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Abstract: A surface modification through multiple microshot peening (MSP) was performed on
Mg–steel weldment. Application of MSP was found beneficial to the elimination of surface microde-
fects owing to severe plastic deformation induced by MSP. Moreover, MSP treatment transformed the
residual tensile stress of the weld surface into residual compressive stress, which was beneficial to
inhibit the initiation and propagation of surface microdefects. Strain strengthening and grain refining
were introduced into the shot peened joint, resulting in the notable increase in surface hardness
and tensile strength. Compared with an untreated joint, the tensile strength of optimized Mg/steel
weldment was markedly enhanced and raised 28% to 244 MPa, and fracture ultimately occurred in
the Mg alloy base material. Moreover, the refinement of weld grain induced by MSP treatment was
beneficial to strengthen the stress corrosion sensitivity of Mg/steel joints, while also promoting the
formation of a denser Mg(OH)2 passivation film on the weld surface and enhancing the corrosion
resistance of the joints.

Keywords: shot peening; Mg alloy; microstructure; residual stress; microhardness; mechanical property

1. Introduction

In recent years, the heterogeneous metal welding of Mg–steel has attracted growing
attention, considering the advantages of the two metals and the potential characteris-
tics of the welded parts. Similar to common welding of dissimilar metals, it is hard
to achieve reliable joining of Mg–steel due to the huge gaps in physical, chemical, and
metallurgical performances [1–3].

According to the previous studies, various surface strengthening treatments includ-
ing laser melting [4], thermal spraying [5], electrochemical deposition [6,7], and chemical
and physical vapor deposition [8–10] have been extensively investigated. Although some
achievements have been made, there are still some deficiencies. Shot peening (SP) tech-
nology is one of the preferred surface strengthening processes and draws broad attention
owing to its low cost and easy operation [11–15]. SP is a mechanical surface modification
technique dependent on the impact effect of projectiles on the component surface. During
the peening process, the moving projectile repeatedly hits the component surface and
material surface experiences severe plastic deformation, which eventually leads to strain
strengthening. Studies reveal that the SP technique has numerous advantages in terms
of fatigue, microstructure, corrosion, mechanical properties, and residual stress distribu-
tion [16–20]. For example, Zhang et al. [21] indicated that the surface shot peening treat-
ment of AZ80 Mg alloy can inhibit the initiation and propagation of surface cracks, refine
grains, induce compressive residual stresses, and produce a surface strain hardening effect.
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Xie et al. [22] studied the effects of SP on Ti6Al4V alloy and reported that the microhardness
increased noticeably and residual compressive stress was introduced into the weld surface,
which eventually led to a 27% improvement in mechanical properties. Kovaci et al. [23]
pointed out that a plastic deformed area was formed on AlSi 4140 steel after SP treatment,
with an expanded and refined microstructure. Electrochemical detection revealed that the
corrosion resistance of the material increased with the enhanced SP pressure owing to the
formation of refined grains and subgrains. Harada et al. [24] studied the influences of
projectile size on peening strengthening and reported that the reduction of projectile size
would increase the surface residual compressive stress and decrease the surface roughness.
For components with high surface quality requirements, the above treatment method is
expected to eliminate the negative effect of roughness on mechanical performances.

However, although excessive shot peening pressure can refine the weld structure, it
tends to produce defects such as cracks inside the joint. In the present study, shot peening
treatment with various passes was performed on Mg–steel weldment. The effects of the
SP pass on surface morphology, microstructure, stress, mechanical performances, and
corrosion features were investigated and discussed.

