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Abstract: In this paper, the finite element software ProCAST version 14.5 was used to simulate
the temperature field, flow field and defect prediction in the filling and solidification process of
hypereutectic high-chromium cast iron. The effects of pouring temperature, negative pressure and
the amount of suspension agent added during the technological process were explored. The optimum
process parameters were presented. It was found that the suspension agent has a certain hindrance
to the filling process, but the filling process remains stable. In the solidification stage, 89.4% of the
suspension agent melted, resulting in a relative supercooling degree of 50 ◦C, which had a certain
chilling effect and improved the solidification rate.
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1. Introduction

Hypereutectic high-chromium cast iron contains a large number of M7C3 primary
carbides which are supported and protected by the matrix so that it has better wear resis-
tance than traditional eutectic and hypoeutectic alloys. During the solidification process
of hypereutectic high-chromium cast iron, coarse primary carbides are formed, which
reduces toughness. Defects such as cracks and shrinkage holes also easily occur during
casting production, which restricts its application and promotion to a certain extent [1]. In
order to improve the toughness of hypereutectic high-chromium cast iron and improve
its comprehensive mechanical properties, domestic and foreign researchers have done a
lot of research on refining primary carbides; the main methods include metamorphism
and inoculation [2–5], heat treatment [6–10], pulsed current [11,12] treatment, etc. Previous
studies on refining primary carbides of hypereutectic high-chromium cast iron have also
been carried out by our research group. The studies have shown that appropriate modifi-
cation treatment (RE-Mg), element regulation and heat treatment are helpful in refining
primary carbides. It has been found that refining primary carbide combined with heat
treatment and alloying can improve the corrosion and wear resistance of hypereutectic
high-chromium cast iron [13].

Suspension casting technology (also known as micro-cooling) is a new casting method
proposed by Soviet experts in the 1960s. This is a casting method in which a certain amount
of metal powder is added to the metal flow as a suspension agent when pouring liquid
metal into the mold [14]. The suspension agent is extremely fine and plays an internal
chilling role, while the alloying elements contained in it play a metamorphic role, promoting
heterogeneous nucleation and thus refining the crystallization structure, improving metal
density, reducing casting defects such as shrinkage porosity, shrinkage porosity, segregation
and hot cracking and improving mechanical properties [15]. Suspension casting technology
is widely used in a variety of materials such as aluminum matrix composites [16] like cast
steel, cast iron, etc. to improve the hardness, wear resistance and corrosion resistance of
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castings and to refine the microstructure. The important process parameters of suspension
casting include the composition and quantity of the suspension agent and the size of the
particles. Li Qiushu et al. [17] studied the effect of suspension casting on the microstructure
and mechanical properties of high-chromium white cast iron by adding 66%Cr-Fe alloy as a
suspension agent using the punching method. The results showed that the microstructure
of high-chromium cast iron can be significantly improved by adding the suspension agent
(adding 1.5 wt%); the continuous network carbide becomes a fine and uniform granular
carbide, the impact toughness is increased by 20–30% and the wear resistance is increased
by 20%. Dai Binyu [18] used iron powder as a suspension agent to manufacture a high-
chromium cast iron refractory brick mold using the method of suspension casting with
the agent added in metal flow. When the amount of suspension agent was 0.5~1 wt%, the
microstructure of the high-chromium cast iron was refined, the carbide was changed from a
continuous mesh to an intermittent form and the wear-resistant performance and service life
were improved. Zhi Xiaohui et al. [19] found that the addition of a 2.1% high carbon steel
suspension agent outside the mold could improve the microstructure characteristics of a
cast hypereutectic Fe-20Cr-4C alloy and obtain fine and uniform carbides. The average size
of the primary carbides was reduced from 30 µm to 5.7 µm, and the impact toughness was
improved from 2.5 J/cm2 to 5.5 J/cm2. It can be seen that suspension casting can effectively
refine the primary carbides of hypereutectic high-chromium cast iron and improve its
toughness and wear resistance.

