Slugs and snails are widely distributed in natural humid habitats, and they
are a worldwide problem in agriculture. The grey garden slug, a common terrestrial species, is
considered the most severe pest of vegetables and field crops. Currently, the most common slug
control methods rely on chemical pesticides, which can be damaging to the environment and human
health. Nematodes are important natural enemies of slugs, and one species has been used as
a commercial product for three decades. This study investigated and analyzed the differential
gene expression profiles between nematode-infected slugs and uninfected slugs and identified the
genes associated with immunity in the grey garden slug. The results provide a starting point for
understanding the molecular mechanism of immune genes and physiological pathways, facilitating
the identification of biological targets for slug management strategies in the field.

Abstract: The grey garden slug (Deroceras reticulatum), a common terrestrial slug native to Europe
with a global distribution including North America, is commonly considered the most severe slug
pest in agriculture. The nematode Phasmarhabditis hermaphrodita, which has been used in the U.K. and
Europe as a commercial biocontrol agent since 1994, has also recently been collected in Oregon and
California and has long been considered a candidate biocontrol agent for slug management in the
U.S. In this study, we report differential gene expressions in nematode-infected slugs using RNA-seq
to identify slug immune-related genes against nematodes. Comparison of gene expression levels
between the whole bodies of a nematode-infected slug (N-S) and an uninfected control slug (C-S)
revealed that there were a total of 39,380 regulated unigenes, of which 3084 (3%) were upregulated
and 6761 (6%) were downregulated at greater than 2-fold change (FC > 2) in the nematode-infected
slug. To further investigate the biological functions of differentially expressed genes (DEGs), gene
ontology (GO) and functional enrichment analysis were performed to map the DEGs to terms in the
GO, eukaryotic ortholog groups of proteins (KOG) and Kyoto Encyclopedia of Genes and Genome
Pathway (KEGG) databases. Among these DEGs, approximately 228 genes associated with immunity
or immune-related pathways were upregulated 2-fold or more in the N-S compared to C-S. These
genes include toll, Imd, JNK, scavenger receptors (SCRs), C-type lectins (CTLs), immunoglobulin-like
domains, and JAK/STAT63 signaling pathways. From the RNA-seq results, we selected 18 genes
and confirmed their expression levels by qRT-PCR. Our findings provide insights into the immune
response of slugs during nematode infection. These studies provide fundamental information that
will be valuable for the development of new methods of pest slug control using pathogenic nematodes
in the field.
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1. Introduction

Slugs and snails (Mollusca: Gastropoda) are widely distributed in natural humid
habitats and pose a significant threat to various agricultural and horticultural crops world-
wide [1,2]. The grey garden slug, Deroceras reticulatum (Stylommatophora: Agriolimacidae),
a common terrestrial slug native to Europe with a global distribution including North
America, is commonly considered the most severe pest of vegetables and field crops [3,4].
D. reticulatum poses serious problems at various stages of field vegetable production. In
severe cases, entire fields may need to be replanted, resulting in significant economic
losses [5]. Furthermore, contamination from slug mucus and feces can adversely impact
the quality of the harvested crop [6]. The grey garden slug is primarily nocturnal, with its
highest level of activity occurring shortly after dusk [7]. However, when the weather is
calm, damp, and overcast, it may also become active during the daytime.

Currently the most common slug control methods rely on chemical pesticides that are
primarily mixed into pellet bait-based products [8,9]. For crop protection purposes, the
efficacy of these products is highly variable. There are also environmental risks associated
with chemical residue in soil and water and their effect on non-target arthropods and
human health [10–12]. These issues along with growing public opposition to pesticides
and a greater appreciation of sustainable control methods necessitate the development of
biologically based environmentally friendly options for slug control. One such approach
is the use of parasitic nematodes as biological control agents. The biological interaction
between a parasite and its host is complicated by the physiological complexity and the two
immune systems.