2. Materials and Experiment Procedures

Commercially available AZ41M alloy and galvanized steel were selected in this study.
The main chemical composition of as-received AZ41M plate was Al 4.1, Mn 0.3, Zn-0.9,
Si 0.1 (wt.%), and balanced Mg. The main chemical constituents of galvanized steel were
Mn 0.6, C 0.05, Si 0.05 (wt.%), and balanced Fe. The basic dimensions of the base material
were 60 mm × 60 mm × 1.5 mm. The filler material was AZ41 Mg-based alloy wire (Al 4.1,
Mn 0.3, Zn 0.9, Si 0.1 in wt.%, balanced Mg) measuring 1.0 mm in diameter. The sound
Mg–steel lap joint was obtained by a TIG welding unit (YC-300WP5HGN, PWST) with
optimal welding settings, i.e., current of 70A, voltage of 12 V, welding rate of 3.3 mm/s,
and wire feed rate of 6.7 mm/s. After the TIG welding process, all specimens were slightly
ground with SiC paper (2000 grit) and subsequently ultrasonically cleaned in ethyl alcohol
for 1 min.

The shot peening treatment of the specimen surface was conducted by a compressed
air shot blasting machine (6050B, Rongzhuo, Chongqing, China). Figure 1 illustrates the
schematic diagram of the shot peening process and strengthening mechanism. The peening
equipment mainly includes a control system, spray gun, sand bucket, and air compressor.
Spherical stainless steel projectiles were used in the shot peening treatment. Figure 1a
shows that numerous projectiles bombarded the specimen surface continuously under the
action of compressed air. Under the continuous impact of projectiles, a plastic deformation
layer appeared on the surface of the weld and it experienced high strain inside, as presented
in Figure 1b. Table 1 lists detailed parameters of the shot peening treatment. Several groups
of experiments with different shot peening passes were set up to explore the effect of MSP
intensity on the microstructure evolution and mechanical performance of Mg–steel samples,
as shown in Table 2.

Table 1. The main shot peening treatment parameters.

Parameters Value

Exit diameter of spray gun (mm) 4
Projectile diameter (mm) 0.8

Accelerating gas pressure (MPa) 0.15
Almen intensity (mm N) 0.05–0.25

Bombarding distance (mm) 15
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Figure 1. The schematic illustration of shot peening process (a) and strengthening mechanism (b). 
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After shot peening treatment, a series of samples for a tensile test and microstructure 
and microhardness analysis were cut from the center area of the weldment, as presented 
in Figure 2. A tensile testing machine (AG-X, SHIMADZU, Japan) was applied to reveal 
the joint strength with the tensile velocity of 1.5 mm/min. The surface morphology and 
weld microstructure were studied through an optical microscope (Axiovert 40 MAT, Ger-
many), transmission electron microscopy (TECNAI G2 F20, FEI, USA), and field emission 
scanning electron microscopy (JSM-7800F, JEOL, Japan). The microhardness distributions 
of the Mg/steel weld along the depth were measured by a Vickers hardness tester with the 
load of 50 g and duration of 15 s. Additionally, the residual stress distribution in the weld 
zone was measured by an X-ray stress detector with Cu-Ka radiation on the basis of the 
sin2Ψ principle. The surface roughness of the shot peening specimen was measured by the 
profile measurement method. Stress corrosion cracking tests were carried out on a slow 
strain rate tensile machine in 3.5 wt.% NaCl solution with a fixed strain rate of 2.2 × 10−5 
mm/s. 

 

Figure 1. The schematic illustration of shot peening process (a) and strengthening mechanism (b).

Table 2. Contrast experiment design with different shot peening passes.