Lost foam casting (LFC) or expendable pattern casting (EPC), also known as vacuum-
evaporative pattern casting, is a nearly unlimited, precise, vacuum seal casting and solid
casting process grafted from new technology and representing the developmental direction
of casting methods in the 21st century. It is a precision casting method that uses foam
to make a solid shape of exactly the same structure and size of the parts. After dipping
in refractory adhesive paint and drying, dry sand modeling and vibration compaction is
carried out and the liquid metal is poured to make the shape disappear under heat and
gasification so as to obtain metal parts with the same shape [20,21]. The important process
parameters affecting the microstructure and properties of castings in the EPC process
include the pouring temperature and negative pressure. Suyitno et al. [22] studied the
relationship between the fluidity, porosity and surface roughness of gray cast iron and
pouring temperature in the lost foam casting process. The experimental results show that
the fluidity, porosity and surface roughness of gray cast iron increase with an increase in the
casting temperature within the temperature range of 1300–1400 ◦C. The higher the pouring
temperature, the lower the viscosity of the liquid metal and the more serious the turbulence
phenomenon during pouring. The turbulence makes it easy to enclose the gas into the
liquid metal, so the porosity of the casting increases. Xie Mingguo et al. [23] studied the
influence of vacuum conditions on the solidification structure of hypoeutectic gray cast
iron in lost foam casting and found that the influence of vacuum conditions on the filling
process was greater than that on the solidification process, and the microstructure of the
thin-wall region of the casting was more sensitive to the influence of vacuum conditions.
Wu Guohua et al. [24] studied the effect of vacuum degree on the porosity of aluminum
alloy cast by lost foam casting. These studies show that lower negative pressure is beneficial
in reducing the porosity of aluminum alloy casting.

In this experiment, the method of preparing composite materials by lost foam casting
was used for reference [21,25,26], and the process of suspension casting and lost foam cast-
ing was combined. With the help of the foam, the suspension agent could be more evenly
distributed in the casting, which could refine the microstructure of cast iron and improve
the mechanical properties such as hardness and wear resistance of the material [27–29].
Liu Gensheng et al. [27] studied the effect of adding 89%Cr-Fe as a suspension agent of
lost foam casting low chromium white cast iron on its performance and found that the
matrix microstructure changed from pearlite to sortenite and tristenite and the pearlite
sheet spacing decreased. With the increase of the Cr/C ratio, the carbide type changes from
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M3C to M7C3, and the wear resistance is the best when the addition amount is 2.0–2.5 wt%,
which is 35% higher than that of the conventional lost foam casting process.

At present, although the simulation of the casting filling and solidification process
using large-scale commercial software such as ProCAST has been relatively mature [30–34],
the lost foam suspension casting technology has been widely used in the development and
production of various types of wear-resistant and heat-resistant iron and steel castings and
has achieved good results [28,29]. However, there is no report on the numerical simulation
of lost foam suspension casting. In this experiment, the numerical simulation method was
introduced into the research process of lost foam suspension casting and the filling and
solidification characteristics of hypereutectic high-chromium cast iron were simulated and
analyzed, providing reference data for the popularization and application of hypereutectic
high-chromium cast iron.

2. Mathematical Model

The flow process of casting metal filling includes the energy loss of the liquid metal
itself and the flow and solidification process of the liquid metal under non-constant temper-
ature conditions [35,36]. The filling flow process of liquid metal follows three conservation
laws: mass conservation, momentum conservation and energy conservation. The continuity
equation, momentum equation (Navier–Stokes equation), volume function equation and
the energy equation are usually used to describe this process, as shown in Formulas (1)–(4).
The actual pouring process of liquid metal is very complicated because of the complex and
diverse design structure of the pouring system. The turbulent flow factors of liquid metal
make the filling mostly turbulent, so the calculation of turbulent flow treatment needs to be
introduced in the simulation process. At present, the numerical simulation of the casting
mold filling process mostly adopts the SOLA-VOF method. SOLA is an iterative method
to solve the velocity field-pressure field, and VOF is a method to deal with free surfaces
(short for volume function), as shown in Formulas (5)–(7).