Numerous genes are linked to the immune response in invertebrates, both at the
cellular and humoral levels [13–15]. A recent approach involving genome-wide analysis
has been employed to identify genes associated with immunity and to investigate the
molecular mechanisms underlying interactions between hosts and microorganisms in
insects [14–17]. Specifically, the utilization of whole genome mRNA sequencing (RNA-
seq or transcriptome sequencing) has provided a comprehensive understanding of the
repertoire of immune-related genes in non-model insects [18,19]. This technology has
emerged as a potent tool for analyzing differential gene expression [20–23]. In gastropods,
it is reasonable to assume that different genes are associated with the slug’s immune system
to protect against pathogen and parasite attack, including parasitic nematodes.

There are more than 100 nematode species associated with slugs and snails [24] serv-
ing as definitive, intermediate, or necromenic hosts [24,25]. Among these, 47 nematode
species from eight families utilize mollusks as definitive hosts [4], some of which are lethal
parasites, and thus offer potential as biological control agents due to their natural associa-
tions with terrestrial gastropods [26,27]. Notably, only the facultative parasitic nematodes
Phasmarhabditis hermaphrodita and Phasmarhabditis californica (Rhabditida: Rhabditidae) have
been developed as commercial biological agents of pest slugs and snails in the U.K. and Eu-
rope [9]. However, both of these species and other species of Phasmarhabditis have also been
found throughout the west coast of the United States [28–32], and P. californica has been
found in Alberta, Canada [29]. Previous studies reported that P. hermaphrodita nematodes
travel to the shell cavity through the back of the mantle after finding a slug host [4,33].
Subsequently, the larvae undergo development into self-fertilizing hermaphrodites com-
mencing the reproductive phase [4,33]. Symptoms of infection, including a swelling of
the mantle and shell ejection, start to show within 4–21 days of the initial infection [4],
allowing the nematodes to feed and reproduce. Dauer larvae crawl into the soil to find a
new host when their food supply becomes exhausted. This study aims to identify potential
biological targets, particularly immune-related genes, of D. reticulatum, after infection by
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the nematode, P. hermaphrodita, since most physiological and genotypic actions of the slug
will be related to its immune response during the parasitic process.

In this study, as a first step, we investigated and analyzed the gene expression profiles
of the nematode-infected slugs using Illumina RNA-Seq, compared them to the uninfected
slugs, and explored the differentially expressed genes involved in immunity and related
pathways in the grey garden slug. We conducted a de novo transcriptome analysis to
identify differentially expressed immune-related genes/pathways from the nematode-
infected slug (N-S) and uninfected control slug (C-S). These annotations provide a starting
point for investigating the molecular mechanisms of immune-related genes in D. reticulatum
and provide a valuable resource for further research into the immune specific functions and
pathways of D. reticulatum. Our current research to understand the molecular mechanisms
of immune genes and physiological pathways facilitates the identification of biological
targets for slug management strategies in the field.

2. Material and Methods
2.1. Slugs and Infection of the Nematodes

Deroceras reticulatum were collected from various grass seed production fields through-
out the Willamette Valley, OR, USA. Field-collected slugs were identified and confirmed
as D. reticulatum using [34,35]. Slugs were not cultured in the laboratory. We used field-
collected slugs and nematode-infected slugs according to previously published methods
and guidelines [27,32,36]. On return to the laboratory, slugs were placed into plastic con-
tainers (35.9 cm × 20 cm × 12.4 cm) that were lined with a single sheet of wet paper towel
(Bounty Select-a-Size). Slices of organic carrot were provided as food, and the paper towel
and carrot were replaced three times weekly. Thirty slugs were placed in each container,
and containers were stored in a growth chamber (Thermo Scientific Precision Model 818)
under 18 ◦C and L/D 12:12.