Joint S1 S2 S3 S4 S5 S6

Shot peening pass 0 1 2 3 4 5
Almen intensity (mm N) 0 0.05 0.10 0.15 0.20 0.25

After shot peening treatment, a series of samples for a tensile test and microstructure
and microhardness analysis were cut from the center area of the weldment, as presented
in Figure 2. A tensile testing machine (AG-X, SHIMADZU, Osaka, Japan) was applied to
reveal the joint strength with the tensile velocity of 1.5 mm/min. The surface morphology
and weld microstructure were studied through an optical microscope (Axiovert 40 MAT,
Zeiss, Jena, Germany), transmission electron microscopy (TECNAI G2 F20, FEI, Hillsboro,
OR, USA), and field emission scanning electron microscopy (JSM-7800F, JEOL, Akishima
shi, Japan). The microhardness distributions of the Mg/steel weld along the depth were
measured by a Vickers hardness tester with the load of 50 g and duration of 15 s. Addi-
tionally, the residual stress distribution in the weld zone was measured by an X-ray stress
detector with Cu-Ka radiation on the basis of the sin2Ψ principle. The surface roughness
of the shot peening specimen was measured by the profile measurement method. Stress
corrosion cracking tests were carried out on a slow strain rate tensile machine in 3.5 wt.%
NaCl solution with a fixed strain rate of 2.2 × 10−5 mm/s.
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Figure 2. Sampling position of Mg–steel joint: I tensile test specimen, II specimen for microhardness
and microstructure analysis.

3. Results and Discussion
3.1. Weld Surface Morphology and Stress Distribution

Figure 3 shows the typical upper surface microstructure of the weldment obtained
with and without shot peening. For the non-shot peened specimen, the surface of the weld
bead was rough and uneven, even with a small amount of burrs, as presented in Figure 3a.
Figure 3c,d reveal that some microcracks and pores were formed on the surface of the weld
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bead. Research shows that the surface morphology of a weld is related to the cooling and
solidification process of the molten pool. Before the pool solidified, molten metal absorbed
hydrogen to form a hydrogen pore. Subsequently, the hydrogen pore floated up under
the buoyancy of the molten pool. However, the temperature of the liquid phase decreased
rapidly at the later stage of solidification and resulted in the increase in viscosity. At the
end of molten pool solidification, some hydrogen bubbles were subjected to a large viscous
force, which may be locked just at the moment of escaping from the weld surface, thus
forming pores (pits and burrs). In addition, the arc area on the surface of the weld bead
would shrink due to the temperature reduction, leading to the occurrence of microcracks.
Similar results have been reported in the high-energy shot peening process of Mg alloy [25].
There is no doubt that the above surface defects will lead to premature failure of Mg–steel
joints during service. Figure 3b shows the typical surface morphology of weldment under
shot peening treatment. It can be found that the surface of the weld bead was full of traces
of projectile impact. The shot peening process not only changed the surface morphology
but also prompted closure of surface defects, as presented in Figure 3e. According to
Dekhtyar et al. [26], during shot peening treatment, the surface metal underwent severe
plastic deformation under the repeated impact of the projectile, which induced shear stress
around the pores and finally made the pores deform or even close.
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The surface roughness measurement results of the weld and base metal after MSP
treatment are shown in Figure 4, including the maximum profile height Ry and the arith-
metic average roughness Ra. The surface roughness (Ry and Ra) of the weld and base metal
both significantly increased with the increase in Almen intensity, indicating that significant
plastic deformation occurred on the surface of the material with the increase in Almen
intensity. In addition, Figure 4 presents that the surface roughness of the Mg alloy parent
metal was lower than that of the weld surface under the same shot peening strength. The
literature reveals that the surface roughness depends on the original crystallite dimension
and hardness of the alloy, i.e., a finer grain and higher hardness value contribute to lower
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surface roughness [27]. Therefore, the sharp increase in the surface roughness of the weld
also reveals that the microstructure of the weld has been severely coarsened compared
with that of the base material, which will be analyzed in detail later. In addition, with the
increase in Almen intensity to 0.25 mm N, the plastic deformation caused by excessive shot
peening strength may lead to serious residual stress in the weld.
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The residual stress distribution in the weld zone was measured by XRD technology
and the detection results are illustrated in Figure 5. In order to determine the residual stress
distribution, the lattice strain is evaluated in all directions and the relationship between
sin2ψ and εøψ is derived. In the formula, the included angle between the reference direction
and the stress measurement direction on the plane is φ. εøψ refers to the strain in the
direction of ψ and φ, which is defined by the following formula [28]:

εφψ =
1 + ν

E

(
σφsin2ψ

)
− ν

E
(σ1 + σ2) (1)

where υ is Poisson’s ratio (0.34); E is the elastic modulus (44 GPa); σφ is the surface stress
with an φ angle to the principal stress direction; σ1 and σ2 are principal stresses.
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Then, the slope m of sin2ψ and εøψ can be calculated based on the relation between
sin2ψ and εøψ, and the residual stress can be obtained by substituting m into the
following formula [28]:

σφ =
mE

1 + ν
(2)

It can be found that a residual tensile stress of 28 MPa was detected on the weld
surface of non-shot-peened weldment (Joint S1). It is worth noting that the surface residual
tensile stress induced the initiation and expansion of surface microcracks at the end of weld
solidification. On the other hand, during the tensile test, the residual tensile stress superim-
posed with tensile force, leading to premature fracture of weldment and reduced welding
strength. For the shot-peening-treated samples, the residual tensile stress transformed
into compressive stress and increased with the increase in peening passes, as presented in
Figure 5. This is primarily because the plastically stretched surface area tended to expand
while the adjacent elastically responding area below and around the projectile impact
inhibited the expansion. In consequence, the residual compressive stress appeared on
the surface of the weld bead. It has also been reported that the appearance of residual
compressive stress is beneficial to the inhibition of surface microdefect initiation [29]. It can
be concluded that the elimination of weld surface defects and the introduction of surface
compressive stress were beneficial to enhance the tensile strength of Mg–steel weldment.

3.2. Weld Microstructure

Figure 6a shows that the AZ41M base material has fine grains and an approximately
equiaxed crystal shape. Figure 6b,c show the typical metallographies of the upper surface
layer of the Mg–steel weld. For traditional Mg–steel TIG joints (S1), the average grain size
of the weld increased to about 62 µm, accompanied by holes, as illustrated in Figure 6b. For
shot peened Mg–steel joints (S5), evidence of severe plastic deformation can be observed on
the weld surface, while grain boundaries and β-Mg17Al12 phase cannot be identified in the
metallographic structure of the weld surface, as shown in Figure 6c. Figure 6c reveals that
the metallographic structure of the weld surface layer was divided into three parts from
bottom to top: matrix (M), transition layer (TL), and severe deformation layer (SDL). Table 3
lists the thickness of SDL and TL under different shot peening intensities. It can be found
that the thickness of the SDL layer was about 50 µm with Almen intensity of 0.20 mm N and
its grain size had been significantly reduced compared to the M. TL was located between
the SDL and M and presented a certain degree of microstructure refinement, owing to
weakened projectile impact.
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Table 3. The thickness of SDL and TL under different shot peening intensities.

Joint S1 S2 S3 S4 S5 S6

Thickness of SDL (µm) 26 30 37 44 50 53
Thickness of TL (µm) 84 101 130 155 176 192

The average crystallite size and lattice distortion are calculated based on X-ray diffrac-
tion technology, and the results are presented in Figure 7. The calculation results reveal that
the surface grains of the weld are obviously refined after MSP treatment, and the crystallite
size reaches nanoscale. With the Almen intensity of 0.25 mm N (Joint S6), the weld surface
has a minimum crystallite size of 50.5 nm, and the lattice distortion reaches 0.420. When the
Almen intensity is in the range of 0–0.20 mm N (Joint S1–S4), the crystallite size of the weld
surface gradually decreases with the increase in shot peening intensity, while the lattice
distortion degree continues to increase. When the Almen strength exceeds 0.20 mm N,
the crystallite dimension and lattice distortion values tend to be basically constant and
no longer change with the increase in shot peening strength, which may be due to the
formation of stable nanocrystalline structures. The above results indicate that the MSP
process causes severe plastic deformation of the weld, and the deformation degree basically
increases with the increase in shot peening strength.
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However, the metallographic diagram reveals that β-Mg17Al12 phase cannot be iden-
tified in the severe deformation layer of the weld surface, indicating that the β phase
may be almost dissolved in the Mg matrix. The above experimental results show that the
diffusion of Mg–Al solid solution is abnormally fast during the MSP process, which is
mainly due to the appearance of fine grain structure and the high stress generated during
deformation [25]. The transformation of precipitated phase can be considered as the result
of chemical disorder caused by plastic deformation, that is, Al dissolved in Mg matrix to
form supersaturated solid solution. The literature indicates that the stress from the grain
boundary is as high as 1/10 G when the weld undergoes MSP treatment, where G is the
shear modulus of the material [30]. High stress was also widely present in the interior
of grains, which was difficult to relax effectively due to the lack of volume dislocation.
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Therefore, high-stress distribution may lead to rapid volume diffusion [30]. The volume
diffusion coefficient Dv can be calculated by the following formula:

4Dvt = d2 (3)

where t is the MSP treatment time (maximum is 300 s) and d is the average grain size
(approximately 50 nm). By substituting the values of t and d, the calculated Dv was
approximately equal to 2.08 × 10−14 cm2/s. However, the literature indicates that the
diffusion volume coefficient of Al in Mg is 3.5 × 10−24 cm2/s at 300 k [31]. Meanwhile, the
average crystallite dimension in the weld surface layer decreased to about 50 nm for joints
subjected to the optimal MSP treatment. The increase in lattice distortion and stored energy
was conducive to atomic diffusion, which eventually led to relatively rapid grain boundary
diffusion and volume diffusion during MSP processing.

Figure 8 presents the corresponding TEM field images of the SDL of a Mg–steel joint
under varied shot peening parameters. It can be found that some approximately equiaxed
grains were formed in the weld bead, as shown in Figure 8a,b. These grains were about
50–75 nm in size and were randomly distributed. In addition, Figure 8 reveals that plenty of
dislocations occurred in the shot peened Mg/steel weld with the increased Almen intensity,
i.e., with the increase in shot peening passes. It is apparent that the increased quantity of
dislocation led to the generation of dislocation cells, dislocation walls, and dislocation tangles.
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Figure 9 illustrates the grain refining process of Mg–steel weld under multiple shot
peening. Based on TEM observation results, grain refinement at different strain levels
is discussed from the perspective of strain adjustment. Figure 9a shows that there is a
small amount of initial dislocation in the weld microstructure without shot peening. Under
the continuous impact of the projectile, dislocation multiplication, dislocation cells, and
dislocation walls were generated in the weld, as illustrated in Figure 9b,c. According to
Mordyuk et al. and Tian et al. [32,33], the formation of tiny dislocation cells with low angle
boundary was attributed to the tangled dislocations. And with the increase in surface
plastic deformation, the quantity of dislocation cells increased whereas the dimension of
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dislocation cells decreased. Ultimately, the dislocation cells promoted the formation of fine
subgrains and grains, as presented in Figure 9d–f.
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3.3. Weld Strain Strengthening

Chu et al. [34] reported that the relationship between microhardness value (H) and
dislocation density (p) conformed to the following formula:

H = H0 + αGbp1/2 (4)

where H0, α, G, and b are constants of the material. Figures 7 and 8 show that lattice
distortion and plenty of dislocations occurred in the shot peened Mg/steel weld with the
increased Almen intensity, i.e., with the increase in shot peening passes. So, the formula
reveals that for the shot peening joints, the increase in shot peening passes will increase the
weld dislocation density and eventually lead to the strengthening of microhardness.

