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Abstract: In this study, a genetic algorithm-based laser beam (LB) path optimization method is
presented to improve laser-based additive manufacturing (LBAM). To emulate the LBAM process,
LB irradiation of a thin metal substrate is applied. The LB path generation is formulated as the
search for the optimal sequence of LB irradiation into the cells on the substrate that minimizes the
fitness function, which is composed of two components, i.e., thermal fitness and process fitness.
The thermal fitness is expressed by the average thermal gradient, and a simple thermal model is
developed to simulate the effects of laser-induced heat input on the temperature distribution in the
substrate. The process fitness regulates the suitability of the proposed LB path for the implementation
of the LBAM process. In addition to standardized tool paths (i.e., raster, spiral, etc.), novel LB
path generators are proposed to define the initial population of LB path solutions. To implement a
genetic algorithm-based LB path optimization, a framework is proposed, and custom initialization,
crossover, and mutation operators are developed for application in LBAM. The effectiveness of the
proposed approach is demonstrated through a simulation case study aiming to identify LB paths that
minimize the fitness function and thus provide more suitable LB path solutions with respect to the
defined fitness function. Compared with the traditional trial-and-error LB path formulations, the
proposed approach provides an improved and automated method for an efficient laser beam path
selection in LBAM.

Keywords: additive manufacturing; laser beam path; genetic algorithm; optimization

1. Introduction

Additive manufacturing (AM) has emerged as a swiftly advancing industrial paradigm,
revolutionizing diverse industries with innovative solutions and applications [1]. AM
empowers the creation of intricate, custom-designed components, and its digital-centric ap-
proach makes it one of the cutting-edge technologies of digital transformation. By directly
translating digital designs into physical objects, AM reduces traditional manufacturing
constraints and promotes innovation and flexibility. In addition, AM enables high material
efficiency while minimizing waste, as only the materials necessary for manufacturing are
used [2]. The minimal environmental footprint of this technology makes AM a sustainable,
green solution in the context of Industry 4.0 [3]. Among AM technologies, laser-based addi-
tive manufacturing (LBAM) has gained significant attention for its versatility in processing
a diverse range of materials, including metals, polymers, and ceramics. Notably, selective
laser melting (SLM) and direct laser deposition (DLD) are preeminent AM processes in-
volving the targeted melting and deposition of material layer by layer to construct intricate
three-dimensional (3D) structures [4,5]. SLM can be used to produce complex parts with
structures in the 100 µm range, while DED, with its high build rate and structures in the
millimeter range, is used for larger, near-net-shaped components [3].

However, achieving the desired quality, accuracy, and mechanical properties in LBAM
presents a challenge, predominantly due to the intricate interplay of material character-
istics, process parameters, and part geometry. Common challenges of SLM and DLD are
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the demanding optimization of complex process parameters to reduce the porosity of
the manufactured material, microstructural inconsistency, and dimensional inaccuracy.
The latter, in addition to process intrinsic inaccuracies, results from residual stresses and
the deformation of the parts, which are a consequence of suboptimal heat management.
Residual stresses inherently arise during the complex thermo-mechanical phenomena due
to the metal powder melting and solidification process, which involves rapid heating and
cooling rates and large temperature gradients [6]. Therefore, one of the key challenges
in laser-based AM revolves around controlling temperature distribution in the fabricated
part during the deposition process. The laser-induced heat input can lead to nonuniform
temperature distributions within the built part, resulting in undesirable effects such as
residual stresses, deformations, and reduced mechanical properties of the final 3D-printed
part [7,8]. To illustrate this effect, a simple experimental demonstration, formulated as an
experimental motivation for this research, is provided in the next section.

For achieving a more homogeneous build part and improving the quality and accuracy
of 3D metal printing, the temperature distribution in the printed part during the AM process
is critical. This has spurred the emergence of novel machine learning-based methodologies
aimed at addressing these complexities [9,10]. Robinson et al. [11] and Valente et al. [12]
investigated the influence of scan strategy on residual stress, surface topography, and
microstructure in AM of Ti-6Al-4V, providing essential insights into the complexities
associated with laser scanning. Qi et al. [9] and Jin et al. [13] highlighted the application of
neural network-based machine learning in AM. Wang et al. [10] provided a comprehensive
review of the state-of-the-art machine learning applications, indicating a paradigm shift
toward data-driven methodologies for optimizing AM processes.

