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Simple Summary: The tiger mosquito, Aedes albopictus, spreads the virus causing dengue fever,
notably in Southeast Asian countries. To stop the spread of this disease, the Aedes mosquitoes are
killed with chemicals known as pyrethroids. However, despite pyrethroids being highly effective
insecticides, tiger mosquitoes are becoming resistant and surviving exposure to these chemicals. We
have measured that tiger mosquitoes from two regions in Cambodia (the capital, Phnom Penh, and
rural Pailin province) are highly resistant to pyrethroids. To determine what causes resistance, we
have implicated unusually high activity of enzymes, known as P450 monooxygenases, which break
down pyrethroids and thus render them harmless in the resistant mosquitoes. We have ruled out
another common mechanism of pyrethroid resistance, which is changes in the mosquitoes’ DNA
sequence, which prevents pyrethroids from binding to a protein known as the voltage-gated sodium
channel, thereby disrupting signals being sent throughout the nervous system. Overall, our findings
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describe an important survey monitoring the prevalence of insecticide resistance in disease-spreading
mosquitoes in Cambodia, and with the increased understanding of what causes resistance, we are
in a strong position to advise that mosquito control methods alternative to pyrethroids should be
implemented as soon as possible to ensure continuing management of dengue fever.

Abstract: (1) Background: In Cambodia, Aedes albopictus is an important vector of the dengue
virus. Vector control using insecticides is a major strategy implemented in managing mosquito-
borne diseases. Resistance, however, threatens to undermine the use of insecticides. In this study,
we present the levels of insecticide resistance of Ae. albopictus in Cambodia and the mechanisms
involved. (2) Methods: Two Ae. albopictus populations were collected from the capital, Phnom Penh
city, and from rural Pailin province. Adults were tested with diagnostic doses of malathion (0.8%),
deltamethrin (0.03%), permethrin (0.25%), and DDT (4%) using WHO tube assays. Synergist assays
using piperonyl butoxide (PBO) were implemented before the pyrethroid assays to detect the potential
involvement of metabolic resistance mechanisms. Adult female mosquitoes collected from Phnom
Penh and Pailin were tested for voltage-gated sodium channel (VGSC) kdr (knockdown resistance)
mutations commonly found in Aedes sp.-resistant populations throughout Asia (S989P, V1016G,
and F1534C), as well as for other mutations (V410L, L982W, A1007G, I1011M, T1520I, and D1763Y).
(3) Results: The two populations showed resistance against all the insecticides tested (<90% mortality).
The use of PBO (an inhibitor of P450s) strongly restored the efficacy of deltamethrin and permethrin
against the two resistant populations. Sequences of regions of the vgsc gene showed a lack of kdr
mutations known to be associated with pyrethroid resistance. However, four novel non-synonymous
mutations (L412P/S, C983S, Q1554STOP, and R1718L) and twenty-nine synonymous mutations were
detected. It remains to be determined whether these mutations contribute to pyrethroid resistance.
(4) Conclusions: Pyrethroid resistance is occurring in two Ae. albopictus populations originating from
urban and rural areas of Cambodia. The resistance is likely due to metabolic resistance specifically
involving P450s monooxygenases. The levels of resistance against different insecticide classes are
a cause for concern in Cambodia. Alternative tools and insecticides for controlling dengue vectors
should be used to minimize disease prevalence in the country.

Keywords: Aedes albopictus; DDT; deltamethrin; insecticide resistance; kdr mutation; malathion;
permethrin; PBO; voltage-gated sodium channel

1. Introduction

The global impact of vector-borne diseases (VBDs) has been significant over the last
decade, leading to over 700,000 deaths annually [1]. In tropical and subtropical regions,
Aedes mosquitoes transmit major VBDs, such as dengue, chikungunya, and Zika [1]. Aedes
aegypti (Goeldi, 1905) and Ae. albopictus (Skuse, 1894) are the main vectors [2–4] and they
are predominant worldwide, including in Southeast Asia [1]. Aedes albopictus has been
associated with dengue outbreaks in all continents except Antarctica [5–12].

In Cambodia, the Ministry of Health has been monitoring the incidence of dengue
every year since the massive outbreak in 1995 with more than 400 deaths [13,14]. The
most recent epidemics were in 2018 (9445 cases), 2019 (9298 cases), and 2023 (over 24,000
cases) [15,16]. The main vector for dengue transmission in urban areas in Cambodia is
Ae. aegypti, while Ae. albopictus, originating from the forests of Southeast Asia, is more
associated with dengue transmission in rural areas [17]. However, an entomological study
implemented in 2019 across the capital city, Phnom Penh, highlighted a recent invasion
of Ae. albopictus throughout the entire city [17], indicating a more important role of this
species in the transmission of dengue in urban areas as observed in other countries [18,19].

With an active circulation of dengue viruses within Southeast Asia, the incidence of
dengue is becoming more common in Cambodia [15]. This will continue to be an important
health concern for the country, as well as neighboring countries [20]. The control of disease
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vectors in Cambodia relies mainly on insecticide use [21]. The organophosphate temephos
(Abate®) has been the most broadly used insecticide in Cambodia since 1992 for targeting
larval stages of Ae. aegypti [21], while adult Ae. aegypti mosquitoes are mainly targeted
with pyrethroid insecticides, which have been used since the late 1980s [21]. Recent studies
implemented in Cambodia showed that Ae. aegypti populations from rural and urban areas
were considerably resistant to pyrethroid insecticides [21–23]. However, there are no data
on the insecticide susceptibility of Ae. albopictus in Cambodia.

