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Abstract: While conventional die manufacturing techniques often lead to limitations in production
speed and design intricacy due to labour-intensive procedures like machining and casting, Additive
Manufacturing (AM) emerges as a key player offering substantial potential for cost reduction and
process improvement in mass production. This study benchmarks four leading Laser Powder
Bed Fusion (L-PBF) systems for producing maraging steel (EN 1.2709) dies. Despite the shared
material and technology, variations in dimensional accuracy, surface finish, and microstructure were
observed among the maraging steel parts. SEM/EDS, EBSD, hardness testing, and dimensional
analysis revealed system-specific performance differences. Additionally, select parts underwent heat
treatment and tensile testing, demonstrating the impact of post-processing on mechanical properties.
These results offer valuable guidance for industrial stakeholders considering AM, highlighting the
importance of supplier selection and process optimisation for achieving consistent part quality and
unlocking the full potential of AM technologies.

Keywords: metal-based additive manufacturing; beam laser technologies; laser powder bed fusion;
maraging steel

1. Introduction

Traditional methods of die manufacturing often involve labour-intensive processes
like machining and casting, leading to limitations in production efficiency and design
complexity [1,2]. For example, intricate undercut features or complex internal cooling
channels can be difficult or impossible to achieve, necessitating costly multi-part assemblies
or extensive post-processing [3–7]. These limitations hinder innovation, leading to longer
lead times and higher manufacturing costs [8,9]. Additive manufacturing (AM), particularly
Laser Powder Bed Fusion (L-PBF), offers a transformative solution with its layer-by-layer
fabrication approach [10–12]. L-PBF’s ability to produce intricate designs and minimise
material waste holds significant promise for optimising die production processes [13–15].
With its high strength, toughness, and widespread applications in tooling, maraging steel
is a prime candidate for AM die manufacturing [16–19].

Despite the advantages of AM, the variability in outcomes across different L-PBF
systems remains a significant obstacle to widespread industrial adoption [20–24]. Inconsis-
tencies in dimensional accuracy, surface finish, microstructure, and mechanical properties
can arise due to variations in equipment, process parameters, and material quality [25–27].
With standardisation, manufacturers can accurately assess the return on investment in
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AM and justify the transition from established processes. This hinders the selection and
optimisation of L-PBF processes for die production. In L-PBF systems (Figure 1), a layer of
fine metal powder is uniformly spread in the machine bed by a recoater, either a blade or
roller. A high-powered laser selectively melts a thin layer of metallic powder according
to a CAD model [28,29]. The laser beam is guided by a scan head system, which precisely
traces the part’s geometry. After each layer is melted, a new layer of powder is deposited,
and the process repeats. This layer-by-layer approach builds the part gradually, resulting
in complex geometries with the desired properties [11,28]. This process ensures precise
powder deposition and maintains consistent layer thickness throughout fabrication [30–32].
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Figure 1. Schematic representation of the L-PBF system apparatus: (1) laser source, (2) beam expander,
(3) adjustable mirrors, (4) Z -axis system, (5) scan head (or galvanometric scanner), (6) laser beam,
(7) building part, (8) metallic powder, (9) build plate, (10) build compartment, (11) roller, (12) container
of powder to be delivery system, (13) recoater, and (14) powder overflow container.

Recent benchmarking studies have begun to address L-PBF performance variations [15,33,34].
However, comprehensive research is still needed to focus on critical die manufacturing
aspects, including dimensional accuracy, surface quality, microstructure, and mechanical
properties. Such research would provide essential insights for industries considering
AM technologies, guiding equipment selection and process optimisation. This research
could significantly benefit the die manufacturing industry by advancing AM processes
and standardisation. The ability to consistently produce complex, high-performance dies
with AM could reduce production costs, shorten lead times, and enable new designs that
would be impossible to manufacture with traditional methods. This would foster greater
innovation and competitiveness within the industry.