Infection trial protocol largely followed [27], except only a single rate (40,000 mixed
stage nematodes) of P. hermaphrodita was utilized. Eight adult slugs were used for each of
five nematode and water control replicates. After 7 days, three slugs from each replicate
were removed for the current study. The mortality of the remaining slugs in the infection
trial was recorded daily for 14 days. After this time, there was 100% slug mortality in all
nematode replicates and 0% mortality in the water control replicates. The slugs samples
were then routed to various next steps as below (Figure 1).

2.2. Total RNA Preparation

Total RNA was isolated from the whole body of a single adult slug infected with
nematodes and a noninfected control slug using the Purelink Total RNA Purification
System (Thermo Fisher Scientific, Waltham, MA, USA). RNA was treated with TURBOTM

DNase (Thermo Fisher Scientific) for 30 min at 37 ◦C to eliminate genomic DNA, according
to the manufacturer’s instructions (Figure 1). RNA was further purified by using the
RNeasy MinElute Cleanup Kit (Qiagen, Germantown, MD, USA) and eluted in 20 µL
of RNA storage solution. The quantity of the RNA was assessed using a NanoDrop
Spectrophotometer ND-2000 (Thermo Fisher Scientific). The six RNA samples (N-S and
C-S per 3 replicates) were then sent to Psomagen (Rockville, MD, USA) for RNA quality
analysis using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
To maximize RNA quality, only samples with an RNA integrity number (RIN) value of 7 or
greater were used for the next step.
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Figure 1. Outline of the experimental procedure of RNA transcriptome analysis and identification of
genes associated with immunity and its pathways from nematode-infected and uninfected slugs.

2.3. cDNA Library Preparation and RNA Illumina Sequencing

The cDNA libraries were prepared using a TruSeq Stranded Total RNA Library Prep
Kit (Illumina Inc., San Diego, CA, USA), and the Illumina sequencing was performed by
Psomagen using the Illumina NovaSeq6000 platform. Briefly, ribosomal RNA was removed
from total RNA, and the remaining RNA was purified, fragmented, and primed for cDNA
synthesis. The first-strand cDNA was synthesized by priming the RNA fragments with
random hexamers and by transcribing with reverse transcriptase. RNA template of the first
strand cDNA was replaced by incorporating dUTP in place of dTTP to generate second
strand cDNA. The cDNA then underwent an end repair process, adenylation of 3′ ends,
and subsequent ligation of the adapter. The adaptor-ligated library was purified and
enriched with PCR to create the final cDNA library. The quantified and qualified libraries
were sequenced using an Illumina NovaSeq6000. For cluster generation, the library was
loaded into a flow cell where fragments were captured on a lawn of surface-bound oligos
complementary to the library adapters. Each fragment was then amplified into distinct
clonal clusters through bridge amplification. When cluster generation was complete, the
templates were ready for sequencing.

2.4. De Novo Transcriptome Assembly

The raw sequence reads generated by Illumina sequencing were checked by FastQC
for quality control using an integrated primary analysis software program called RTA
(Real Time Analytics, version 1). We manually checked all putative hits, looking for the
presence of the candidate genes and characteristic domains. The candidate transcripts
were further searched against the NCBI database ‘https://blast.ncbi.nlm.nih.gov/Blast.cgi
(accessed on 16 April 2024)’. Trimmomatic (version 0.32) [37] was used to remove adaptors
and low-quality reads. Overlapping high-quality reads were de novo assembled to create

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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longer contiguous fragments (contigs) using Trinity (version r2014-07-17) [38]. Transcript
abundance was estimated using RSEM (version 1.2.15) to generate FPKM (fragments per
kilobase per million reads).

2.5. Functional Annotation

The functional annotation of the transcripts was determined by sequence similarity
searches against NCBI non-redundant protein sequences (nr) database using BLASTx
algorithm with a cut-off E-value of 1 × 10−5 run by Geneious 8.1.5 software (Biomatters
Ltd., Auckland, New Zealand). Gene ontology (GO) terms were mapped to transcripts with
BLAST hits to assign functional categories [39]. The BLAST hits were grouped into major
gene families based on their putative functions in slug biology. The organism information
obtained by BLAST hits was collected to confirm the transcript’s sequence similarity to
closely related species.