Thermo-mechanical (TM) simulations, based on finite element (FE) numerical model-
ing, play a crucial role in understanding and optimizing the laser beam (LB) path in AM.
Ren et al. [14] investigated various thermo-mechanical analyses for optimized path plan-
ning in LBAM processes. Comprehensive thermo-mechanical analyses, as demonstrated
by Ren et al. [15], provide insights into the dynamic interplay between temperature and
strain–stress distribution during the AM process. Results obtained using computer simula-
tion based on a numerical model of the AM process contribute significantly to predicting
and mitigating challenges such as residual stresses, distortion, and material defects [16].
The ability to simulate and analyze the thermo-mechanical behavior of materials during
laser exposure provides the basis for the identification of optimal scanning patterns.

Nassehi et al. [17] introduced evolutionary algorithms for the generation and optimiza-
tion of tool paths, showcasing their efficacy in exploring vast solution spaces. Various tool
path planning approaches have been proposed to optimize the temperature properties of
the build part [14,15,18], to predict the temperatures with an artificial neural network [19],
and to introduce the optimized tool path into the AM process [20–22]. Zhou et al. used
an evolutionary method for optimizing thermo-mechanical properties in wire-arc AM by
generating optimized continuous tool paths [23]. Jia et al. [24] explored the influence of
different scanning strategies on the thermo-mechanical characteristics of Ti-6Al-4V parts
fabricated using SLM. Computer simulation and experimental tests were employed, and
the results showed good consistency in the deformation characteristics between the numer-
ical prediction and experimental observation. Recent advancements include the integration
of deep learning for intelligent process monitoring [25] and reinforcement learning for tool-
path design [26]. Boissier et al. [27] employed shape optimization tools for scanning path
optimization, showcasing diverse strategies to enhance AM processes. Boissier et al. [28]
also explored time-dependent scanning path optimization, introducing a dynamic dimen-
sion to the powder bed fusion additive manufacturing process. While significant progress
has been made in the ongoing evolution of AM technologies, challenges persist in the
domain of LB path optimization. Sun et al. [21] investigated novel patterns to reduce resid-
ual stress, addressing a critical challenge in achieving optimal part quality. Goh et al. [29]
provided a comprehensive review of the challenges and potential applications of machine
learning in 3D printing.
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This study addresses the challenge of improving the dimensional accuracy of parts
due to LBAM process-induced part distortion by providing a general framework for the
optimization of the LB path. The proposed approach involves the development of an
evolutionary optimization framework using a customized genetic algorithm (GA), which
resembles and builds upon a previous study using an evolutional method in wire-arc
additive manufacturing [23]. While continuous tool paths suitable for wire-arc AM are
considered in [23], this study provides a framework where a process fitness regulates
the degree of desired path continuity and therefore can be adapted to different LBAM
processes. To demonstrate the proposed GA-based approach, fabrication of a single layer
with an LBAM process was simulated using LB irradiation of a thin metal substrate. A
simple thermal model was applied to simulate the effects of laser-induced heat input on the
temperature distribution within the substrate during the LB irradiation. By using genetic
algorithms for optimization, the limitations of traditional, time-consuming, trial-and-error
tool-path formulations are overcome. The proposed approach provides an automated
and efficient solution for finding an optimal LB path, leading to improved temperature
distribution and increased suitability for the LBAM process implementation.

2. Experimental Motivation

The following experiment, shown in Figure 1, was conducted to demonstrate the
motivation for this study. To mimic the fabrication of the single layer, a thin metal plate with
dimensions of 120 × 120 mm and a thickness of 1.5 mm was exposed to laser irradiation on
the LASERTEC 30 SLM machine (DMG MORI Additive Ltd, Bielefeld, Germany) without
the presence of the powder material. The irradiation area of 90 mm × 90 mm on the
plates was divided into Nc × Nc = 20 × 20 cells of 4.5 mm × 4.5 mm. The order of
laser irradiation into the cells followed different LB path strategies, such as spiral-out,
zigzag, and spiral-in, and intra-cell scanning was performed with a zigzag strategy. All the
plates received the same amount of laser irradiation, yet in different orders of visited cells
representing the LB path. Figure 1 shows: (a) the experimental setup with a plate fixed in
the SLM machine, (b) an example of the processed plate with visible cells that received laser
irradiation, (c) a metal plate before laser irradiation, and (d) a deformed metal plate after
laser irradiation. The metal plate properties and dimensions are summarized in Table 1,
and the laser parameters used in the experiments are shown in Table 2.

After the irradiation of the metal plate, using the selected LB paths (spiral-out, zigzag,
spiral-in) as shown in Figure 2 (top), the plates were removed from the SLM machine and
measured for mechanical deformation using the digital image correlation (DIC) system.
The results of DIC measurement, after postprocessing and filtering out the plate pre-
deformation, revealed very different deformation shapes caused by the different beam
paths, as shown in Figure 2 (bottom).