Mass conservation equation:

D =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)

Momentum conservation equation (N–S equation):

ρ
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∂t

+ u
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Here, D is the degree of dispersion and u, v and w are the components (m/s) of the
velocity vector in the X, Y and Z directions of the coordinate system. P is the pressure per
unit density (Pa). µ is the kinematic viscosity (m2/s). g is the gravitational acceleration
(m/s2). ∇2 is the Laplace operator. ρ is the metal fluid density (kg/m3).

Energy equation:
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(
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∂
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(
k

∂T
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)
+ S (5)

When the volume function method is used to track the movement of the free surface,
it is also necessary to solve the F-function equation. When the F-value is one, the grid is
in a full state and there is no free surface; when the F-value is zero, the grid is empty and
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there is no free surface; when the F-value is between zero and one, the grid is semi-full and
there is a free interface in the grid. F function equation:

∂f
∂t

+ u
∂f
∂x

+ v
∂f
∂y

+ w
∂f
∂z

= 0 (6)

The reasonable amount of suspension agent added in suspension casting can be
calculated according to the following formula [37]:

S = 100 •
t1

(
1− 0.0144 C

√
t1

R

)
− t2 + 39

t2
(7)

Here, t1 is the pouring temperature and t2 is the liquidus temperature.

3. Experimental Method
3.1. Three-Dimensional Modeling and Mesh Division

In order to reduce the calculation time and improve the calculation efficiency in the
process of studying the characteristics of the lost foam suspension casting technology by
using the simulation method, a simple cuboid ingot was selected as the experimental
research object. Creo 4.0 software was used to model castings, suspensions and pouring
systems. The suspensions were distributed evenly in cuboid castings with a metal ball
2 mm in diameter. Both the size of the suspension agent and the size of the mesh division
are very important. In actual production, the size of the suspension agent is usually between
0.5–2.5 mm. If the size is too small, a finer mesh will be needed in mesh division to slow
down the calculation speed; if the size is too large, the performance improvement effect in
actual production will be poor. The size of the casting is 100 mm × 50 mm × 32.5 mm, and
the size of the mold is 140 mm × 125 mm × 58 mm. The bottom casting system design is
adopted. The assembly is imported into the MeshCAST module in ProCAST 14.5 software
for verification, generation and repair of the surface mesh and generation and inspection of
the body mesh. The meshing model is shown in Figure 1, in which there is a transitional
area of mesh size between the body mesh of the suspension agent and the casting, as shown
in Figure 2.
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3.2. Material Selection

In this experiment, 35Cr-4C hypereutectic high-chromium cast iron was used, which
has high hardness and excellent wear resistance. The chemical composition of hypereutectic
high-chromium cast iron is shown in Table 1 and its material properties were calculated
by ProCAST.

Table 1. Chemical composition of hypereutectic high-chromium cast iron (mass fraction, wt%).

C Cr Mo Mn Si Fe

4 35 1 0.6 0.8 Bal.

3.3. Simulation Parameter Settings

Simulation parameters are the basis for the numerical simulation process, and the
reliability of the simulation results depends on the rationality of the selection of simulation
parameters. ProCAST 14.5 software was innovatively used in this experiment to study
the process characteristics of the lost foam suspension casting, so the setting of simulation
parameters and boundary conditions was very important. The key simulation parameters
in lost foam suspension casting included pouring temperature, pouring speed, negative
pressure, type of suspension agent, addition amount of suspension agent and particle size
of suspension agent. This experiment focused on the influence of pouring temperature,
negative pressure and the amount of suspension agent on the process and process defects.