2.6. Identification of Immunity-Related Genes

The search for immunity-related genes was based on sequence similarities to known
sequences among closely related species in NCBI using BLASTx. cDNAs encoding full-
or partial-length immune-related genes from the D. reticulatum transcriptome were found
and sorted into different immune gene categories and related pathways from 11 different
families and groups. Sequence features mostly focus on their similarity and integrity
compared to known sequences.

2.7. Validation of DEGs Results by qRT-PCR

Based on the expression values as FPKM, DEGs were identified between the two sam-
ples (N-S and C-S) after transformation, normalization, and fold change (fc) comparisons.
Quantitative real-time PCR (qRT-PCR) was conducted using the SYBR Green method in
a StepOnePlus Real-Time PCR System (Applied Biosystems, Walthman, MA, USA). Total
RNA was extracted from slug–control and slug–nematode treatments using the Purelink
Total RNA Purification System (Thermo Fisher Scientific). cDNA templates were synthe-
sized from 1 µg of total RNA using the Invitrogen SuperScript III First-Strand Synthesis
SuperMix according to the manufacturer’s instructions. The qRT-PCR reaction mixtures
were prepared in 20 µL with 1× PowerUp SYBR Green Master Mix (Thermo Fisher Scien-
tific), 0.25 µM primer pairs, and cDNA template. The qRT-PCR reaction conditions were
performed at 95 ◦C for 10 min; 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min; followed
by a melting curve analysis over the range of 60–95 ◦C with 0.3 ◦C/min increments, with
specific primers listed in Table S1. The Rpt6 gene was selected as a reference gene (Table S1).
Three biological samples for each group were replicated.

2.8. Statistical Analysis

Student’s t-test was used to compare the relative mRNA expression levels between
control and treatment groups using GraphPad Prism 7.0 (San Diego, CA, USA). A p-value
of 0.05 or less between groups was considered significantly different.

3. Results
3.1. Illumina Sequencing and De Novo Assembly

NovaSeq6000 technology was used to sequence six cDNA libraries from the whole
body of D. reticulatum to investigate the effect of pathogenic nematodes on the immune
response of the grey garden slug (Figure 1). The total raw reads for the replicate control
and nematode infected slugs are listed in Table 1. The total number of reads with over 92%
validity after mapping are summarized in Table 1. Results indicated that all libraries were
high-quality, with an overall percentage of Q20 (95.98%) and Q30 (93.75%) with an average
40% GC ratio (Table 1).
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Table 1. Summary of the total number of bases, reads, and percentages of GC, Q20, and Q30 from the
6 samples.

Sample Raw Reads Raw_Bases Valid Reads Valid_Bases Valid% Q20% Q30% GC%

Control slug1 41,649,952 6.29 G 38,996,996 5.39G 93.63 97.81 93.85 37.50

Control slug2 45,331,020 6.84 G 42,417,080 5.87G 93.57 98.04 94.38 40.81

Control slug3 52,415,534 7.91 G 49,437,474 6.86G 94.32 98.05 94.33 40.31

Nematode-
infected slug1 47,876,956 7.23 G 45,098,082 6.27G 94.20 97.86 94.17 39.40

Nematode-
infected slug2 47,830,174 7.22 G 45,316,882 6.33G 94.75 98.05 94.15 37.55

Nematode-
infected slug3 44,114,910 6.66 G 41,826,018 5.82G 94.81 98.08 94.28 37.89

3.2. Functional Annotation of the Control Slug and Nematode-Infected Slug Unigenes

Six different public databases including GO, KEGG, Pfam, Swiss-Prot, eggnog, and NR
were used to determine the functional annotation of unigene sequences shown in Table 2.
The results from aligned unigene sequences revealed that 7786 (12.04%); 7767 (12.01%);
7787 (12.04%); 7049 (10.90%); 9618 (14.87%) and 13,285 (20.54%) unigenes were matched
to the GO, KEGG, Pfam, Swiss-Prot, eggNOG, and NR protein databases, respectively
(Table 2).