We can observe considerable differences in the deformation shapes of the plates
irradiated with spiral-in and spiral-out LB paths, deforming in opposite directions. The
zigzag LB path results in less deformation and a smoother plate surface. The presented
results of the significant influence of the LB path on the resulting thermally induced
deformation of the plates provide the motivation to propose in this study a methodology
for the optimization of LB paths.

Table 1. Metal plate properties and dimensions.

Property Value

Material AISI 304
Dimensions 120 mm × 120 mm
Thickness 1.5 mm

Clamping rail width 10 mm
Active irradiation area 90 mm × 90 mm

Partitioning of the irradiation area 20 × 20 square cells
Area of each cell 4.5 × 4.5 mm



Metals 2024, 14, 410 4 of 17

Metals 2024, 14, 410 4 of 19 
 

 

Table 2. Laser parameters. 

Property Value 

Laser power  200 W 

Scanning speed 1.2 m/s 

Beam diameter 80 µm 

Intra-cell scanning strategy zigzag 

Hatch distance 0.1 mm 

 

  
(a) (b) 

  
(c) (d) 

Figure 1. (a) Experimental setup for examining the influence of the LB path on the metal plate 

deformation; (b) processed plate with visible cells that received laser irradiation; (c) metal plate 

before laser irradiation; (d) deformed metal plate after laser irradiation. 

After the irradiation of the metal plate, using the selected LB paths (spiral-out, zigzag, 

spiral-in) as shown in Figure 2 (top), the plates were removed from the SLM machine and 

measured for mechanical deformation using the digital image correlation (DIC) system. 

The results of DIC measurement, after postprocessing and filtering out the plate pre-

deformation, revealed very different deformation shapes caused by the different beam 

paths, as shown in Figure 2 (bottom). 

Figure 1. (a) Experimental setup for examining the influence of the LB path on the metal plate
deformation; (b) processed plate with visible cells that received laser irradiation; (c) metal plate before
laser irradiation; (d) deformed metal plate after laser irradiation.

Table 2. Laser parameters.

Property Value

Laser power 200 W
Scanning speed 1.2 m/s
Beam diameter 80 µm

Intra-cell scanning strategy zigzag
Hatch distance 0.1 mm
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3. Methods
3.1. Overview of the Methods and Optimization Approach

This research is focused on laser-based additive manufacturing. The study demon-
strates the optimization of LB path solutions in laser-based AM with the aim of achieving
thermally more homogeneous properties, which in turn reduces the deformation of the
fabricated part. The study considers only single-layer fabrication; however, the extension
to multilayer deposition is possible by taking into account the heat distribution of the
previous layers. For a simplified emulation of the laser-based AM process, the simulation
setup includes a substrate (metal plate), which is irradiated by the LB. Due to the effects of
the laser-induced heat input, the substrate may be subject to undesirable deformation. In
this study, a simple thermal model was developed to simulate the effect of laser irradiation.
The model does not consider the fusion of a powder layer or its direct deposition and
melting by a laser and provides only the thermal response of the substrate due to the
laser-induced heat input. As such, the thermal model provides a simplified simulation
tool used in a defined fitness function, which is needed for the implementation of genetic
algorithm-based optimization. The fitness function is designed to minimize the average
thermal gradient on the substrate during the laser irradiation process and to take into
account the suitability of the AM process-specific limitations of the tool path. The following
sections explain the formulation of the tool path and the thermal model, and then, the
optimization approach is described in more detail. The latter includes the development of
an optimizer based on a genetic algorithm with custom operators for the initialization of
the population, crossover, and mutation.

3.2. Tool Path Formulation

The substrate, i.e., the build plate in the case of LBAM, is partitioned into a grid of
Nc × Nc cells (C), whereby each cell C represents a small unit as a sub-grid of Ns × Ns
sub-cells (S). The physical dimensions of the cells C and S are determined by the parameters
of the LBAM process used; e.g., when using the SLM method, each sub-cell S in the Ns × Ns
cell has dimensions of approximately 0.1 mm × 0.1 mm (hatch distance in Table 2). The
internal scanning of the individual cells C (i.e., the intra-cell scanning path) is determined
by one of the standard scanning patterns (e.g., raster or zigzag). The size of cells C should
be small with respect to the size of the processed area covered by the Nc × Nc cells so
that the LB path optimization problem can be formulated in terms of the selection of a
proper sequence within the set of Nc × Nc cells C and not in terms of optimizing the
individual cells C.