The microhardness variation of shot-peening-treated joints along the depth was de-
tected and the related testing locations and results are illustrated in Figure 10. For samples
of S6, the maximum hardness of the weld surface was 64 HV, which was almost 1.36 times
that of the matrix. With the detection position away from the weld surface, the hardness
value presented a trend of continuous decline and finally approached the original hardness
of the weld bead. A similar hardness variation pattern was observed for all weldments
treated with various shot peening passes. It is apparent that the significant increase in
microhardness is mainly attributed to the coactions of nanocrystals and strain strength-
ening. The variation of microhardness is consistent with the experimental results above.
Meanwhile, the hardness evolution also indicated that the depth of the strain hardening
layer was approximately 300 µm.
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Table 4 presents the evolution of surface properties such as surface roughness, maxi-
mum hardness, and maximum residual compressive stress under a series of shot peening
intensities. The present results indicate that shot peening intensity has a marked impact on
the surface performance of the weld seam. With the increase in MSP strength, the surface
layer of the weld underwent more severe plastic deformation, resulting in varying degrees
of improvement in maximum hardness value and maximum residual compressive stress,
indicating an effective deformation strengthening effect. However, the increasing surface
roughness indicates that high shot peening intensity may cause new surface defects and
deteriorate weld performance. It is well known that energy is transferred from the projectile
to the target material during the MSP treatment process, and the energy possessed by the
projectile is a function of projectile density, size, and velocity [14]. Since the shot peening
strength is a measure of the induced strain energy, the microprojectiles selected in this study
should impact the weld surface at a relatively high speed in order to achieve the target MSP
intensity. However, the literature reveals that Mg alloys have limited deformation capacity,
and excessive shot velocity can cause a sharp increase in material strain rate and even
surface damage, indicating that excessive shot peening strength may lead to a decrease in
the mechanical properties of the weld seam.

Table 4. Properties of weld surface treated with various shot peening strengths.

Joint Almen Intensity (mm N) Surface Roughness Ry (µm) Maximum Hardness
Value (HV)

Maximum Residual
Compressive Stress (MPa)

S1 0 6.0 48.4 −28
S2 0.05 8.5 51.5 33
S3 0.10 11.7 56.1 56
S4 0.15 13.5 59.2 77
S5 0.20 16.2 60.9 90
S6 0.25 17.8 64.0 97

Figure 11 presents the tensile strength of weldments treated with various shot peening
passes. The initial welding strength of the joint without shot peening was 190 MPa, and
the fracture location was in the center of the weld bead, as presented in Figure 12a. The
tensile strength of S2 slightly increased from 190 MPa to 202 MPa with one pass of the
shot peening treatment. As the shot peening intensity continued to increase, the welding
strength increased gradually. The maximum welding strength of Joint S5 reached 244 MPa
under the optimum shot peening intensity, which was 1.28 times that of the non-shot-
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peening-treated joint. The improvement of mechanical properties of the weldment is
mainly attributed to the combination of surface defect elimination, residual compressive
stress, refined crystalline strengthening, and surface strain enhancement. At this time,
the corresponding fracture failure position was located in the Mg alloy parent metal
accompanied by typical plastic fracture characteristics, as shown in Figure 12b,e. Actually,
the shot peening process did not always have a positive effect on the tensile strength of
weldment. For Sample S6, excessive shot peening caused severe plastic deformation of the
weld and excessive residual stress, which eventually led to a decline in the joint strength.
The failure position of the joint was transferred from the weld area to the Mg–steel interface,
and plenty of platforms appeared on the fracture surface, as illustrated in Figure 12c,f.

Metals 2024, 14, 470 11 of 16 
 

 

The tensile strength of S2 slightly increased from 190 MPa to 202 MPa with one pass of the 
shot peening treatment. As the shot peening intensity continued to increase, the welding 
strength increased gradually. The maximum welding strength of Joint S5 reached 244 MPa 
under the optimum shot peening intensity, which was 1.28 times that of the non-shot-
peening-treated joint. The improvement of mechanical properties of the weldment is 
mainly attributed to the combination of surface defect elimination, residual compressive 
stress, refined crystalline strengthening, and surface strain enhancement. At this time, the 
corresponding fracture failure position was located in the Mg alloy parent metal accom-
panied by typical plastic fracture characteristics, as shown in Figure 12b,e. Actually, the 
shot peening process did not always have a positive effect on the tensile strength of weld-
ment. For Sample S6, excessive shot peening caused severe plastic deformation of the weld 
and excessive residual stress, which eventually led to a decline in the joint strength. The 
failure position of the joint was transferred from the weld area to the Mg–steel interface, 
and plenty of platforms appeared on the fracture surface, as illustrated in Figure 12c,f. 