Resistance of Ae. albopictus to the main classes of insecticides used in public health for
vector control have been recorded around the world, including Southeast Asia [4,18,20,24–32].
Insecticide resistance in mosquitoes is mainly associated with the over-expression of detoxifi-
cation enzymes (metabolic-based resistance) and/or mutations in the sequence of the target
protein that induces insensitivity to the insecticide (target-site resistance) [24]. Three large
enzyme families, the cytochrome P450 monooxygenases (P450s), glutathione S-transferases
(GSTs), and carboxy/cholinesterases (CCEs), have been implicated in the metabolism of
insecticides [26]. The main target site mechanisms of resistance to DDT/pyrethroid insecti-
cides involve amino acid substitutions in the voltage-gated sodium channel (VGSC), which
are known as knockdown resistance (kdr) mutations [33]. The main kdr mutations (S989P,
V1016G, F1534C, housefly Musca domestica numbering) responsible for DDT/pyrethroid
resistance in Ae. aegypti have been identified worldwide [4,18], including in Southeast
Asia [34]. Compared to Ae. aegypti, the presence of kdr mutations in Ae. albopictus has been
poorly studied. However, since the first discovery of the F1534C mutation in a pyrethroid-
resistant Ae. albopictus population from Singapore in 2011 [35], kdr mutation detection in Ae.
albopictus has been implemented in other countries [36]. Mutation at the 410, 989, 1016, 1520,
and 1534 amino acid positions in domains I, II, and III of the VGSC were detected in Asia
in Ae. albopictus mosquitoes from China, Laos, Taiwan, Thailand, and Vietnam [30,36–38].

In this study, we investigated the levels of insecticide resistance of two Ae. albopic-
tus populations from Cambodia (Phnom Penh city and Pailin province) against several
insecticide families (i.e., pyrethroid, organophosphate, and DDT) using WHO bioassays.
Synergist assays using piperonyl butoxide (PBO) were implemented before the pyrethroid
assays to detect potential metabolic resistance mechanisms. Female mosquitoes from both
populations were also analyzed for the presence of vgsc kdr DNA mutations.

2. Materials and Methods
2.1. Collection of Ae. albopictus Mosquito Samples

Mosquito collections were carried out in two provinces of Cambodia (Pailin province:
coordinates 12.83081, 102.6158, and Phnom Penh city, Royal University of Agriculture
(RUA): 11.51196, 104.9005) (Figure 1). Mosquitoes were collected at the larval and pupal
stages in Pailin using ten ovitraps without filter paper and in semi-urban areas (RUA)
using a variety of sampling containers ranging from buckets, cups, fridges, tires, toilets,
vases to mainly jars and plastic containers. Overall, more than 5000 larvae and pupae
were collected from five different sites in Pailin during the 22nd–26th of June, 2020, and
more than 5000 larvae and pupae were collected from the RUA on the 11th of June, 2020.
Mosquitoes collected within a location (Pailin or RUA) on any date were pooled together
and then were brought back to the laboratory at the Institut Pasteur du Cambodge and
maintained under controlled conditions for rearing until adults (F1 generation) following
previously described standardized techniques [21,22]. Using morphological keys to identify
species [39,40], live adult Ae. albopictus mosquitoes were separated and kept for breeding.
Then, eggs of the F1 generation were sent to the Institut Pasteur du Laos and reared
to adults for the insecticide resistance bioassays. Mosquito specimens after pyrethroid
insecticide tests from each population were stored in tubes with silica gel at −80 ◦C and
sent to Oxford Brookes University laboratory for molecular analysis.
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2.2. Insecticide Resistance Bioassays

Adult bioassays were run using filter papers treated with diagnostic doses of deltamethrin
(0.03%), permethrin (0.25%), malathion (0.8%), or DDT (4%) following WHO protocols [41].
For each insecticide test, four batches of twenty-five non-blood-fed females (2–5 days old)
were introduced into holding tubes and maintained for 60 min at 27 ± 2 ◦C and a rela-
tive humidity of 80 ± 10%. The adult mosquitoes were then transferred into insecticide
exposure tubes for 60 min and then transferred back to the holding tubes. Mortality was
recorded 24 h after exposure where mosquitoes were maintained in similar conditions of
temperature and humidity.

Synergist bioassays using the specific enzyme inhibitor, piperonyl butoxide (PBO),
were conducted to address the potential role of P450s in insecticide resistance. Adult
mosquitoes were exposed to a sub-lethal concentration of PBO (4%) for 1 h prior to treatment
with deltamethrin or permethrin following the same WHO protocol for adult bioassays [41].

Following WHO criteria, a population was resistant if the mortality rate was below
90%. Resistance was suspected when the mortality rate ranged from 90% to 98%, and
a population was considered susceptible when the mortality rate was over 98% [41]. A
susceptible United States Department of Agriculture (USDA) strain of Ae. aegypti was used
as the control to test the effectiveness of the insecticides [42].