An example of presenting an LB path in Nc = 5 cell C topology with Ns = 4 sub-cell
S topology is shown in Figure 3. Each cell C is scanned internally with a zigzag pattern
(Figure 3 left), and the order of cells C from 1 to 25 (Figure 3 center) determines the spiral-in
irradiation sequence of the top-level topology, shown in Figure 3 (right), where black and
red dots indicate the starting and ending cells. By keeping the dimension of the intra-cell
topology small, the optimization problem can be formulated as the search for the optimal
sequence of Nc × Nc cell irradiation that minimizes the fitness function.
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Figure 3. An example of a spiral-in LB path in Nc × Nc = 5 × 5 cell topology with Ns × Ns = 4 × 4
intra-cell topology, represented by a zigzag intra-cell LB scanning pattern (left), path matrix (middle),
and spiral-in LB path (right).
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3.2.1. Matrix Path Representation

As presented above, the basic format of the LB path representation is a matrix of the
same size (Nc × Nc) as the substrate (i.e., the build plate), with elements of the matrix
representing the subsequent order of cells C on the build plate. For the example in Figure 3,
the LB path p1 is represented by the matrix as follows:

p1 =


1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

. (1)

However, to provide the description of an LB path for an arbitrary geometry of the
layer shapes, this study introduces the design ‘mask’ operator, which defines which cells of
the build plate are to be scanned with a selected scanning pattern and which cells remain
unscanned. The mask operator is defined as the matrix of the size (Nc × Nc) of the build
plate, with ones denoting scanned cells and zeros denoting unscanned cells. An example of
a simple ‘L’ mask and a possible LB path matrix p2 (LB path sequence contains available
cells only) can be expressed as follows:

mask =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
1 1 1 1 1

, p2 =


1 10 19 0 0
2 9 18 0 0
3 8 17 0 0
4 7 16 11 12
5 6 15 14 13

 (2)

The design mask operator, the path matrix, and the corresponding laser scanning path
are shown in Figure 4. In this example, the LB path consists of two segments (blue and red
lines), which together constitute the complete LB path.
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(Nc × Nc) = (5 × 5) build plate cell topology.

3.2.2. String Path Representation

For the manipulation of LB paths in a genetic algorithm, the LB paths must be repre-
sented by strings si, which is accomplished by the following transformation:

1. All the cells C (including the unscanned cells) in the path matrix are enumerated in
the sequential order r, enumerating the cells C in the top-down and left-to-right order,
as follows:

r =


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 (3)
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2. The LB path representation is then expressed as the string of sequentially visited cells
(according to the order matrix r). For the examples presented by Equations (1) and (2),
the LB paths p1 and p2 can be expressed as strings s1 and s2, as follows:

s1 = [1 2 3 4 5 10 15 20 25 24 23 22 21 16 11 6 7 8 9 14 19 18 17 12 13], (4)

s2 = [1 6 11 16 21 22 17 12 7 2 19 20 25 24 23 18 13 8 3]. (5)

Notice that the string s2 is shorter than s1 due to the design mask, which excludes
unscanned cells. The string representation si of an LB path is then applied in genetic
algorithm-based operators. Nevertheless, both representations, matrix pi and strings si, are
equal and can be converted from one to the other. In the case of a design mask with zero
elements, the conversion from a string into a matrix requires mask information and the
enumerating order matrix r.

3.3. Thermal Model

To determine the thermal response of the irradiated substrate and the corresponding
thermal fitness for the generated tool paths, a two-dimensional finite-volume heat conduc-
tion model of the LB irradiated substrate was formulated. The volume of the substrate was
divided into Nc × Nc control volumes. In each control volume, the conservation of energy
was satisfied:

ρc
dT
dt

=
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
+ S (6)

To keep the model simple, adiabatic boundary conditions, uniform temperature T in
the z direction, and constant properties of the AISI 304 substrate were assumed: density
ρ = 7900 kg/m3, specific heat c = 480 J/(kg K), and thermal conductivity k = 15 W/(m K) [30].
The choice of the substrate material (AISI 304) was motivated by the versatile applicability of
this cost-effective stainless-steel alloy known for its corrosion resistance, mechanical strength,
and ease of fabrication.

To emulate the LBAM process by LB irradiation of the substrate, a uniform volumetric
heat source S was applied to the control volumes according to the tool path. The model
was solved numerically using a tridiagonal matrix algorithm [31] with a fully implicit time
scheme, resulting in a time-dependent temperature field T(x, y, t). This thermal model is
applied in our simulations for the calculation of temperature gradients, which constitutes
the first part of the fitness function in the proposed optimization framework.

