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Abstract: A proposed low-temperature forging method is presented to enhance stainless steel bearings
by creating a martensitic subsurface layer, significantly boosting bearing fatigue life due to increased
surface hardness. This technique induces beneficial residual stresses, particularly in axial bearings,
streamlining their construction and improving machine elements. Challenges persist, especially
with radial bearings, but simplicity in axial bearing forging promotes compact, resource-efficient
facility construction. Future research will focus on applying this technique to axial bearing washers,
potentially replicating success in other bearing components. Despite the energy expenditure on
cooling during forging, the substantial increase in bearing fatigue life offsets this, enhancing overall
durability and reliability of critical machine components. Integration of this forging technique
into bearing fabrication appears seamless, offering a promising trade-off between energy use and
enhanced performance.
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1. Introduction

Due to global economic and ecological changes, the usage of innovative environmen-
tally friendly and resource-saving technologies is a focus of current research. In addition
to the application of light metals, ultrahigh-strength steel alloys and load-adapted com-
ponent structures with improved material properties are increasingly being used. By
incorporating alloying elements and targeted heat treatment, properties such as hardness,
residual stresses, yield strength, tensile strength, elongation at break, toughness, fatigue
strength, heat strength, machinability, and corrosion resistance of the steel can be varied
in many ways and adapted to requirements. To manufacture highly resilient components,
manufacturing processes of forming technology are often used. Besides densification, sub-
surface compressive residual stresses can be achieved by forging processes. For example,
achieving a beneficial subsurface structure forging process has also been a focus in the
project “Tailored Forming“. Here, a forging process is undertaken after a laser cladding
or plasma welding procedure on bearings made of an AISI 52100 raceway on AISI 1022
M structure material or martensitic chromium silicon steel (1.4718) on a base substrate of
S235 (1.0038) steel [1,2]. These forming processes could serve to improve surface quality,
though the temperature has to be adjusted to enable an adequate forging process. The
positive effects of residual compressive stresses on service life in component areas subjected
to the highest rolling stresses have been known for a long time [3–5]. Previous studies
were able to reveal the beneficial effects of preinduced compressive residual stresses on
bearing fatigue life for AISI 52100 bearings. These residual stresses were induced by deep
rolling and turn-rolling [6]. In the present study, the optimization of bearings made of
stainless steel was the focus. Such bearings are used for application in the food industry
and paper industry or for chemical processes as mass products [7], but can also be found
in the form of high-strength stainless steel bridge roller bearings [8]. Also, to withstand
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high-temperature oxidation and corrosion, aircraft bearings are made of stainless steel [9],
the idea being to achieve a beneficial residual stress-state subsurface of the bearing by
improved forging processes. In this case, a particular focus must be on a low-temperature
forging process. In general, due to hardening during the forging process, forming at low
temperatures endows the component with higher material strength. During the forming
of metastable austenitic steels, the resulting hardening is significantly increased by an
additional deformation-induced martensitic phase transformation (see Figure 1 on the left).
The phase transformation is accompanied by the introduction of compressive stresses due
to the increase in volume of the martensitic phase.
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1.1. Martensitic Phase Transformation in Forging

In the cold forming of metastable austenitic steels, in addition to the hardening pro-
cess, an additional strength-enhancing phase transformation occurs, which is induced
by externally introduced stresses and strains. Most stainless austenitic CrNi steels with
approximately 18% Cr and 10% Ni are metastable austenitic in the non-deformed state.
During forming, a partial conversion of the cubic face-centered (fcc) phase of the austenite
into a cubic space-centered (bcc) martensitic phase can take place [10].

Metastable austenitic stainless steels are mainly used in the chemical and food in-
dustries, e.g., for condensers, heat exchangers, coolers and pipelines. These are mainly
sheet metal components. On the other hand, the effect of deformation-induced martensite
formation in the field of cold forming has so far been little used industrially. These stainless
steels are well known for applications for excavator bucket teeth and forklift tines, which
harden due to mechanical loads in use.