2.3. Detection of Mutations in the Voltage-Gated Sodium Channel

Genomic DNA was extracted from individual adult Ae. albopictus females using
250 µL Trizol (Fisher Scientific, Loughborough, UK) following the manufacturer’s pro-
tocol. With 2 µL of extracted DNA as a template, the polymerase chain reaction (PCR)
using the Q5® High-Fidelity Kit (New England Biolabs, Ipswich, MA, USA) was used
to amplify four sections of the vgsc gene where mutations giving rise to pyrethroid re-
sistance are known to occur [43]. Thus, TM6 in domain I (amino acids 369–451, Musca
domestica numbering) was amplified by the primers 5′-ACTAACCAAAACTCCCACTAC-3′

(forward) and 5′-GAAAAACAAAGAGATTTAAGAGAG-3′ (reverse), with resulting amplifi-
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cation products being sequenced with the 5′-TCTTCGTGGTGTGCAAAACAG-3′ (forward)
oligonucleotide. TM6 in domain II (amino acids 952-1052 including intron 20) was amplified
by 5′-CAGACAATGTGGATCGCTTC-3′ (forward) and 5′-GATATCCGGTTGAACGCCTC-
3′ (reverse) and then sequenced using 5′-CGGACAAGGACCTGCCAC-3′ (forward). TM6
in domain III (amino acids 1446-1593 including intron 29) was amplified with either 5′-
TGCGTCGACAAGAACAAGAC-3′ (forward), 5′-AAGACGACGCTGTCGCAC-3′ (forward),
or 5′-AGAACTACACGTGGGAGAAC-3′ (forward) and 5′-CCTAGGCCGAGGGATAGC-3′

(reverse) and then sequenced using 5′-TTCAGCGGCTTCTTCGAGC-3′ (reverse). TM6 in
domain IV (amino acids 1692-1780) was amplified by 5′-TCGAGAAGTACTTCGTGTCG-
3′ (forward) and 5′-CAGCGATGTACATGTTGATAAC-3′ (reverse) and then sequenced
with 5′-CCACGTTGCTCCGAGTCG-3′ (forward). The PCR products were purified us-
ing the SmartPure PCR Kit (Eurogentec, Seraing, Belgium) before being sequenced at
SourceBioscience (https://genomics.sourcebioscience.com/ accessed on 29 November
2021). Sequence chromatograms were visualized using Chromas (available online at
https://technelysium.com.au/wp/chromas/ accessed on 6 December 2021) and compared
to the Ae. albopictus sequence with Accession No. XM_029865086.1.

2.4. Sequence Analysis and Accession Numbers

Sequence alignments were constructed using Clustal X2 [44] using default settings
and displayed using Genedoc (http://nrbsc.org/gfx/genedoc/index.html accessed on 15
February 2024).

Novel sequences of intron variants have been deposited in the National Center for
Biotechnology Information (https://www.ncbi.nlm.nih.gov/WebSub/ accessed on 4 March
2024) and have accession numbers of PP426602 (intron20Var74), PP426603 (intron20Var84b),
PP426604 (intron20Var85), PP426605 (intron20Var89a), PP426606 (intron20Var89b), PP426607
(intron20Var90b), PP426608 (intron20Var91), PP426609 (intron20Var94a), PP426610 (in-
tron20Var94b), PP426611 (intron29Var67), PP426612 (intron29Var82), and PP426613 (in-
tron29Var83d).

3. Results
3.1. Bioassays

For all bioassays, mortality in the control tubes, including the susceptible Ae. aegypti
strain USDA with insecticides for the positive control and both Cambodian Ae. albopictus
populations without insecticide for the negative control, never exceeded 5%, so no mortality
correction was necessary. The two Ae. albopictus populations tested were resistant against
all the insecticides tested (mortality < 90%), except for the population from Pailin, which
showed 92% mortality with DDT, indicating possible resistance (Figure 2). Thus, the
populations from Phnom Penh (RUA) and Pailin province showed, respectively, 27% and
18% mortality with malathion, 25% and 0% with deltamethrin, and 62% and 38% with
permethrin. However, when exposed to PBO prior to the pyrethroid tests, the mortality of
mosquitoes from both populations significantly increased. In Phnom Penh, mortality to
deltamethrin increased from 25% to 96%, and permethrin increased from 62% to 100%. In
Pailin, mortality to deltamethrin increased from 0% to 73% and 38% to 100% for permethrin.

https://genomics.sourcebioscience.com/
https://technelysium.com.au/wp/chromas/
http://nrbsc.org/gfx/genedoc/index.html
https://www.ncbi.nlm.nih.gov/WebSub/
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3.2. Detection of Mutations and Intron Variants in the Voltage-Gated Sodium Channel

Genomic DNA encoding for TM6 in domains II and III of the vgsc gene from individual
female Ae. albopictus mosquitoes sampled in Phnom Penh or for TM6 in domains I-IV
from mosquitoes taken from Pailin were amplified and analyzed for mutations associated
with pyrethroid resistance [43]. Sequence chromatograms showed no known pyrethroid
resistance mutations in domains I, II, and IV (Table 1), whilst only one of the eighty-one
mosquitoes from Phnom Penh was heterozygous for the F1534C mutation (TTC to TGC)
(Table 1, Figure 3). Also, other mutations (S1000Y and I1532T) reported for Ae. albopictus
from China [45] were not found here.

Table 1. Frequencies of pyrethroid-resistant mutations [43] in the four domains (Dom) of the vgsc
gene of Aedes albopictus collected from Pailin and Phnom Penh city, Royal University of Agriculture
(RUA). No. is the number of mosquitoes analyzed. —denotes a value that was not determined.