The initial and boundary conditions were set as follows: The liquid metal temperature
(that is, the initial temperature set in the pouring cup) was the pouring temperature (1480 ◦C,
1540 ◦C and 1600 ◦C). TiFe particles with a diameter of 2 mm were used as the suspension
agent. The casting material was sand permeable foam specifcally for lost mold casting in
ProCAST. The casting and runner were made of foam material and the sprue cup was set as
alloy. The initial temperature of the foam material, mold and suspension agent should be
25 ◦C. The heat transfer coefficient between the mold and the liquid metal was 400 W/m2·K,
and the heat transfer coefficient between the liquid metal and the suspension agent was
2000 W/m2·K. In the actual casting process, the heat transfer coefficient should vary with
time, but in this experiment, the heat transfer coefficient was simplified to a constant value
for the convenience of the research. The outside of the mold and gate were set to air cooling
conditions, and the negative pressure was set by creating a pressure difference between
the outside of the mold and the outside of the gate. The negative pressure values could be
0.04 MPa and 0.06 MPa. The casting speed was set to 2 kg/s.

It is necessary to pay attention to the special situation of interface heat transfer setting
in the simulation parameter setting of lost die casting. EQUIV (equivalent type) is usually
used in the heat exchange process between two identical materials, where the two interface
units share a common node between the interface and there is a continuous temperature
field at the interface. In this experiment, although the casting system and casting were set
as alloy and foam respectively, with different material types, in order to ensure that the real
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situation of heat exchange between liquid metal and foam materials could be simulated,
the interface between the two was usually set as EQUIV type, so that the temperature field
during simulation was continuous.

4. Results and Discussions
4.1. Shrinkage Porosity Simulation

The solidus method, critical solid fraction method, temperature gradient method and
Niyama(G/

√
R)method were proposed to effectively predict casting defects generated

during the solidification [38]. In this experiment, the Niyama(G/
√

R) method of ProCAST
software was used to predict the shrinkage and porosity in castings. By comparing the
results of different negative pressure, casting temperature and the amount of suspension
agent, the optimal process parameters were selected for the subsequent analysis of the
filling and solidification process.

The role of vacuum-negative pressure is to fix the dry sand in the process of pouring
and solidification and to form an exhaust cycle, so that the gas generated by foam pyrolysis
and gasification during the pouring process is discharged to the outside of the mold,
thereby reducing the casting defects. Zhao Zewen et al. [39] found through an orthogonal
experiment that in the lost foam casting process of cast iron with a bottom casting system,
the negative pressure had a greater impact on the shrinkage and porosity results than the
pouring temperature. According to this conclusion, the influence of negative pressure on
the results of porosity and porosity reduction was given priority in this experiment.

In this experiment, the results of shrinkage porosity under the negative pressure of
0.04 MPa and 0.06 MPa were compared, as shown in Figure 3a,b. It can be found from
the results that a certain size of porosity and shrinkage holes will be produced at each
suspension agent particle, but these porosity and shrinkage holes are very small or even
negligible in the actual production. It is speculated that the large shrinkage and porosity of
the suspension agent in the simulation software is because the simulation software cannot
take into account the exchange of metal materials in different regions. Without considering
the shrinkage porosity at the suspension agent, the shrinkage porosity of the casting with a
vacuum degree of 0.06 MPa (0.0008 cm3) is significantly smaller than that of the casting
with a vacuum degree of 0.04 MPa (0.0085 cm3). Appropriately increasing the negative
pressure (from 0.02 MPa to 0.05 MPa) can effectively eliminate dimensional deformation,
box collapse, slag inclusion, sand fusion and other defects of castings, shorten casting time
and improve casting quality [40].
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Figure 3. Effect of negative pressure on shrinkage porosity of castings: (a) negative pressure is
0.04 MPa; (b) negative pressure is 0.06 MPa.