Table 2. Unigene annotation against NCBI databases.

Databases (DB) Number of Unigenes Ratio (%)

All 64,679 100.00
GO 7786 12.04

KEGG 7767 12.01
Pfam 7787 12.04

swissprot 7049 10.90
eggNOG 9618 14.87

NR 13,285 20.54
All 64,679 100.00

3.3. Differentially Expressed Genes in the Nematode-Infected Slug

To explore the changes in the gene expression of D. reticulatum infected with pathogenic
nematodes (nematode-infected slug), a pairwise comparison was performed between the
nematode-infected and the control slug libraries to determine the differentially expressed
genes (DEGs). The screening threshold for DEGs in the infected slugs compared to the
control slugs was set as genes having a fold-change greater than 1 and false discovery rate
(FDR) value less than 0.001. Compared to the slug–control treatment, of the total 39,380 reg-
ulated unigenes, 29,307 genes (74.4%) had FC < 2. Among FC > 2 genes, 3084 (7.8%) were
upregulated and 6761 (17.2%) were downregulated. We found 228 genes that were anno-
tated to immunity or related pathways in the slug–nematode (Figure 2A). Volcano plots
of DEGs were similar to the distribution of gene expression (FC > 2) of all DEGs in the
nematode-infected slug compared (Figure 2B).
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3.4. GO and KEGG Functional Classification of Nematode-Infected Slug Unigenes

Gene ontology was used to categorize a total of 14,518 unigenes into 51 subcategories
under three main categories ‘biological process’, ‘cellular component’, and ‘molecular
function’ (Figure 3). The ‘cellular component’ category was the most dominant with
8017 unigenes (55.2%) followed by ‘molecular function’ category with 3492 unigenes
(24.1%) and the ‘biological process’ category with 3009 unigenes (20.7%) annotated in
GO database.

Furthermore, we classified the unigenes in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database and assigned them to five biological pathways: 2152 unigenes
(39.0%) in metabolism, followed by 1518 unigenes (27.5%) in genetic information processing,
901 unigenes (16.3%) in cellular processes, 653 unigenes (11.8%) in environmental informa-
tion processing and 331 unigenes (0.06%) in organismal systems (Figure 4). Within the total
of 2152 metabolism genes, there were 409 unigenes (19.0%) for carbohydrates, 360 unigenes
(16.7%) for amino acids, and 332 unigenes (15.4%) for lipids. Similarly, the second largest
group, genetic information processing (1518 genes), were involved in translation with
624 (29%) followed by folding, sorting, and degradation 490 (22.8%), and transcription
311 (14.5%). Of genes involved in pathways of the organismal systems, most were in the
immune system (84 unigenes) and the endocrine system (75 unigenes) (Figure 4).

3.5. Identification and Expression Pattern of Immunity-Related Genes in Response to Pathogenic
Nematode Infection

A keyword search was employed for comprehensive analysis to identify immunity-
related candidate genes expressed in response to pathogenic nematode infection in the grey
garden slug Deroceras reticulatum from the BLASTx by searching the genome and by com-
bining BLASTx search using NCBI ‘https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=
blastx&PAGE (accessed on 16 April 2024)’. To increase the reliability of results, genes
annotated as hypothetical or unknown proteins and genes with log2 fold change < 1 were
filtered out. In total, 228 immunity-related genes (Log2 fold > 2) were identified and cate-
gorized into 10 different groups, such as signal transduction (86 genes), scavenger receptor
(34 genes), immunoglobulin family protein (23 genes), sialic acid protein (22 genes), c-Jun
N-terminal kinase (JNK) (21 genes), C-type lectin-like domain (CTLD) protein (19 genes),
dual oxidase (Duox) (10 genes), toll-like receptor (TLR) (8 genes), bactericidal permeability-
increasing protein (BPI) (3 genes), and CD109 antigen-like (2 genes), respectively. Among
the immunity-related genes, signal transduction (86) were the most abundant DEGs fol-
lowed by scavenger receptors (34) in the nematode-infected slug compared to the control
slug (Figure 5 and File S1).