Dom I Dom II Dom III Dom IV

Mutation
Allele

V410L
VV

L982W
LL

S989P
SS

A1007G
AA

I1011M
II

V1016G
VV

T1520I
TT

F1534C
FF FC D1763Y

DD

RUA No. – 16 16 16 16 107 81 80 1 –
Total – 16 16 16 16 107 81 81 –

Mutation
frequency (%) – 0 0 0 0 0 0 0.62 –

Pailin No. 78 73 73 73 73 60 54 54 0 79
Total 78 73 73 73 73 60 54 54 79

Mutation
frequency (%) 0 0 0 0 0 0 0 0 0
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Figure 3. Example of DNA sequence chromatograms showing the heterozygous non-synonymous
mutations in the vgsc gene of Ae. albopictus identified in this study.

Four novel non-synonymous mutations were detected in mosquitoes collected from
Pailin (Figure 3), where three of the seventy-eight domain I sequences (mutation frequency
1.92%) analyzed were heterozygous for either L412S (TTG to TCG) or L412P (TTG to CCG),
whilst a different three mosquitoes were heterozygous for C983S (TGC to either TCC or
TCT) located in domain II (mutation frequency 2.05%). Another two mosquitoes were
heterozygous for Q1554STOP (CAG to TAG) in domain III (mutation frequency 1.85%),
and a further five mosquitoes were heterozygous for R1718L (CGA to CTA) in domain IV
(mutation frequency 3.16%). Synonymous mutations located in all four domains were also
observed in more than one mosquito as follows: domain I L412L (TTG to CTG); domain II
V981V (GTG to GTA), C983C (TGC to TGT), S989S (TCC to TCT), C993C (TGC to TGT);
domain III D1505D (GAC to GAT), G1513G (GGA to GGC), P1516P (CCG to CCA), Y1527Y
(TAC to TAT), F1528F (TTT to TTC), F1531F (TTC to TTT), F1534F (TTC to TTT), F1543F
(TTC to TTT), G1545G (GGT to GGC), I1547I (ATC to ATT), I1548I (ATC to ATT), D1549D
(GAC to GAT), N1550N (AAC to AAT), K1556K (AAG to AAA); and domain IV F1722F
(TTT to TTC), L1738L (CTG to TTG), G1749G (GGG to GGC), F1753F (TTC to TTT), H1755H
(CAC to CAT), V1756V (GTG to GTA), S1760S (AGC to AGT), N1767N (AAT to AAC),
F1768F (TTT to TTC), and S1774S (AGT to AGC).

Ten different sequences were observed for intron 20 (Figure 4). Nine of these intron
sequences varied in size from 74 to 94 nucleotides, consisting of 74, 84, 85, 89, 89, 90,
91, 94, and 94 bp. They have been, respectively, denoted here as intron20Var74 (Accession
No. PP426602) and intron20Var84b (PP426603) to differentiate it from intron20Var84 from
Laos [37], intron20Var85 (PP426604), intron20Var89a (PP426605), intron20Var89b (PP426606),
intron20Var90b (PP426607), intron20Var91 (PP426608), intron20Var94a (PP426609), and in-
tron20Var94b (PP426610). The tenth intron 20 sequence consists of 237 bp and is identical to
the previously characterized intron B variant [46] found in Ae. aegypti from Laos [37]. None
of the intron variants observed here were identical to any of the four variants seen in Ae.
albopictus collected from Laos [37].
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                         G  N  L  **                                                                                                                                 
Camb_albopictus_Var74  : GGAAATCTAGTAGTAAGTATCCTCTTTCGGA-CCAG-TTGTAGTGCTGCGTGA--------------CTAATCGGAGAATGCTTTCTCCC------CCAAT-CC------------------------------------
Camb_albopictus_Var84b : GGAAATCTAGTAGTAAGTATCGCCTTTCGGT-TCAA----CAGTGCTGTGTGACCAACGGATC-GTACTAATCGGAGAATGTTTTCTCCC-------CCAAACC------------------------------------
Camb_albopictus_Var85  : GGAAATCTAGTAGTAAGTATCCTCTTCCGGT-CCAG-A---AGTGCTGCGTGACCAACGAGTACGAACTAATCGGAGAATGTTTTCTCCC------CCAAA-CC------------------------------------
Camb_albopictus_Var89b : GGAAATCTAGTAGTAAGTATTCTCTTTCGGA-CCAG-ATGTAGTGCTGTGTGACCAACGGATCTGTACTAATCGGAGAATGCTTTCCCCC------CCCAAACC------------------------------------
Camb_albopictus_Var89a : GGAAATCTAGTAGTAAGTATCCTCTTTCGGA-CCAG-TTGTAGTGCTGTGTGAAAAACGGATCAGTACTAATCGGAGAATGCTTTCTTCC------CCAAAACC------------------------------------
Camb_albopictus_Var90b : GGAAATCTAGTAGTAAGTATCGCCTTTCGGT-TCAG----CAGTGCTGTGTGACCAACAGGTC-GTACTAATCGGAGAATGCTTTCTCTCCCCC-TCCCAAACC------------------------------------
Camb_albopictus_Var91  : GGAAATCTAGTAGTAAGTATCCTCTTTCGGT-CCAG----CAGTGCTGTGTGACCAACGGATC-GTACTAATCGGAGAATACTTTCTCTCTCCCCTCCCAATCC------------------------------------
Camb_albopictus_Var94b : GGAAATCTAGTAGTAAGTATCCTCTTTCGGT-CCAGCAAGCAGTGCTGTGTGAACAACGGATC-GTACTAATCGGAGAATGCTTTCTCTCTCCC-TCCCAATCC------------------------------------
Camb_albopictus_Var94  : GGAAATCTAGTAGTAAGTATCCTCTTCCGGT-TTAG-TAGTGCTGAGGGGTGAACAACGGAGCTGTACTAATCGGAGAATGCTTTCTCTCCCTC-TCCCAATCC------------------------------------
Laos_albopictus_Var81a : GGAAATCTAGTAGTAAGTATCGCCTTTCGGT-TCAG----CAGTGTTGTGCGAACAACGGATC-GTACTAATTGGATGATGCTTTCTCCC-------CCAAACT------------------------------------
Laos_albopictus_Var81b : GGAAATCTAGTAGTAAGTATCGCCTTTCGGT-CCAG----CAGTGTTGTGCGAACAACAGATC-GTACTAATCGGAGAATGTTTTCTCCC-------CCAAACC------------------------------------
Laos_albopictus_Var84  : GGAAATCTAGTAGTAAGTATCCTCTTTCGGA-CCAG-TTGTAGTGCTGGGTGAACAACAGGTC-GTACTAATCGGAGAATGTTTTCTCCC------CCAAA-CT------------------------------------
Laos_albopictus_Var90  : GGAAATCTAGTAGTAAGTATCCTCTACCGGT-TTAG-TAGTGCTGTGTGGTGAACAACAGA-CCGTACTAATCGGAGAATGCTTTCTCTCCCCC-TCGCAATCC------------------------------------
Laos_aegypti_GroupA    : GGAAATCTAGTAGTAAGTATTCCGTTTGGGAGTTCTTCTATAAGGCTGACTGAA-AGTAAATTGGAGCGCACAACAAGACCTGTTATGCTG------TAAGTTCCAGCACTAAATTTCTCAGGTTGAATTGCAGTAGTTC
Laos_aegypti_GroupB    : GGAAATCTAGTAGTAAGTATTCCGTTTGGAAGTTCATCTGTAAGGCTGACTGAA-AGTAAATTGGAGCGCACAACA-GACCTATTATGCTG------TAA--TTCGTGATTCAACT----------AGTTACAAAAGACC
Camb_albopictus_GroupB : GGAAATCTAGTAGTAAGTATTCCGTTTGGAAGTTCATCTGTAAGGCTGACTGAA-AGTAAATTGGAGCGCACAACA-GACCTATTATGCTG------TAA--TTCGTGATTCAACT----------AGTTACAAAAGACC
                                                                                                                                                                     