Figure 1 shows the basic deformation-induced transformation process and the re-
sulting hardening. The formed martensite consists of ferritic α′-martensite, which has a
tetragonal-distorted fcc structure, and unstable ε-martensite with an hcp structure. This
can be converted into α′-martensite (bcc) with further stress [11]. The phase transfor-
mation from austenite to martensite caused by deformation is generally referred to as
deformation-induced martensite formation.

Furthermore, there is a dependence between deformation-induced martensite forma-
tion and the forming temperature. By cooling the samples to T = −5 ◦C, an increase in the
martensite content in excess of experiments conducted at room temperature is possible. An
increased forming temperature, on the other hand, reduces the effect of martensitic phase
transformation (Figure 2). At a temperature of T = 60 ◦C, martensite formation is almost
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completely suppressed. This temperature dependence has already been described by [12],
among others.
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The deformation-induced martensite formation and the associated expression of the
yield stress of a metastable austenitic CrNi steel are complex mechanisms that are largely
determined by alloy components, the deformation parameters, and the temperature, as well
as stress and strain state. There are a lot of publications describing the fundamental effects
of phase transformation in metastable austenitic steels [12–14]. Specifically, in the field of
forging, only a few research papers are known in which the effect of deformation-induced
phase transformation and its applications are investigated [15,16].

In the past, several theses were written at the Bergakademie Freiberg, the subject of
which was the occurrence of martensitic phases due to mechanical stress on the components
close to the operation [17,18]. Currently, within the framework of the CRC 799 “TRIP-
Matrix Composite”, metastable austenitic CrMnNi cast steels with TRIP effect are being
investigated [19].

At the University of Kaiserslautern, the influence of near-operational isothermal and
thermal–mechanical stresses on the deformation behavior of metastable austenitic steels
is investigated in the project “Influence of low temperatures on the cyclic deformation
and transformation behavior of differently processed metastable austenites” as part of the
Research Group “Engineering Materials on Different Scales: Experiment, Modelling and
Simulation” [20].

In general, innovative solutions, especially in the field of manufacturing processes,
aimed at improving certain aspects of a bearing have been a reoccurring topic in recent
times. Extensive research has been done in the field of additive manufacturing, where one
approach was to add a stainless steel layer to a base of less valuable steel, which leads to a
hybrid steel–steel component. Also, the effects of treating stainless steel with a solution in
order to make it more durable and therefore more suitable for bearing applications have
been investigated [21].

Additionally, a topic that has not yet been investigated is the addition of rolling to
the process presented in this paper. As Pape et al. [6,22] showed, the process of rolling
can have a beneficial influence on bearing performance, and its application to the findings
presented in this paper is part of ongoing research.

1.2. Roller Bearings

Bearings enable relative movement of machine parts and thus represent the concrete
shape of joints in the sense of gear theory. Bearings take on both load-bearing and -guiding
tasks. The “carrying” function focuses on transmitting forces and moments between parts
that are moving relative to each other. Depending on the direction of the forces to be
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transmitted, a distinction can be made between radial, axial and angular contact bearings.
The “guide” function determines the relative position of the parts that are moving relative
to each other as precisely as possible. Non-locating bearings are used for guidance in the
radial direction, fixed bearings additionally or exclusively for axial determination [23].

The relative motion between the active surfaces of a bearing can be sliding or spin-
ning (tangential), rolling (radial) or a combination. In roller bearings, the combination of
(micro)sliding and rolling motion is very commonly observed. For angular contact ball
bearings, all three components have to be considered. Sliding movements of solid-state
surfaces in direct contact require a comparatively high amount of force and energy. At the
same time, particles can detach, leading to surface wear during operation. This results in
an essential requirement for a machine element: the function must be ensured or fulfilled
for as long as possible. This means that destruction or progressive damage resulting in the
eventual failure of the active surfaces or active bodies and an immediate or gradual change
in the geometry with impairment of the guiding properties must be avoided or delayed
for as long as possible. Typical mechanisms that can lead to functional impairment are
breakage, plastic deformation, melting, seizure, fatigue, surface breakdown and wear [23].