Figure 5 shows simulation examples for different LB paths (minNextTemp, spiral-out,
raster) in the (Nc × Nc) = (20 × 20) cell topology. The temperature distribution (Tt = 200 s)
at the end of the irradiation of the substrate with the LB paths is shown (bottom graphs)
and reveals that different LB paths result in different temperature distributions within the
substrate. The minNextTemp LB path is temperature optimized (explained in the next
section); namely, the next irradiated cell is always the one with the lowest temperature.
This reduces the temperature gradient within the substrate, which is also visible as a more
homogeneous temperature field. The spiral-out LB path results in a less homogeneous
temperature field at the end of the substrate irradiation, and the raster LB path accumulates
even more heat at the end of the laser beam irradiation of the substrate.
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Figure 5. Examples of simulated temperature distributions for different LB paths (minNextTemp,
spiral-out, raster) in the (Nc × Nc) = (20 × 20) cell-substrate topology, at the end (Tt = 200 s) of the
laser beam irradiation of the substrate.

3.4. Genetic Algorithm

The genetic algorithm (GA) provides a global optimization solver for smooth or non-
smooth optimization problems with any type of constraint [32]. It is a stochastic, population-
based algorithm that searches randomly by crossover and mutation among population
members. As schematically shown in Figure 6, the algorithm starts by creating an initial
population of solutions, and then this population of individual solutions is repeatedly
modified by crossover and mutation operators. At each step, the genetic algorithm selects
individuals from the current population to be parents and uses them to produce children
for the next generation. The fitness of individual solutions is evaluated by the fitness
function. Over successive generations, the population evolves toward an optimal solution.
GA-based methods have been proposed for solving various challenges in AM [13,33–35]. In
this study, customized GA operators for LB path optimization are proposed and described
in the following sections.
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3.4.1. Initialization

For the initial population of LB path solutions, in addition to a set of standardized LB
paths (such as raster, zigzag, spiral, etc.), we propose specialized LB paths defined by a
stochastic-based search generator, denoted as ‘rand-worm’, and two temperature-optimized
LB path generators.

3.4.2. Rand-Worm Path Generator

This stochastic-based LB path generator is designed to search for random and prefer-
ably long continuous paths within the available path design topology (determined by the
design mask). The algorithm starts from a random starting cell and then tries to (randomly)
progress in various directions to continue the LB path segment. This process is iterated and
restarted several times, and the longest obtained LB path segment is saved. The algorithm
then moves to the next (randomly chosen) available cell and repeats the path search for the
next segment. The algorithm ends when all available cells have been visited and included
in the LB path. The algorithm can be summarized as follows:

A. Repeat for Nrw iterations (e.g., Nrw = 100)

1. Start a new segment by randomly choosing an available starting cell (available
within the design mask and not occupied).

i. Add this cell to the LB path segment.
ii. Randomly choose a direction (up, down, left, right).
iii. If a cell in the chosen direction is available, move to this cell and add it

to the LB path segment.
iv. Continue with step ii until the max number of tries is exhausted.

2. If the LB path is stuck, start a new segment (go to step 1).
3. Exit if all cells (within the design mask) are occupied.

B. Finally, select from the Nrw generated solutions the best rand-worm solution based
on the process fitness evaluation (this is optional but guarantees solutions with better
process fitness).

The algorithm for stochastic-based LB path generation uses a variant of a random
walk and tries to fill the empty cells defined by the design mask on the grid of Nc × Nc
cells C while avoiding blocking itself. The algorithm optimizes the LB path by evaluating
multiple random walks and keeping the best one.

3.4.3. Temperature-Optimized LB Path Generators

These two generators are aimed at optimizing thermal fitness. Based on the thermal
model (Section 3.3) to simulate the thermal properties of the substrate during LB irradiation,
the two LB path generators are defined with respect to the following criteria:

1. MinNextTemp generator—in each step of the LB path, this generator finds the available
cell that has the minimal temperature (among all cells), and this cell is chosen as the
next cell in the LB path.

2. MedianNextTemp generator—in each step of the LB path, this generator finds the
available cell that has the most average (median) temperature (among all cells), and
this cell is chosen as the next cell in the LB path.