                                                                                                                                                                    
                                                                                                                                                         **V  L  N  
Camb_albopictus_Var74  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var84b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var85  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var89b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var89a : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var90b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var91  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var94b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var94  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_albopictus_Var81a : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_albopictus_Var81b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_albopictus_Var84  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_albopictus_Var90  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_aegypti_GroupA    : AATCGAAATCTCGA-ACTTTCATTTTGATAACAGCAATACTAGACGCGCATAGAACATACAAATTTACATATAGTCAGCCTTTCATGCATTCTATCGTGCTAACCGACAAATTGTTTCCCACCCGCACAGGGACTTAAC
Laos_aegypti_GroupB    : GTT---GATCTTGATAGCATCAATATTAGAGGCGTGCTAGCAG-CGAGCGAGGGGCGTACCAATTTACTTTTAGTCAGTCTTTCTTGCATTCTTTCGTGCTAACCGACAAATTGTTTCCCACTCGCACAGGTACTTAAC
Camb_albopictus_GroupB : GTT---GATCTTGATAGCATCAATATTAGAGGCGTGCTAGCAG-CGAGCGAGGGGCGTACCAATTTACTTTTAGTCAGTCTTTCTTGCATTCTTTCGTGCTAACCGACAAATTGTTTCCCACTCGCACAGGTACTTAAC
                                                                                                                                                           G        

                                                                                                        
         I  M  N  D  A  I  D  S  R  E  **                                                               
Var67  : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGGATCTTCGGTCATCACATCA----------------ATCCGATTAACGATCGTT
Var68  : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGGATCTTCGATCATCTCATCA----------------ATCCAACTAACGATCGTT
Var69  : ATCATGAACGACGCCATCGACTCGCGGGAGGTAAGTTATTGTGAAATCGAACTTGTTACGAAT-------------GATCTGCTTA-CAATTTTA
Var70  : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-TTGAATCCTCGATCATCATTCCG-----------AATGAACACTA--ATCGAACGTT
Var82  : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGAATCTTCGATCATTACATCAGTTCAGCCCCAAATCAATCCGAT-AACGATCGTT
Var83  : ATCATGAACGATGCCATCGACTCGCGGGAGGTATGTT-CGGGATCTTCGATCATCTCATCAGCTCAGCCCCAAATCAATTCGACTAACGATCGTT
Var83b : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGGATCTTCGGTCATCTCATCAGCTCAGCCCCAAATCAATCCGATTAACGATCGTT
Var83c : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGAATCTTCGATCATTACATCAGTTCAGCCCCAAATCAATCCGATTAACGATCGTT
Var83d : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAATT-CGGGATCTTCGATCGTCTCTTCAGTTCAGCCCCAAATCAATCCGATTAACGATCGTT
                                                                                                        