In addition to adhesive and abrasive wear in conjunction with tangential relative
movements and friction under unfavorable operating and lubrication conditions, surface
fatigue is a common cause of failure of rolling bearing systems. Increasing the reliability of
rolling bearing assemblies by avoiding early failures as well as increasing bearing life are
therefore the main concerns in the development of rolling bearings. As a result of improved
bearing designs, they can not only achieve a longer bearing life but can also be used in
smaller, lighter, and low-friction designs with the same service life. Kloos and Broszeit
define surface fatigue as “the separation of microscopic and macroscopic material particles
(...) caused by fatigue cracking, crack progression and residual fracture during the rolling
of two force-bound surfaces (with and without slippage) under certain mechanical, thermal
and chemical stress conditions” [24]. In contrast to wear, surface fatigue is a typical form
of damage caused by material chipping instead of the removal of the material. Wear and
surface fatigue are system properties of a component pairing, while general fatigue is a
component property. In this work angular contact ball bearings were used (Figure 3). These
bearings allow radial and axial loading, but in addition to rolling also experience spinning
motion with additional tangential shear forces. Most damage occurs at the inner ring, as
it is the part of a bearing that sees the highest loads. Therefore, the inner ring was the
part that was manufactured with the aforementioned process. For testing, the inner ring
(Figure 3) was combined with a bought-in outer ring and balls.
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2. Material and Experimental Procedure
2.1. Material

For the forming of the inner rings the stainless steel 1.4301 (X5CrNi18-10) was used.
This is a metastable austenitic stainless steel. The base material was first formed at low
temperatures and then machine milled to obtain the outer dimensions of a bearing inner
ring. The surface was not polished, which led to a rougher surface. The details of the
manufacturing process are described in [25].

2.2. Test Rig Development and Bearing Performance Tests

At the IMKT, a novel test rig has been constructed on the foundational structure of a
preexisting SKF-manufactured machine designed for radial loading (Figure 4). This upgraded
test rig boasts the capability to concurrently test four bearings across two test heads. With
a total of four machines featuring this configuration, a maximum capacity of testing up to
16 bearings simultaneously has been achieved. The two test heads were both connected to a
central main shaft, interconnecting each unit’s secondary shaft via hydraulic couplings.
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Figure 4. Angular contact ball bearing test rig.

The support mechanism for the test heads involves radial suspension utilizing a rod,
with provision for attachment of a force sensor to measure the friction torque exhibited by
a pair of bearings. Furthermore, the axial load was applied through a set of flat springs
situated on the outermost periphery of the test head. This applied force was monitored
using a load sensor, ensuring precise control and measurement during testing procedures.
A cross section of the test head is shown in Figure 5.
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Each individual bearing within this setup was equipped with a temperature sensor
positioned on its outer ring, enabling monitoring of thermal variations. Regrettably, due to
spatial constraints, the installation of a temperature sensor on the inner ring of the bearing
was deemed impractical and therefore not implemented.

The implementation of a free-floating support system for the test head was chosen for
its simplicity and capabilities in regard to the measurement of friction torque, constituting
a pivotal advantage. However, this advantageous setup introduces its own set of chal-
lenges, primarily revolving around the need for precise alignment during the installation
phase. The precise alignment of the secondary shafts within the hydraulic couplings has
been shown to be a critical factor, influencing especially the baseline vibrations recorded
throughout the tests.

Moreover, the design decision for the free-floating support structure inherently subjects
the bearings to radial loading, a factor demanding careful consideration. Evaluating the
mass of the test head as approximately 38 kg allowed for an estimation of the radial loading
exerted on each bearing, which could be conservatively estimated to reach 200 N or below.
While this magnitude of radial loading warrants attention, preliminary calculations suggest
that its impact on the anticipated life expectancy of the bearings appears negligible, with
no discernible substantial influence identified through initial assessments.

In addition to the measured friction torque and temperature values, the condition
monitoring of the bearings in the test was ensured by a vibration sensor system attached to
the front of the test heads. With this, it was possible to detect any damage that formed in a
timely manner.