These two generators usually yield very dispersed solutions where the LB path is
composed of mutually disconnected cells, which raises a high penalty within the process
fitness (due to the short lengths of LB path segments). Nevertheless, these two generators
provide a benchmark for thermal fitness by approximately minimizing the temperature
gradients and are therefore often the best solutions (concerning thermal fitness) among the
initial population of LB path solutions.
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3.4.4. Initialization Examples

Standard tool-path generators can be applied in various orientations, which is relevant
for asymmetric printing designs. The initial population can be populated with an arbitrary
number of additional stochastic rand-worm solutions. The composition of the initial
population thus consists of 12 standard tool path solutions, 2 temperature-optimized
solutions, and additional rand-worm solutions (for example, 10 more rand-worm solutions),
as follows:

• Raster (four orientations);
• Raster up-down (two orientations);
• Zigzag (four orientations);
• Spiral (two orientations, in and out);
• Temperature optimized (min, median);
• Rand-worm (arbitrary number of generated solutions).

Some examples of the initial population for the Nc × Nc = 20 × 20 cell substrate with
an asymmetrical ‘9’ design mask are shown in Figure 7. In the case of a symmetric design
mask, different raster or zigzag orientations do not provide different LB path solutions
(due to the symmetry of the design), but in the case of asymmetrical designs (as shown
in Figure 7), the different orientations provide different LB path solutions (in terms of
thermal properties). To show the progression of the LB path, the path is denoted with
blue for the first deposited segment, red for the last segment, and shades of purple for the
intermediate segments. For each segment, the black dot denotes the laser start, and the
red dot denotes the laser end, i.e., the end of the segment before the LB moves to the next
segment of the LB path.
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3.4.5. Fitness Function

The fitness function J in GA optimization is required to provide the evaluation of
LB path solutions. In this study, the fitness function is designed to minimize the average
thermal gradient during the laser irradiation process and to regulate the suitability of the
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tool path for the AM process implementation. Consequently, the fitness function J in this
study is composed of two components, namely:

1. Thermal fitness (Jthermal),
2. Process fitness (Jprocess).

The first component denotes the homogeneity of thermal distribution within the
substrate, which consequently influences the substrate and causes its deformation. This
fitness component is expressed as an average temperature gradient across the substrate
and is averaged over the irradiation, i.e., deposition time, as follows:

Jthermal = mean(grad(T)) (7)

Low values of Jthermal correspond to overall low thermal gradients in the substrate, i.e.,
the build part, which results in fewer undesirable effects such as residual stresses, defor-
mations, and reduced mechanical properties [7,8]. The second component of the fitness
function evaluates the properties of the particular LB path solutions with respect to the
AM process features and constraints. Although different LBAM processes have different
characteristics and requirements to be fulfilled for their optimal performance, usually the
following properties are desirable:

• A small number Nup of LB stops (with repositioning to a new location),
• A small number Nsingles of single cells (just one deposition cell without continuation),
• Long LB path segments, which can be expressed through statistics such as the following:

# LminSeg (length of the shortest segment),
# LmeanSeg (average length of segments).

These properties are combined in our study in the following process fitness:

Jprocess = (Nup + Nsingles) / (LminSeg + LmeanSeg) (8)

Low values of Jprocess are preferred to guarantee long, continuous LB paths. Finally,
the multi-objective fitness function is defined as a combination of thermal and process
fitness, as follows:

J = Jthermal + α Jprocess (9)

with weight α (in our study, set to α = 1) denoting the ratio between thermal and process
fitness. Based on the interpretation of the values of Jthermal and Jprocess, the lower J means
better overall performance of the LBAM process.

Examples of calculated values of the components of fitness functions for the previously
shown LB paths (minNextTemp, spiral-out, and raster) in the Nc × Nc = 20 × 20 cell
topology (Figure 5) are presented in Figure 8. The minNextTemp path provides the best
thermal fitness (overall minimal thermal gradient). However, due to many interruptions of
the LB path and changes in the location of the start of the consequent segment of the LB
path, it is not suitable for the LBAM process implementation and therefore raises a high
penalty in the process fitness. The spiral-out and raster paths are both excellent in terms of
process suitability, but the raster path is thermally more suitable and therefore wins the
overall fitness, with a value of J = 44.3.
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Figure 8. Examples of calculated component values Jthermal (left) and Jprocess (middle) of the fitness
function J (right) for the minNextTemp, spiral-out, and raster LB paths.

3.4.6. Crossover Operator

The crossover operator in a genetic algorithm is a fundamental genetic operator used
to combine genetic information from two parent solutions. It involves selecting specific
genetic material, i.e., segments from the LB paths (in string presentation) from each parent,
and exchanging it to create one or more offspring. This mimics the process of genetic
recombination in biological reproduction, where traits from both parents are passed on
to their offspring. The crossover operator helps the algorithm explore the solution space
by generating diverse offspring, potentially producing individuals with improved fitness
compared with their parents. In this study, the crossover operator performs the crossover
operation between two parents, represented as LB path strings s1 and s2, to generate a new
LB path offspring s3.