The pouring temperature of the lost foam suspension casting will also affect the
shrinkage and porosity results. Appropriately increasing the pouring temperature will
help improve the liquid metal flow, but too high a pouring temperature will increase the
liquid shrinkage of the casting and the volume of shrinkage and porosity formed inside the
casting [41]. The casting temperature of hypereutectic high-chromium cast iron is generally
about 1400 ◦C, considering that the casting temperature of lost foam castings is generally
about 80 ◦C higher than that of ordinary sand casting, and the presence of a suspension
agent will hinder the flow of the liquid metal, so 1480 ◦C, 1540 ◦C and 1600 ◦C were selected
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in this experiment. When other conditions are the same, the shrinkage porosity is the lowest
when the pouring temperature is 1540 ◦C.

In this experiment, 0.5%, 0.75% and 1% of suspension additives were selected for
discussion. By comparing the results of shrinkage porosity, it was found that in the range of
0.5–1%, the larger the amount of suspension agent added, the lower the shrinkage porosity.
When the amount of suspension agent added reaches 1%, the shrinkage porosity reaches
3 × 10−5 cm3, which can be said that the shrinkage porosity of simple cuboid castings is
almost eliminated.

In summary, the optimal process parameters within the scope of this experiment are a
negative pressure of 0.06 MPa, a pouring temperature of 1540 ◦C and a suspension additive
amount of 1%, so subsequent studies are based on the model of optimal process parameters.

4.2. Filling Characteristics

The filling process of lost foam suspension casting is similar to that of lost foam casting.
When no suspension agent is added, the casting filling time is 0.87 s, and when the addition
amount of the suspension agent is 1%, the casting filling time is 0.95 s. Since the suspension
agent almost does not melt during the filling process (as shown in Figure 4), the suspension
agent plays a certain role in obstructing the flow of the liquid metal, so the time is longer.
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After encountering high-temperature liquid metal, the foam decomposes and vapor-
izes, forming an air gap layer between the foam and the liquid metal. Researchers have
used the cold quenching method, high-speed photography method and the electrode con-
tact method to observe the flow patterns of different castings in lost foam casting [36,42].
For lost foam casting, the pyrolysis process of foam is the control link of the casting mold
filling process and its essence is the reverse pressure resistance of pyrolysis gas to the liquid
metal flow [43]. As a result, the filling process of the lost foam casting is different from
that of ordinary sand casting. The liquid metal usually enters the casting cavity from the
inner runner and fills forward in a radial arc, replacing the foam pattern layer by layer,
and finally filling to the farthest part from the inner gate [44]. Under the parameters of
this experiment, the thickness of the air gap layer is about 0.25 cm, and the gas pressure
of the air gap layer is about 4.5 bar. During the filling process of the liquid metal, the
foam stably advances until the filling is complete, as shown in Figure 5. It can be observed
through the movement process of the air gap layer that the liquid metal filling is smooth
and advances from the gate in a circular arc with decreasing curvature. The presence of
the suspending agent hinders the liquid metal filling, but due to the uniform distribution
of the suspending agent in the cavity of the casting, there is no obvious influence on the
overall shape of the liquid metal filling. The filling process is smooth until the end, and
there is no backflow caused by the impact of liquid metal casting, which can effectively
avoid the uneven distribution of the suspending agent in the actual production process.
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Figure 5. Advancing process of air gap layer during mold filling: (a) mold filling to 35%; (b) mold
filling to 50%; (c) mold filling to 70%.