2.3. Experimental Setup

When selecting the operating parameters for life expectancy tests, a critical consid-
eration concerned the distinctive properties of the utilized materials. Given the limited
knowledge regarding the fatigue limits of bearings made from austenitic steels, a pragmatic
approach was applied to derive the operational parameters. Consequently, the outlined
solution was proposed to address this challenge. The initial step involved identifying
the limit for a standard bearing possessing identical outer dimensions, readily accessible
through manufacturers’ catalogues. A comparison of the material properties between
bearing steel and austenitic steel revealed a notable reduction in the latter’s capabilities.
In the literature, the topic of bearing life for stainless steel bearings has not seen broad
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attention. As such, for an initial estimate, the technical manual of the bearing manufacturer
was consulted, where it was proposed that a reduction to 80% of the load applied on a
bearing of same dimensions, but made from standard bearing steel, has been shown to be
sufficient to ensure the stainless steel bearings can endure a similar runtime under load.

Consequently, a reduction in load was implemented to achieve a comparable fatigue
life using the following approach.

For the standard 7206 bearings, operating within a Hertzian pressure limit of approxi-
mately 2.2 GPa and subjected to an axial load of 17,500 N, the maximum capacity of stainless
steel bearings was conservatively estimated at 80% of that of the standard 100 Cr6. Given
the recognized lower hardness of 1.4301 in its austenitic state, a further reduction in the load
by an additional 5% was undertaken. This factor of 5% is assumed in a first step and can be
adapted in future research. Therefore, the axial load for the series can be written as:

Fa = 17500 × 0.75 ∼= 13kN

Another important point for the operating conditions is the thickness of the lubrication
film and the state of lubrication. The parameter that was considered was the specific
height of the lubricating film Λ, which could be calculated from the roughness of the two
contacting surfaces and the calculated minimal film height.

Λ =
hmin√

R2
q,2 + R2

q,1

However, it is important to add that the measurement of the initial surface state of
the bought-in variants could only be determined on a small number of exemplary units. It
was not possible to reliably disassemble the bearings without damaging them. Therefore, a
small number of randomly chosen bearings were pulled from the test pool and investigated
for their surface structure beforehand. As those numbers showed little deviation from one
other, the obtained values were taken as the initial state of all. An overview of the test
parameters is given in Table 1.

Table 1. Overview test parameters.

Type Speed
(1/min) Load (kN) Temperature

(◦C) Rq, Inner Ring hMin
(mm) Lambda

Standard 2000 17.5 60 0.05 0.136 1.92
1.4301 cold-formed 2000 13 60 1.68 0.194 0.115
Industry-standard

stainless 2000 13 60 0.4 0.194 0.481

1.4301 untreated 2000 13 60 1.7 0.194 0.114

In the test cycle, the bearings were lubricated using grease for high-speed applications.
This specialized grease was selected to accommodate the relatively low load used in this
test regimen.

3. Results

The bearings were investigated after manufacturing and compared to industrial stain-
less steel bearings. For this, the surface of the manufactured bearings had to be machined
after the forging process. In the next step, the bearings were mounted into the test rig and
fatigue tests were executed. In cased of surface failure or fatigue, the test was stopped.
After the test, the bearings’ surfaces were inspected by microscopy.

3.1. Hardness

The assessment of a bearing surface’s hardness is a pivotal determinant in evaluating
its suitability for bearing applications. Traditionally, standard bearing steel demonstrates
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exceptional hardness, often surpassing the 1000 HV0.1 threshold. This elevated hardness
level significantly exceeds the typical hardness achievable in various stainless steel coun-
terparts. The steel under scrutiny in this research exhibited a base hardness measuring
around 250 HV0.1. However, through lowering of the forming temperature, a substantial
enhancement in its hardness to approximately 500 HV0.1 was achieved, as depicted in
Figures 6 and 7. For investigations of the achievable hardness, the forming process was
performed at −15 ◦C and −196 ◦C. With the cold forging process at −15 ◦C, a significant
increase in surface hardness was achieved in comparison to the standard process. This was
even able to be improved for the forging process conducted at −196 ◦C. This increase in
hardness presents an intriguing avenue for optimizing its performance and applicability in
bearing scenarios, underscoring the pivotal role of temperature modulation in altering the
material’s mechanical properties for enhanced functionality.
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from 1.4301.