 
Figure 11. Tensile strength of Mg–steel weldment under MSP treatment. 

 
Figure 12. Typical fracture features of Mg–steel joint under shot peening treatment: (a–c) fracture 
locations of Joints S1, S5, and S6, (d–f) fracture appearances of Joints S1, S5, and S6. 

Figure 13 shows the fracture diagram of the Mg–steel joint of S6 (with Almen inten-
sity of 0.25 mm N). As can be seen from Figure 13a, with Almen intensity improved to 0.25 

Figure 11. Tensile strength of Mg–steel weldment under MSP treatment.

Metals 2024, 14, 470 11 of 16 
 

 

The tensile strength of S2 slightly increased from 190 MPa to 202 MPa with one pass of the 
shot peening treatment. As the shot peening intensity continued to increase, the welding 
strength increased gradually. The maximum welding strength of Joint S5 reached 244 MPa 
under the optimum shot peening intensity, which was 1.28 times that of the non-shot-
peening-treated joint. The improvement of mechanical properties of the weldment is 
mainly attributed to the combination of surface defect elimination, residual compressive 
stress, refined crystalline strengthening, and surface strain enhancement. At this time, the 
corresponding fracture failure position was located in the Mg alloy parent metal accom-
panied by typical plastic fracture characteristics, as shown in Figure 12b,e. Actually, the 
shot peening process did not always have a positive effect on the tensile strength of weld-
ment. For Sample S6, excessive shot peening caused severe plastic deformation of the weld 
and excessive residual stress, which eventually led to a decline in the joint strength. The 
failure position of the joint was transferred from the weld area to the Mg–steel interface, 
and plenty of platforms appeared on the fracture surface, as illustrated in Figure 12c,f. 

 
Figure 11. Tensile strength of Mg–steel weldment under MSP treatment. 

 
Figure 12. Typical fracture features of Mg–steel joint under shot peening treatment: (a–c) fracture 
locations of Joints S1, S5, and S6, (d–f) fracture appearances of Joints S1, S5, and S6. 

Figure 13 shows the fracture diagram of the Mg–steel joint of S6 (with Almen inten-
sity of 0.25 mm N). As can be seen from Figure 13a, with Almen intensity improved to 0.25 

Figure 12. Typical fracture features of Mg–steel joint under shot peening treatment: (a–c) fracture
locations of Joints S1, S5, and S6, (d–f) fracture appearances of Joints S1, S5, and S6.

Figure 13 shows the fracture diagram of the Mg–steel joint of S6 (with Almen inten-
sity of 0.25 mm N). As can be seen from Figure 13a, with Almen intensity improved to
0.25 mm N, the fracture was located in the Mg/steel interface area during tensile testing.
The BSE image of the initial weld zone (unfractured region) revealed that a wavy reac-
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tion layer of 10–15 µm in thickness was formed at the Mg/steel interface, which mainly
contained Mg/Zn/Al elements, as shown in Figure 13b. The literature indicated that the re-
action layer at the Mg/steel interface was mainly composed of α-Mg and MgZn phases [35].
Due to excessive shot peening treatment, severe plastic deformation was caused in the weld
zone and excessive residual stress was introduced, which tended to disrupt the continuity
of the intermetallic compound layer in the Mg/steel interface area, ultimately causing the
Mg/steel joint to break at the interface area during tensile testing, as shown in Figure 13c.
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3.4. Corrosion Characteristics