                                                                                                        
                           **V  G  K  Q  P  I  R  E  T  N  I  Y  M  Y  L  Y  F  V  F  F  I  I  F  G  S  
Var67  : TCCCTTGAACCCT-CCGCAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var68  : TCTCGTGAATCCTTCGACAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var69  : CGTCCTCGATCCT--TCCAGGTGGGAAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTTGTGTTCTTCATCATCTTCGGGTCG
Var70  : TCCCTTGAATCCT-CCACAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var82  : TCCCTTGAACCCT-CGACAGGTGGGCAAGCAGCCAATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var83  : TCTCTTGATCCCT-CCACAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var83b : TCTCTTGAACCCT-CGGCAGGTGGGCAAGCAGCCAATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var83c : TCCCTTGAACCCT-CGGCAGGTGGGCAAGCAGCCAATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var83d : TCTCTTGAACCCT-CGGCAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
                                                                                                        

Figure 4. Alignment of the variable intron 20 sequences and parts of flanking exons found in the
vgsc gene of Aedes albopictus collected in Laos [37] and Cambodia (current study). Group A and
B intron sequences characterized in Aedes aegypti [46–49] are included here for comparison with
the group B sequence identified in Ae. albopictus. Black and gray shading indicates the degree of
conservation. Amino acid residues corresponding to coding regions are shown at the top of the
alignment, whilst the mutated amino acid (V1016G) found in group A is shown at the bottom. Splice
donor and acceptor sites are marked by asterisks.

Seven different sequences were observed for intron 29 (Figure 5). Four of these
sequences, consisting of 68, 70, 83, and 83 bp, were respectively identical to intron29Var68,
intron29Var70, intron29Var83, and intron29Var83b detected in Ae. albopictus from Laos [37].
The remaining three sequences consist of 67, 82, and 83 bp and thus are denoted here
as intron29Var67 (PP426611), intron29Var82 (PP426612), and intron29Var83d (PP426613),
respectively. Intron29Var82 contained the CCA codon for the synonymous mutation at
P1516P [37], whilst the codon was CCG in intron29Var67 and intron29Var83d (Figure 5).
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                         G  N  L  **                                                                                                                                 
Camb_albopictus_Var74  : GGAAATCTAGTAGTAAGTATCCTCTTTCGGA-CCAG-TTGTAGTGCTGCGTGA--------------CTAATCGGAGAATGCTTTCTCCC------CCAAT-CC------------------------------------
Camb_albopictus_Var84b : GGAAATCTAGTAGTAAGTATCGCCTTTCGGT-TCAA----CAGTGCTGTGTGACCAACGGATC-GTACTAATCGGAGAATGTTTTCTCCC-------CCAAACC------------------------------------
Camb_albopictus_Var85  : GGAAATCTAGTAGTAAGTATCCTCTTCCGGT-CCAG-A---AGTGCTGCGTGACCAACGAGTACGAACTAATCGGAGAATGTTTTCTCCC------CCAAA-CC------------------------------------
Camb_albopictus_Var89b : GGAAATCTAGTAGTAAGTATTCTCTTTCGGA-CCAG-ATGTAGTGCTGTGTGACCAACGGATCTGTACTAATCGGAGAATGCTTTCCCCC------CCCAAACC------------------------------------
Camb_albopictus_Var89a : GGAAATCTAGTAGTAAGTATCCTCTTTCGGA-CCAG-TTGTAGTGCTGTGTGAAAAACGGATCAGTACTAATCGGAGAATGCTTTCTTCC------CCAAAACC------------------------------------
Camb_albopictus_Var90b : GGAAATCTAGTAGTAAGTATCGCCTTTCGGT-TCAG----CAGTGCTGTGTGACCAACAGGTC-GTACTAATCGGAGAATGCTTTCTCTCCCCC-TCCCAAACC------------------------------------
Camb_albopictus_Var91  : GGAAATCTAGTAGTAAGTATCCTCTTTCGGT-CCAG----CAGTGCTGTGTGACCAACGGATC-GTACTAATCGGAGAATACTTTCTCTCTCCCCTCCCAATCC------------------------------------
Camb_albopictus_Var94b : GGAAATCTAGTAGTAAGTATCCTCTTTCGGT-CCAGCAAGCAGTGCTGTGTGAACAACGGATC-GTACTAATCGGAGAATGCTTTCTCTCTCCC-TCCCAATCC------------------------------------
Camb_albopictus_Var94  : GGAAATCTAGTAGTAAGTATCCTCTTCCGGT-TTAG-TAGTGCTGAGGGGTGAACAACGGAGCTGTACTAATCGGAGAATGCTTTCTCTCCCTC-TCCCAATCC------------------------------------
Laos_albopictus_Var81a : GGAAATCTAGTAGTAAGTATCGCCTTTCGGT-TCAG----CAGTGTTGTGCGAACAACGGATC-GTACTAATTGGATGATGCTTTCTCCC-------CCAAACT------------------------------------
Laos_albopictus_Var81b : GGAAATCTAGTAGTAAGTATCGCCTTTCGGT-CCAG----CAGTGTTGTGCGAACAACAGATC-GTACTAATCGGAGAATGTTTTCTCCC-------CCAAACC------------------------------------
Laos_albopictus_Var84  : GGAAATCTAGTAGTAAGTATCCTCTTTCGGA-CCAG-TTGTAGTGCTGGGTGAACAACAGGTC-GTACTAATCGGAGAATGTTTTCTCCC------CCAAA-CT------------------------------------
Laos_albopictus_Var90  : GGAAATCTAGTAGTAAGTATCCTCTACCGGT-TTAG-TAGTGCTGTGTGGTGAACAACAGA-CCGTACTAATCGGAGAATGCTTTCTCTCCCCC-TCGCAATCC------------------------------------
Laos_aegypti_GroupA    : GGAAATCTAGTAGTAAGTATTCCGTTTGGGAGTTCTTCTATAAGGCTGACTGAA-AGTAAATTGGAGCGCACAACAAGACCTGTTATGCTG------TAAGTTCCAGCACTAAATTTCTCAGGTTGAATTGCAGTAGTTC
Laos_aegypti_GroupB    : GGAAATCTAGTAGTAAGTATTCCGTTTGGAAGTTCATCTGTAAGGCTGACTGAA-AGTAAATTGGAGCGCACAACA-GACCTATTATGCTG------TAA--TTCGTGATTCAACT----------AGTTACAAAAGACC
Camb_albopictus_GroupB : GGAAATCTAGTAGTAAGTATTCCGTTTGGAAGTTCATCTGTAAGGCTGACTGAA-AGTAAATTGGAGCGCACAACA-GACCTATTATGCTG------TAA--TTCGTGATTCAACT----------AGTTACAAAAGACC
                                                                                                                                                                     