Hardness was measured in two different directions on the different samples. Both
were defined on the run zone. The depth direction started in the middle of the run zone
and followed the angle of contact of the bearing, which per design was 40 degrees. The
second direction followed the contour of the raceway outwards, with the beginning and
the end approximately 1 mm outside of the run zone. Figure 6 shows that the hardness
declined slightly more in the depth of the tested cold-formed specimen compared to the
unaltered sample. In comparison to the untreated sample, significantly greater variations in
hardness levels were evident in both dimensions. This can be likely attributed to the lack of
homogeneity in the crystal lattice due to the produced martensite. Along the running zone,
the trends in both samples were very similar. Additionally, besides the noticeably increased
hardness, a more pronounced deviation from the mean was discernible compared to the
initial material.
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3.2. Roughness

Surface roughness has a strong impact on bearing life regarding mechanical performance
and longevity. Surface roughness directly affects the tribological interactions within a bearing
system, governing the contact between rolling elements and races. Excessive roughness
can intensify abrasive wear, generating elevated frictional forces and accelerating material
fatigue. In contrast, an excessively smooth surface might compromise the formation of
crucial lubricating films, leading to inadequate separation between contacting surfaces and
heightened risk of adhesive wear. The roughness of the contacting surfaces impacts load
distribution, fatigue resistance, and overall operational reliability of bearings, thereby directly
influencing their expected lifespan and performance under operational conditions.

The preliminary examination of surface characteristics, considering the previously
outlined limitations, revealed that the cold-formed bearings exhibited a marginally rougher
surface compared to the standard bearings (see Figure 8). For the standard bearings, the
average posttest surface roughness was notably lower. However, it was crucial to note that
the deviation in roughness was higher for the standard bearings. Both sets of bearings
underwent a process of surface smoothening during testing, with the cold-formed bearings
displaying a more pronounced effect. An important observation was that the initial state of
the cold-formed bearings tended to be slightly rougher, attributable to the manufacturing
process. In contrast, the standard bearings commenced with a comparatively smoother
initial surface.
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3.3. Test Evaluation

Table 2 summarizes the results from a series of eight tests conducted on bearings
subjected to 13 kN axial loading at 2000 rpm, while none ran more than 46 million cycles.
The observed outcomes varied. Most tests saw noticeable signs of wear (V). Some showed
extended pitting damage (P), characterized by broken up surfaces and signs of fracturing
running along the sides of the pitting, as seen in Figure 9 (right-hand side. Three bearings
showed a form of adhesive damage (A), characterized by a gray surface often accompanied
by smaller pitting. Three bearings showed signs of overheating (H), especially characterized
by dark discolored raceways. The tests were mostly terminated by the condition monitoring
system watching over the vibrations (S). Two were ended by exceeding the temperature
limit (T). One of those tests was most probably not sufficiently lubricated and therefore
taken out of consideration (not counted).

Table 2. Overview of tested standard bearings (sets of 2).

Test# Load Cycles
(mio.)

Inner Bearing
Damage

Outer Bearing
Damage

End of Test
(Reason) Counted

1 4.46 A V S 1
2 17.98 A V S 1
3 46.00 V, A V S 1
4 2.36 P A, (P) S 1
5 5.99 - H T 0
6 19.18 - V, P S 1
7 35.96 V, H, P V T 1
8 31.17 V, H V S 1Metals 2024, 14, x FOR PEER REVIEW 11 of 15 
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Figure 9. Example of standard bearing damage.