The stress corrosion sensitivity testing results of Mg/steel joints are presented in
Table 5. Table 5 shows that MSP treatment significantly affects the stress corrosion sensitivity
of joints. With the increase in MSP intensity (within the range of 0–0.25 mm N), the stress
corrosion sensitivity of Mg/steel weld decreases gradually. The stress corrosion sensitivity
has a minimum value of 11.2 with MSP intensity of 0.25 mm N. The literature indicates that
the stress corrosion sensitivity of welds is influenced by the microstructure evolution [36].
In this study, severe plastic deformation occurred during the MSP process, which induced
grain refinement on the weld surface. And the inhibitory effect on the crack initiation and
propagation stages is shown in Figure 14. During the crack initiation stage, due to the
presence of more grains in the fine-grained area of weld surface to bear the driving force of
the crack, stress concentration was reduced and crack initiation was delayed, ultimately
reducing the stress corrosion sensitivity index.

Table 5. Testing results of stress corrosion sensitivity index for Mg/steel joints.

Joint Almen Intensity (mm N) Corroding Solution Stress Corrosion Sensitivity Index

S1 0 NaCl (3.5%) 29.5
S2 0.05 NaCl (3.5%) 23.7
S3 0.10 NaCl (3.5%) 18.9
S4 0.15 NaCl (3.5%) 15.0
S5 0.20 NaCl (3.5%) 12.8
S6 0.25 NaCl (3.5%) 11.2
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Due to the active chemical properties of magnesium alloys, the following chemical
reactions occurred even in neutral solutions [37]:

Mg + 2H2O = Mg(OH)2 + H2 (5)

The above reaction equation indicates that a layer of Mg(OH)2 film will rapidly form
on the surface of Mg alloy, which was beneficial for protecting the Mg alloy matrix from
further damage. Therefore, the performance of Mg(OH)2 passivation film played a decisive
role in the corrosion resistance of Mg alloys. In fact, the corrosion process of magnesium
alloy was the continuous destruction and repair of Mg(OH)2 passivation film [37]. However,
the oxide film on the surface of Mg alloys was prone to groove corrosion damage with
the presence of Cl−1 in the environment, as shown in Figure 15a. This is because surface
tensile stress also occurs during the formation of the oxide film, which gradually increases
and accelerates the corrosion rate of the Mg alloy matrix [38]. During the MSP process of
Mg/steel joints, the severe plastic deformation of the weld surface induced grain refinement
and residual compressive stress. The transition from tensile stress to compressive stress
on the Mg/steel weld surface was beneficial for increasing the density of the passivation
film and slowing down its damage, as shown in Figure 15b. At the same time, it also has
a positive impact on suppressing crack initiation and propagation, ultimately effectively
improving the corrosion resistance of welds.
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4. Conclusions

The shot peening treatment of Mg–steel weldment was carried out with Almen inten-
sity ranging from 0.05–0.25 mm N. The weld surface morphology, microstructure features,
mechanical properties, and corrosion characteristics of weldment were investigated and
discussed. The main conclusions that can be drawn from the present investigation are
as follows.

(1) For Mg–steel joints, plastic deformation of the surface layer induced by optimal shot
peening intensity of 0.20 mm N was beneficial to eliminate surface microdefects.
And the residual tensile stress on the weld surface was transformed into residual
compressive stress, which can inhibit the initiation and propagation of microdefects
on the weld surface.

(2) Under the repeated impact of projectiles, the metal on the surface of the welding seam
deformed violently, and the refinement strengthening and strain strengthening on the
surface of the welding seam were realized.

(3) With the increase in depth from the weld surface, the gradient variation of microhard-
ness from 64 HV to 47 HV was obtained, attributed to the combined action of strain
strengthening and grain refining. Compared with untreated joints, the tensile strength
of Mg–steel specimens with optimal shot peening intensity of 0.20 mm N was notably
enhanced and raised by about 28% to 244 MPa.

(4) The microstructure evolution induced by MSP treatment was beneficial to improve the
stress corrosion sensitivity of Mg/steel joints, while also promoting the formation of a
denser Mg(OH)2 passivation film on the weld surface and enhancing the corrosion
resistance of the joints.
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