From the temperature field results of the overall observation of this model filling
process, as shown in Figure 6, there is a color fluctuation of the flowing metal front, which
indicates that the high-temperature liquid metal is pyrolyzing the foam material. Although
the temperature of the liquid metal front of the filling process fluctuates, it has always had
a high temperature and good fluidity, so that the foam pattern can be fully decomposed, no
casting defects such as slag inclusion and wrinkled skin are produced and the casting can
be smoothly formed. The filling time of the casting to 30% is 0.81 s. It takes 0.86 s for the
filling to reach 60% and the filling ends at 0.95 s. The overall filling process is slow at first,
then fast and then slow, which also conforms to the filling characteristics of the bottom
pouring system [39,45]. The reason for the slow start is that at the beginning of pouring, the
temperature of the liquid metal is high and the air volume is large at the moment of foam
decomposition, but the exhaust capacity of dry sand is limited, resulting in an increase in
the back pressure of gas accumulation at the front end of the filling mold, which further
affects the filling mold. At the initial stage of filling, the high temperature liquid metal
drops rapidly after encountering the suspension agent, which improves the excessive foam
gas generated by the high temperature liquid metal to a certain extent and improves the
filling ability of the liquid metal. However, after the temperature of the liquid metal is
reduced, the viscosity will also have a certain increase, and the filling ability will be weak
from this point of view. Therefore, the addition of the suspension agent did not change the
phenomenon of slow filling in the early stage. In the subsequent filling stage, the chilling
effect of the suspension agent, the gas generation of the foam and the exhaust effect of the
dry sand gradually reached a balance. With the decrease of liquid metal temperature, the
filling capacity was improved. The final stage of the filling time was longer because the
liquid metal reached the place that needs to be filled far away and the heat was lost, making
the filling ability weak. The results show that the filling flow was stable and spatter-free.
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Figure 6. Temperature field results of filling process: (a) mold filling to 30%; (b) mold filling to 60%.

As shown in Figure 7, the Voids result shows that no foam material is in suspension
surrounded by the liquid metal, the material is decomposed completely and can be dis-
charged in time and there is no residual foam, so no defects such as slag inclusion and
porosity will be formed.
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Figure 7. Voids result in the mold-filling process.

The temperature curves of the filling and solidification process at the entrance of the
inner gate (Point 1) and the farthest part of the casting from the gate, that is, the last part of
the theoretical filling (Point 2), are respectively shown. The schematic diagram of the point
location is shown in Figure 8, and the temperature curve is shown in Figure 9. Compared
with the temperature curves of the two points, the liquid metal quickly rises to the highest
temperature after filling to the position, goes through the rapid cooling stage, enters the
latent heat release period and finally enters the stable cooling period. Point 1 is heated to
the highest temperature by 0.14 s, and Point 2 is heated to the highest temperature by 0.05 s.
Since Point 1 is at the lower side of the gate, high-temperature liquid metal will continue
to enter the casting, a large number of bubbles will crack, burn and constantly absorb
heat, resulting in temperature fluctuations at the liquid metal front and thus a relatively
slow temperature rise. As for Point 2, the foam pattern has been completely replaced by
liquid metal, the filling process ends, the front flow of liquid metal disappears and only the
internal flow of liquid metal exists. Because of the local energy imbalance, the temperature
fluctuation is small at this time and the temperature rises faster. In this experiment, due to
the small size of the casting and the short filling time, the liquid metal flows from Point 1
to Point 2 very quickly after entering the cavity, so there is only a slight difference in the
cooling curve.
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casting and most of the suspension agent usually melts in the actual production process 
of suspension casting. The Cut-off function was used to select the part whose temperature 
was lower than the liquidus temperature of TiFe (1417 °C), as shown in Figure 10. There 
were 388 metal spheres in the suspension, of which 41 were not completely melted. That 
is, 89.4% of the suspension was completely melted. It can be seen that the unmelted part 
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Figure 8. Schematic diagrams of the points taken at the entrance of the inner gate (Point 1), at the
furthest point of the casting from the inner gate (Point 2) and at the center of the casting (Point 4):
(a) three-dimensional schematic diagram of the location of the points taken; (b) schematic diagram of
the location of the points taken in the XY-plane.
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Figure 9. Temperature profiles at the entrance of the inner gate (Point 1) and at the furthest point of
the casting from the inner gate (Point 2): (a) overall temperature results; (b) temperature profiles near
high-temperature range.