A microscopic image of an industrial stainless steel bearing after test in shown in
Figure 9. The red arrow indicates the direction in which the rollers moved along the
surface. The bearing run for over 250 h, and the test stopped due to bearing damage. In the
visual examination of the worn stainless steel bearing, distinct characteristics indicative of
prolonged use and stress concentrations were apparent. Notably, the run zone exhibited
considerable darkening, suggesting heightened frictional forces and localized overheating
during operation. Concurrently, a number of small pits manifested prominently within
the region experiencing the highest pressure, as can be seen in the microscope image on
the right. These discernible pits underscore the consequential effects of repetitive loading,
potentially indicating surface fatigue and material degradation in response to the intense
mechanical stresses endured by the bearing during its operational life cycle.
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The results from the series of cold-formed bearings can be seen in Table 3. Overall,
there were 10 tests conducted with two bearings per test. The conditions for speed, load,
temperature, and lubrication were the same as in previous series. One set was retracted in
the early stages of the testing and could not be tested again. This was due to a sensor error
that led to us being unable to determine the faulty bearing on this particular test rig. As
the conditions may be altered by the mounting process, we decided to retract both sets of
bearings, although one set was unharmed (tests 3 + 4). One set was later damaged during
the mounting process and was never used.

Table 3. Overview of tested cold-formed bearings (sets of 2).

Test# Load Cycles
(mio.)

Inner
Bearing
Damage

Outer
Bearing
Damage

End of Test
Reason Counted

1 132.35 - P, A S 1
2 10.90 P V S 1
3 0.72 - - - 0
4 0.72 A P S 1
5 115.08 V, A (P) S 1
6 112.82 V H T 1
7 0 M M - 0
8 84.49 V, A V S 1
9 342.48 V V X 1
10 4.63 V V, H, P(!) S 1

As in the previous array of tests, the most common observation was signs of wear
(V). The occurrence of overheated surfaces (H) was less common, and also in the two
instances that showed discoloring, less pronounced. On the other hand, the fatigue damage
occurrences had a much larger affected area than on the standard bearings. This could
be a sign of faster rupture of the surface layers, as the detection method was the same.
Therefore, a newly formed pitting would be growing more slowly on the standard bearing
surface than in the cold-formed bearings. This could be due to the formation of martensite
being sometimes inhomogeneous, which could then lead to larger pieces breaking out of
the surface in cases where a sufficient crack was formed under the surface.

A cold-formed stainless steel bearing inner ring after a test of only 0.72 million cycles is
shown in Figure 10. The bearing showed a large pitting defect, spanning the entire width of
the contact zone, with nearly the same length in the circumferential direction. Furthermore,
an additional facet of the visual assessment revealed a polished character in the contact
area, due to wear, which was often observed in these bearings.
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3.4. Bearing Life

We can show that the process significantly improves bearing life. A direct comparison
of industrial stainless steel bearings and the manufactured bearings is shown in the Weibull
plot (Figure 11). By the beneficial martensitic surface with increased hardness, the bearing
fatigue was increased by a factor of approximately 2. This featured a significant effect and
allowed for improved machine elements. The results also proved that due to the highest
loads on the bearings’ inner ring, only this part suffered fatigue and was the critical part.

1 
 

 Figure 11. Weibull plot for industrial stainless steel bearings in comparison to bearings with induced
martensitic phase.

4. Conclusions

Stainless steel bearings often serve as essential components within machinery. How-
ever, their current state is often subjected to fatigue due to a comparatively small surface
hardness. Addressing this concern, the proposed method aimed at enhancing the surface
integrity of stainless steel bearings through a low-temperature forging technique, demon-
strating a significant augmentation in bearing fatigue life. This enhancement stems from
the creation of a martensitic subsurface layer characterized by increased surface hardness.

An essential consequence of this process involved the induction of beneficial residual
stresses attributed to martensite formation. While the forging process posed considerable
challenges, particularly concerning radial bearings, its application to axial bearings proved
relatively straightforward. This simplicity not only fosters improved machine elements but
also enables the construction of more compact, resource-efficient facilities.

Consequently, future studies will center on the low-temperature forging of axial bear-
ing washers to induce a martensitic subsurface, thereby potentially replicating the success
witnessed in other bearing components. The integration of such a forging technique into
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bearing fabrication appears relatively seamless. Despite the incremental energy expendi-
ture for cooling during this process, it is substantially offset by the substantial increase in
bearing fatigue life—a trade-off that amplifies the overall durability and reliability of these
critical machine components.
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