                                                                                                                                                                    
                                                                                                                                                         **V  L  N  
Camb_albopictus_Var74  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var84b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var85  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var89b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var89a : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var90b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var91  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var94b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Camb_albopictus_Var94  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_albopictus_Var81a : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_albopictus_Var81b : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_albopictus_Var84  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_albopictus_Var90  : --------------------------------------------------------------------------------------------------------------------------------AGGTACTTAAC
Laos_aegypti_GroupA    : AATCGAAATCTCGA-ACTTTCATTTTGATAACAGCAATACTAGACGCGCATAGAACATACAAATTTACATATAGTCAGCCTTTCATGCATTCTATCGTGCTAACCGACAAATTGTTTCCCACCCGCACAGGGACTTAAC
Laos_aegypti_GroupB    : GTT---GATCTTGATAGCATCAATATTAGAGGCGTGCTAGCAG-CGAGCGAGGGGCGTACCAATTTACTTTTAGTCAGTCTTTCTTGCATTCTTTCGTGCTAACCGACAAATTGTTTCCCACTCGCACAGGTACTTAAC
Camb_albopictus_GroupB : GTT---GATCTTGATAGCATCAATATTAGAGGCGTGCTAGCAG-CGAGCGAGGGGCGTACCAATTTACTTTTAGTCAGTCTTTCTTGCATTCTTTCGTGCTAACCGACAAATTGTTTCCCACTCGCACAGGTACTTAAC
                                                                                                                                                           G        

                                                                                                        
         I  M  N  D  A  I  D  S  R  E  **                                                               
Var67  : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGGATCTTCGGTCATCACATCA----------------ATCCGATTAACGATCGTT
Var68  : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGGATCTTCGATCATCTCATCA----------------ATCCAACTAACGATCGTT
Var69  : ATCATGAACGACGCCATCGACTCGCGGGAGGTAAGTTATTGTGAAATCGAACTTGTTACGAAT-------------GATCTGCTTA-CAATTTTA
Var70  : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-TTGAATCCTCGATCATCATTCCG-----------AATGAACACTA--ATCGAACGTT
Var82  : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGAATCTTCGATCATTACATCAGTTCAGCCCCAAATCAATCCGAT-AACGATCGTT
Var83  : ATCATGAACGATGCCATCGACTCGCGGGAGGTATGTT-CGGGATCTTCGATCATCTCATCAGCTCAGCCCCAAATCAATTCGACTAACGATCGTT
Var83b : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGGATCTTCGGTCATCTCATCAGCTCAGCCCCAAATCAATCCGATTAACGATCGTT
Var83c : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAGTT-CGGAATCTTCGATCATTACATCAGTTCAGCCCCAAATCAATCCGATTAACGATCGTT
Var83d : ATCATGAACGATGCCATCGACTCGCGGGAGGTAAATT-CGGGATCTTCGATCGTCTCTTCAGTTCAGCCCCAAATCAATCCGATTAACGATCGTT
                                                                                                        
                                                                                                        
                           **V  G  K  Q  P  I  R  E  T  N  I  Y  M  Y  L  Y  F  V  F  F  I  I  F  G  S  
Var67  : TCCCTTGAACCCT-CCGCAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var68  : TCTCGTGAATCCTTCGACAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var69  : CGTCCTCGATCCT--TCCAGGTGGGAAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTTGTGTTCTTCATCATCTTCGGGTCG
Var70  : TCCCTTGAATCCT-CCACAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var82  : TCCCTTGAACCCT-CGACAGGTGGGCAAGCAGCCAATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var83  : TCTCTTGATCCCT-CCACAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var83b : TCTCTTGAACCCT-CGGCAGGTGGGCAAGCAGCCAATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var83c : TCCCTTGAACCCT-CGGCAGGTGGGCAAGCAGCCAATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
Var83d : TCTCTTGAACCCT-CGGCAGGTGGGCAAGCAGCCGATTCGCGAGACCAACATCTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCG
                                                                                                        

Figure 5. Alignment of the variable intron 29 sequences and parts of flanking exons found in the
vgsc gene of Aedes albopictus collected in Laos [37] and Cambodia (current study). Black and gray
shading indicates the degree of conservation. Amino acid residues corresponding to coding regions
are shown at the top of the alignment. Splice donor and acceptor sites are marked by asterisks.