3.6. Validation of Differentially Expressed Immunity-Related Genes

From the RNA-seq results, we selected 13 immune-related genes that showed high
levels of differential expression (FC > 2) in the nematode-infected slug (N-S) compared to
the control slug (C-S) (Figure 6A). To validate the relative mRNA expression, qRT-PCR was
performed to determine the relative gene expression ratios in the nematode-infected slugs
and control slugs (Figure 6B). All selected genes were detected, and the relative expression
ratios measured by qRT-PCR were slightly different from the RNA-seq results (Figure 6B).
For example, the relative mRNA expression ratio of the C-type lectin gene was the highest
from the RNA seq, but the sialic acid-binding lectin 3 gene had the highest expression
ratio based on the qRT-PCR results, but the others were similarly expressed based on the
qRT-PCR results.

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE


Insects 2024, 15, 311 9 of 16Insects 2024, 15, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 3. Gene ontology (GO)-enriched terms of differentially expressed genes (DEGs) of Deroceras reticulatum after infection with nematode. The x-axis lists the 
sub-GO terms under categories of biological process, cellular component, and molecular function. The y-axis is the number of DEGs involved in each term. 

Figure 3. Gene ontology (GO)-enriched terms of differentially expressed genes (DEGs) of Deroceras reticulatum after infection with nematode. The x-axis lists the
sub-GO terms under categories of biological process, cellular component, and molecular function. The y-axis is the number of DEGs involved in each term.



Insects 2024, 15, 311 10 of 16Insects 2024, 15, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway classification with 331 genes associated with organismal systems, 2152 with metabolism, 
1518 with genetic information processing, 653 with environmental information processing, and 901 with cellular processes in Deroceras reticulatum. 

Figure 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway classification with 331 genes associated with organismal systems, 2152 with metabolism,
1518 with genetic information processing, 653 with environmental information processing, and 901 with cellular processes in Deroceras reticulatum.
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4. Discussion

It is common for slugs to interact with their parasitic nematodes, both environmentally
and evolutionarily. Nematoda, a phylum consisting of numerous species, has over 50%
of its described members categorized as parasitic, positioning them as one of the most
successful parasitic groups. In order to effectively invade hosts, parasitic nematodes need
to possess the ability to shield themselves from the host’s immune system, ensuring their
survival [40,41]. Nematodes utilize various tactics to interfere with the initiation and
regular processes of host physiological reactions, many of which are involved in controlling
innate immune responses [40]. Previously, extensive research has been carried out to
investigate the correlation between nematodes and the immune system of the host [41,42].
However, no study has explored the impact of nematodes on the genes responsible for
immunity and the associated pathways in slugs. The study of D. reticulatum derived innate
immune reactions against nematode parasites is fundamental to a better understanding of
the molecular, biochemical, and signaling pathways involved in their interactions.