Figure 9 illustrates the crossover operation and shows an example of the crossover
between two parent LB paths on an Nc × Nc = 10 × 10 substrate with a full design mask
and the corresponding effective length of the path strings Lp = 100 (denoting the number
of available cells of the LB path strings). Original parents s1 and s2, representing the
spiral-in and zigzag LB paths, are shown in Figure 9a,b, and the crossover operation is
described below.
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The crossover operation involves the following steps:

1. Based on the GA selection policy, pick two parent paths s1 and s2 (Figure 9a,b).
2. Define the crossover point Ncross.
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• The effective length of the path strings Lp is calculated by taking into account the
mask (the number of mask elements that are set to one).

• The crossover point Ncross is randomly selected within the effective length of the
path strings. In Figure 9, the crossover point is selected as Ncross = 54.

3. Split the parent path strings at the crossover point Ncross.

• Parent path strings s1 and s2 are split at crossover point Ncross to generate two sub-
strings [s1a, s1b] and [s2a, s2b] (sub-strings s1a and s2b are shown in Figure 9c,d).

4. Crossover matching

• The crossover matching starts by taking the first substring of s1, namely s1a, and the
second substring of s2, namely s2b, to compose the initial offspring s3 = [s1a, s2b].

5. The next step is cleaning the offspring s3 of duplicate elements (except for the elements
corresponding to 0 in the mask).

• Case 1: If duplicates are found, they are progressively removed from the offspring
string s3 until no duplicate cells are found in s3 (clean substrings [s1a, s2b] are
shown in Figure 9e,f).

• Case 2: If no duplicates are found, the crossover operation is successful, and the
function returns the new offspring s3 (as illustrated in Figure 9g).

6. Finally, missing elements are filled by one of the available LB path generators (ran-
domly chosen) to generate the final (filled) offspring s3 (Figure 9h).

After the completed crossover operation, the child s3 may be selected also for a muta-
tion (as described below), and the new LB path solution will then be evaluated by the fitness
function and eventually, depending on the fitness value, propagated in the GA evolution.

3.4.7. Mutation Operator

The mutation operator is responsible for introducing diversity into the population
by randomly altering the genetic material of the selected individual (parent) to gen-
erate new offspring. The mutation implementation in this study is illustrated in Fig-
ure 10 (on an Nc × Nc = 10 × 10 substrate) and creates a new offspring s2 from a parent s1
as follows:

1. Select a parent path s1 (Figure 10a).
2. Randomly choose a mutation start point (Nmut1) and endpoint (Nmut2).
3. The mutation operator deletes the path within the selected interval [Nmut1, Nmut2]

(Figure 10b).
4. Finally, deleted elements are filled by one of the available and randomly chosen LB

path generators to create the filled child s2 (Figure 10c).
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Figure 10. In this example, the mutation operation is applied to a parent s1 (a) to obtain the mutated
child s2 (b), and then the LB path generator is applied to fill the missing cells and generate the
filled child s2 (c).

Thus, the mutation operator generates a new solution by randomly mutating a segment
of the parent and filling in the gaps. This is a common technique in genetic algorithms,
where small, random changes are made to a solution to explore the search space and
potentially find better solutions.
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4. Simulations and Results

This section presents a few thermal model simulation-based results of the operation
of the proposed LB path optimization framework. The same metal plate properties and
dimensions as summarized in Table 1 were used for the simulations, and the configuration
of the thermal model (laser parameters) and the parameters defining the behavior of the GA-
based optimization of the tool path are summarized in Table 3. Simulations were performed
with various mask designs on an Nc × Nc = 20 × 20 substrate of AISI 304 material (which
was also used in the case of the motivation experiment presented in Section 2).

The simulation results show the operation of the proposed path optimization frame-
work, taking into account the formulated fitness function J (Equation (7)). Therefore, these
results serve primarily as a basis and proof of concept for the optimization framework,
which will be combined in further research with more detailed thermo-mechanical simula-
tions, including material deformation and experimental validation of the simulation results.

Three simulation examples are presented in the following: the ‘Y’ mask, the ‘H’ mask,
and the ‘9’ mask. For each case, the resulting optimized path is shown. For the case of a
‘9’ mask, to illustrate the fitness evaluations, the overall fitness, thermal fitness, and process
fitness values are presented for the initial population and the final optimized path.