4. Discussion

In this paper, we demonstrate that two different populations of Ae. albopictus from
Cambodia were resistant to pyrethroid insecticides, highlighting the need for alternative in-
secticides and/or strategies for controlling this vector. The use of PBO strongly restored the
efficacy of deltamethrin and permethrin against both populations, indicating the involve-
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ment of specific detoxification enzymes, the P450s monooxygenases. Metabolic resistance,
including P450s, is a common occurrence in mosquitoes and has been reported against
insecticides used in public health and agriculture [4]. Fewer studies have shown the in-
volvement of P450s in Ae. albopictus from Asia that are resistant to pyrethroids. In Malaysia,
permethrin insensitivity was mediated by metabolic resistance through the over-expression
of P450 genes (CYP6 family) in kdr-free Ae. albopictus populations [50]. Also, in China,
Zou et al. [51] reported the important role of three CYP6 genes in deltamethrin resistance
in several Ae. albopictus populations. To further understand metabolic resistance in kdr-free
Ae. albopictus populations from Cambodia, as well as neighboring countries, it is necessary
to characterize the involvement of P450 genes (upregulation/gene copy number variations
[CNVs]) [52]. It is also important to conduct similar studies on the populations of Ae. al-
bopictus in Cambodia that are resistant to malathion, as CNVs of carboxylesterase genes
were found to be responsible for organophosphate resistance in Ae. aegypti populations
from Southeast Asia [34,53].

We also report here the first survey for pyrethroid resistance mutations in the vgsc
gene in Ae. albopictus from Cambodia. Genomic DNA of the vgsc gene encoding for
transmembrane region 6 in each of the four domains, where mutations giving rise to
pyrethroid resistance are known to occur [43], were sequenced. Only one mosquito was
found to have a mutation, which was heterozygous for F1534C (Figure 3 and Table 1).
This lack of kdr mutations highlights the involvement of P450s as being a predominant
mechanism for pyrethroid resistance in Cambodia. Sequencing PCR products resulted
in the identification of novel non-synonymous mutations in the vicinity of recognized
pyrethroid-resistance mutations. Thus, L412P/S is close to V410L in domain I, C983S is
close to S989P in domain II, and R1718L is located in domain IV with D1763Y. Intriguingly,
a fourth mutation was identified that introduced a stop codon at position 1554 in domain
III, which would result in a truncated protein that is unlikely to be functional. Truncated
vgsc variants arising from in-frame stop codons have been reported before, for example,
in the mosquito Culex pipiens [54]. The Ae. albopictus mosquitoes observed here were
heterozygous for the wild type and Q1554STOP, which may result in abnormal neuronal
signaling, as indicated by mice models with heterozygous loss of function for the VGSC,
SCN2A [55]. Many more synonymous mutations located in all four domains were detected,
including at sites associated with pyrethroid resistance (S989 and F1534). The synonymous
mutation at F1534 has also been observed in Ae. albopictus from China, Hawaii, and Los
Angeles [30]. Other synonymous mutations observed here, such as C983C, C993C, and
P1516P, have been detected in Ae. albopictus from several different countries, including
Hawaii, Italy, Japan, and Singapore [56]. Since differential codon use for the same amino
acid may affect protein expression, conformation, and function [57], it has been suggested
that it may be prudent to consider synonymous mutations in future studies of insecticide
resistance [36]. It remains to be determined whether the synonymous and non-synonymous
mutations identified here contribute to pyrethroid resistance.

We identified a variant in intron 20 in the vgsc gene of Ae. albopictus, which is similar to
type B found in Ae. aegypti (Figure 4) [49]. Previous studies have found that another intron
variant in Ae. aegypti, type A, is linked to the presence of resistance mutations V1016G and
S989P [37,46,47]. Our finding of the type B intron, therefore, is in accord with the absence
of these mutations. The majority of intron 20 variants observed, however, are considerably
shorter than the type B intron and, so far, appear to be found only in Ae. albopictus and
not Ae. aegypti. These shorter variants found in Ae. albopictus from Cambodia all differ in
sequence from those identified in mosquitoes collected in Laos [37].

Multiple variants for intron 29 were also detected (Figure 5). Four of these (in-
tron29Var68, intron29Var70, intron29Var83, and intron29Var83b) have identical sequences
to those found in Ae. albopictus from Laos [37], whilst the remaining three are novel. All of
the intron 29 sequences obtained from Ae. albopictus from Laos and Cambodia are different
from those sequenced from Ae. albopictus collected in Shanghai, China [58]. It was found
that in the mosquitoes from Shanghai, intron 29 consisting of 68 bp (denoted intron B)
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had a significant tendency to be associated with non-synonymous mutations at 1532 and
1534. It will be of interest to see whether introns with similar sequences are associated with
pyrethroid resistance mutations in Ae. albopictus from other countries, thereby pointing to
particular intron 29 variants playing a role in the regulation of gene mutation.

5. Conclusions

Constant monitoring programs for insecticide resistance levels and mechanisms should
be implemented in Cambodia, where vector-borne diseases have an important public health
impact. Even in the absence of kdr mutations in the two Ae. albopictus populations from
Cambodia, it has been shown that several mutations in the vgsc genes are responsible for
high pyrethroid resistance in Ae. aegypti populations in the country [23]. Thus, a careful
picture of the diffusion of kdr mutations due to constant insecticide pressure represents
an important milestone in the implementation of vector control plans and the triggering
of novel research on alternative strategies for mosquito-borne infections. Also, the devel-
opment of molecular tools to track metabolic resistance alleles and the comprehensive
understanding of the genetic bases of metabolic resistance could represent significant steps
forward for public health vector control.
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