Host–parasite interactions are highly complex. The host identifies the parasite as for-
eign and triggers immune responses and signaling in its own defense [13]. Typically, when
animals are infected by parasites or pathogens, their immune systems become activated.
Initially, pattern recognition proteins (PRPs) play a crucial role in identifying and marking
these invaders [43,44]. Immune genes and related pathways, such as toll receptors, C-type
lectins (CTLs), various oxidases, and MyD88-dependent pathways have been reported in
many invertebrate pests including slugs [17,19,45–50]. These studies showed that the signal
transduction pathways were immediately activated to produce antimicrobial chemicals.
Four signaling pathways, namely the toll, Imd, JNK, and JAK/STAT63 [51] pathways, are
considered important immune-related pathways in insects, as described previously [52,53].
In the current transcriptome analysis, signal transduction, toll pathways, and JNK pathways
were regulated in the nematode-infected slug compared to the control slug group. Interest-
ingly, signal transduction was the top regulated pathway (Figure 5 and Table S1). Similar
to our results, others have reported that the signal transduction, the toll and JNK pathways
were modulated after exposure to a mycotoxin destruxin A and a nematode Steinernema
carpocapsae in Drosophila melanogaster, Bombyx mori, and Spodoptera frugiperda [22,54,55]. Pre-
viously, it has been reported that scavenger receptors (SCRs), ‘glycoproteins’, C-type lectins
(CTLs), a carbohydrate binding protein group, and immunoglobulin-like domains play
a key role in cellular immune responses to protect invertebrates in response to pathogen
infection [56–58].

In the present study, genes related to scavenger receptors, C-type lectins (CTLs), and
immunoglobulin-like domains were upregulated in the nematode-infected slug compared
to the water control group. Our results are in accordance with previous reports in which
genes related to scavenger receptors, C-type lectins (CTLs), and immunoglobulin-like
domains were regulated in different insect pests in response to pathogens [59–61]. Un-
derstanding immune-related pathways in response to nematode infection can facilitate
the development of genetic manipulation to develop long-term management methods to
control D. reticulatum. The 18 immune-related unigenes that were selected based on their
role in various immune pathways and immune-related genes mainly belonged to the toll,
Imd, JNK, scavenger receptor (SCR), C-type lectin (CTL), immunoglobulin-like domain,
and JAK/STAT63 signaling pathways. These unigenes were validated using qRT-PCR, and
the expression patterns of 12 of these immune-related unigenes were consistent with the
transcriptome analysis.

We also found a total of 3084 upregulated and 6761 downregulated DE genes be-
tween the nematode-infected slug compared to the control group (Figure 2A). Among
them, 228 immune DE genes (Log2 fold > 2) and related pathways were identified, and
11 immune pathways and related genes were categorized into different groups (Figure 5).
The differentially expressed genes (DEGs) related to immune pathways were identified in
various species of insects after exposure to nematodes and pathogenic fungi [22,55,62,63].
Thus, we believe that the regulation of immune pathways and related genes observed in this
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study indicates the promotion of the defense system of D. reticulatum by infecting parasitic
nematodes. Immune systems must constantly evolve to remain effective in the face of both
changes in the suite of pathogens to which they are exposed and the evolution of virulence
mechanisms. These dynamics can result in a strong signature of adaptive evolution in
genes involved in the immune response [64,65]. The innate immune system, which consists
of cellular and humoral responses, is the first line of defense against pathogenic infections
in invertebrates [66,67].

In conclusion, transcriptome profiling via RNA-Seq is a good approach for the assess-
ment of transcript levels related to infection and immunity in D. reticulatum. RNA-Seq
analysis of D. reticulatum infected by nematodes reveals transcriptional regulation of a
large number of genes, many of which have not been shown previously to participate in
immune processes against pathogenic infections in D. reticulatum. Many of these genes
that are differentially regulated upon nematode infection are predicted to be involved in
metabolic functions, immune functions, and stress response activities. In addition, we have
identified D. reticulatum genes related to immune pathways with a potential anti-nematode
role. Many of these pathways provide an excellent platform of candidate factors for the
functional characterization of the D. reticulatum immune response against nematode com-
plexes. Our findings not only offer deep insight into immunogenetics of D. reticulatum
in response to nematodes, but also enhance current knowledge of interactions between
host and pathogens. Future studies using the D. reticulatum immune system promise to
reveal not only how pathogens evolve virulence but also how pathogens (nematodes) can
synergize to exploit a common host.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects15050311/s1, Table S1: List of primers used in this study for
qRT-PCR. File S1: List of immunity-related genes in response to pathogenic nematode infection.
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