Table 3. Configuration of the thermal model (laser parameters) and the parameters defining the
behavior of GA-based optimization of the LB path.

Laser parameters

Laser power 200 W
Time for one-cell deposition 0.5 s

Percentage of time on each cell when the laser is active 100%

GA parameters

Number of generations 500
Max. number of stalled generations 100

Number of iterations of searching for the fittest rand-worm path 20
Number of crossover attempts (to obtain a valid path) 100
Number of mutation attempts (to obtain a valid path) 100

Optimized Paths

Based on the initial population of paths for the substrate Nc × Nc = 20 × 20 with
‘Y’, ‘H’, and ‘9’ masks, a simulated optimization was performed by using the thermal
model and the proposed genetic algorithm-based optimization framework. Examples of
the considered initial population for the ‘9’ mask are shown in Figure 7. The resulting
optimized paths of the simulated evolution for Y’, ‘H’, and ‘9’ masks are shown in Figure 11.
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Figure 11. Simulation results of optimizing the tool path for the ‘Y’, ‘H’, and ‘9’ masks on a 20 × 20
square cells substrate.

In all the cases, the GA-optimized LB paths improve the overall fitness J, which
amounts to 27.6, 22.1, and 24.1 for the ‘Y’, ‘H’, and ‘9’ masks, respectively. The fitness
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evaluations for the ‘9’ mask, for the complete initial population of 24 LB path solutions
and the optimized GA result, are shown in Figure 12. As evident in the considered case,
the resulting GA-optimized LB path provides the best overall fitness, J = 24.1, which is
composed of thermal fitness Jthermal = 23.2 and process fitness Jprocess = 0.972.
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Figure 12. Fitness evaluations (‘9’ mask on an Nc × Nc = 20 × 20 substrate) for a complete initial
population and the simulation result (GA), including the overall fitness J, thermal fitness Jthermal, and
process fitness Jprocess.

5. Conclusions

This study provides a framework for genetic algorithm-based optimization of LB paths
for improving laser-based additive manufacturing. The novelties of the proposed approach
include the ‘rand-worm’ generator for generating stochastic-based laser beam paths and the
development of custom GA operators (initialization, crossover, mutation) that are suited to
operate with laser beam paths. The laser paths are encoded in a matrix or string format, the
latter being appropriate for the GA optimization operations. The arbitrary path geometries
can be defined by using the mask operator. The specifics of the process can be addressed by
regulating the fitness function, which in this study consists of a thermal and process fitness.
Thus, the multi-objective fitness function can be adjusted to correspond to different process
requirements; therefore, this study provides a general GA-based optimization framework
suitable for further research of optimal tool path methods for additive manufacturing.

The study presents simulated results, based on applying a simple thermal mode to
simulate the effects of laser-induced heat input on the temperature distribution within the
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substrate. The LB path optimization is formulated as the search for the optimal sequence of
cell depositions that minimize the fitness function. In the presented cases, thermal fitness is
expressed as the average thermal gradient, and process fitness regulates the suitability of
the proposed LB path for the selected AM process implementation. The simulation results
(i.e., Figures 11 and 12) show that novel, innovative LB paths can be obtained with the
GA-based optimization framework, and the resulting LB paths improve the fitness function
and therefore represent potentially better solutions for the AM process.

The limitation of this study is the application of a simple thermal model, which does
not accurately describe the heat transfer in a physical workpiece and consequently cannot
provide predictions of realistic thermo-mechanical deformations caused by laser-based
heat input. Therefore, future research will include more advanced thermo-mechanical
simulation models, including temperature-dependent material properties, to provide a
more accurate estimation of the thermal and mechanical loads in the workpiece during the
laser-based AM process. This should provide a more accurate estimation of the expected
thermo-mechanical deformations of the fabricated part and a basis for focused experiments
with selected (and optimized) laser beam paths. The multi-objective fitness function for
future experimental validation of the proposed GA-based LB path optimization will be
extended to include, besides thermal gradients, various characteristics of the manufactured
parts, such as deformation, porosity, metallographic properties, and mechanical properties.

This research contributes to the advancement of AM with a focus on LBAM and
its applications in diverse industrial sectors by providing a flexible and automated GA-
based approach to optimizing LB paths. Compared with the traditional trial-and-error LB
path formulations, the proposed approach offers an improved and automated solution
for determining an efficient LB path in LBAM. Further research will therefore include
more realistic thermo-mechanical modeling and extensive experimental validation of the
proposed GA-based optimization approach based on different LBAM processes, including
SLM and DLD processes.
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