4.3. Solidification Characteristics

The suspension agent keeps heating up and melting in the solidification stage of the
casting and most of the suspension agent usually melts in the actual production process of
suspension casting. The Cut-off function was used to select the part whose temperature
was lower than the liquidus temperature of TiFe (1417 ◦C), as shown in Figure 10. There
were 388 metal spheres in the suspension, of which 41 were not completely melted. That
is, 89.4% of the suspension was completely melted. It can be seen that the unmelted part
was concentrated at the edge of the casting. Due to the long filling distance of the liquid
metal and the short heating time of the suspension agent, the phenomenon of incomplete
melting was caused. At the same time, the diameter of 2 mm was relatively large, and the
suspension agent was not easy to melt to a certain extent.
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Figure 10. Unmelted part of the suspension agent.

By comparing the temperature field results of the model without the suspending
agent and the model with 1% suspending agent, it was found that the chilling effect of
the suspending agent exists but is not obvious. In this experiment, the geometric center
position of the casting was selected as the temperature measurement point (Point 3 and
Point 4) to compare the effect of the suspension agent. The location of the casting point
(Point 3) without adding the suspension agent is shown in Figure 11 and the temperature
curve at Point 3 and Point 4 is shown in Figure 12. It can be found from the tempera-
ture curve that the chilling effect of the suspension agent occurs within 0.44 s, the heat
absorption time is very short and the maximum temperature drop is 50 ◦C. In addition,
we studied the temperature field around the suspension agent. As shown in Figure 13,
the suspension agent had an obvious heat exchange with the surrounding liquid metal
during the heating and endothermic process, thus achieving the chilling effect. Zhi Xiaohui
et al. [19] studied the microstructural refinement of a cast hypereutectic Fe20Cr4C alloy
using a fluctuation method (suspension casting). With the treatment of 0.7% fluctuation,
there is a maximum temperature drop of about 37 ◦C. This experimental result is in general
agreement with the conclusion of the simulation. It is speculated that the cooling effect
of the suspension agent is not obvious due to the large particle size, small distribution
density and relatively insufficient addition amount. If the amount of suspension agent is
increased, the temperature of the alloy can be further reduced, the solidification rate can be
accelerated, the nucleation rate of the alloy can be increased and the growth of the primary
carbide can be hindered. In addition, any powder that is not fully melted can serve as
the heterogeneous nuclear point of the primary carbide, resulting in the refinement of the
final carbide.
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5. Conclusions

An innovative numerical simulation study on the lost foam suspension casting process
of hypereutectic high-chromium cast iron was carried out. ProCAST software was used
to observe the filling and solidification process of the simple cuboid ingot model, and the
following important results were obtained.

(1) Through the simulation results of shrinkage porosity, it was found that the optimal
process parameters within the study range were as follows: a negative pressure of 0.06
MPa, a pouring temperature of 1540 ◦C and 1% suspension agent.

(2) The addition of the suspension agent has an obstructive effect on the filling process
of the lost foam casting, and the filling time is about 9% longer than that without the
addition of the suspension agent.

(3) The pressure and thickness of the air gap layer remained stable during the process
of filling with liquid metal. When the bottom casting system was adopted, the filling
process was slow at first, then fast and then slow. The filling process was smooth and
without turbulence or splashing phenomenon.

(4) The suspension agent melted during the solidification process. When the amount
of TiFe was 1%, 89.4% of the suspension agent completely melted and the chilling effect
of the suspension agent occurred within 0.44 s, resulting in a relative supercooling degree
of about 50 ◦C for the liquid metal. It can be seen from the temperature curve that the
solidification rate of hypereutectic high-chromium cast iron had increased under the lost
foam suspension casting process. In order to further improve the chilling effect, it is
necessary to increase the amount of suspension agent.
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