This study aims to address these challenges by conducting a benchmarking analysis
of multiple L-PBF systems specifically for die manufacturing. This study will meticulously
evaluate these characteristics with and without post-build heat treatments. A unique
aspect of this study is the in-depth investigation of heat treatment’s impact on these critical
performance metrics. This study aims to provide essential insights for industries exploring
AM for die production, ultimately aiding in selecting optimal systems and processes. Our
findings underscore the critical need for standardised process control methods to ensure
consistent part quality across different AM platforms and emphasise the importance of
understanding process parameter impacts on part quality across these platforms.
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2. Materials and Methods

Investigating identical parts produced by four equipment manufacturers necessitates
considering many factors, including part and process features and feedstock characteristics.
This comprehensive analysis, represented in Figure 2, encompasses a range of critical
parameters, including metallurgical characteristics (such as chemical composition and
microstructure), mechanical properties (by hardness tests), and finishing aspects (such as
surface roughness, distortion, and shrinkage).
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2.1. Phase 1|Supplier Assessment: Powder and As-Built Parts Evaluation
2.1.1. L-PBF Process and Part Design

Key process parameters were provided as guidance (laser power 400 W, layer thickness
45 µm, etc.), with suppliers optimising other parameters based on their specific equipment
and maraging steel powder characteristics (see Table 1).

Table 1. Key specifications of the L-PBF systems employed in the study.

Key Parameters Supplier 1 Supplier 2 Supplier 3 Supplier 4

Build Volume 250 × 250 × 325 mm3 280 × 280 × 350 mm3 250 × 250 × 350 mm3 300 × 300 × 400 mm3

Laser Power 400 W 500 W 400 W 500 W
Scanning Speed Up to 7.0 m/s Up to 6.0 m/s Up to 2.5 m/s Up to 7.0 m/s
Layer Thickness 20–80 µm 20–50 µm 20–100 µm 20–100 µm
Laser Spot Size 50 µm 70 µm 30 µm 40 µm
Spot Spacing 100 µm 100 µm 80 µm 90 µm

Material Feed Rate Up to 1000 mm3/h Up to 500 mm3/h Up to 300 mm3/h Up to 800 mm3/h

Several factors drove the selection of specific L-PBF systems for comparison in this
study to address critical gaps in current research and industry needs. The chosen systems
represent a diverse range of commercially available L-PBF platforms commonly utilised
in industrial settings. By comparing these systems, the focus is to provide comprehen-
sive insights into the performance variability across different equipment types, thereby
addressing the pressing need for standardised process control methods. Additionally, each
selected system offers unique capabilities and operational characteristics, such as laser
power, scanning speed, and build volume, which can significantly influence part quality
and production efficiency. In line with maintaining impartiality and ensuring transparency,
the identities of the selected equipment suppliers will be kept confidential. It is important to
note that the intention is not to endorse any brand or assert superiority among equipment
manufacturers. Instead, the focus remains on rigorous evaluation of the manufactured
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parts to glean valuable insights into their performance and characteristics. To ensure re-
producibility and facilitate understanding, pertinent specifications for each L-PBF system
utilised in our study will be shared in Table 1.

All suppliers built four identical parts following the design specifications in Figure 3,
oriented within the L-PBF machine as depicted in Figure 4.

Metals 2024, 14, x FOR PEER REVIEW 4 of 26 
 

 

transparency, the identities of the selected equipment suppliers will be kept confidential. 
It is important to note that the intention is not to endorse any brand or assert superiority 
among equipment manufacturers. Instead, the focus remains on rigorous evaluation of 
the manufactured parts to glean valuable insights into their performance and 
characteristics. To ensure reproducibility and facilitate understanding, pertinent 
specifications for each L-PBF system utilised in our study will be shared in Table 1. 

All suppliers built four identical parts following the design specifications in Figure 
3, oriented within the L-PBF machine as depicted in Figure 4. 

Initial parts were designed to support the phase 1 investigation (Figure 3). The parts 
designed for the initial phase have a parallelepiped shape, with two chamfers on the top 
and a hole (Figure 3a). The dimensions of the part are as shown in Figure 3b. 

  
(a) (b) 

Figure 3. Representation of parts produced and used in the initial characterisations: (a) parts 3D 
design, and (b) parts dimensions in millimeters (mm). 

 
Figure 4. Illustration depicting the sample preparation for L-PBF, including support structures. 

Initially, CAD 3D slicing (Fusion 360, Autodek, San Francisco, CA, USA) was 
necessary to facilitate production via L-PBF. Each supplier used their own software to 
make production preparation parameters according to their equipment and software. 
However, it was indicated that parts should be produced according to the arrangement 
depicted in Figure 4. The suppliers strictly controlled process parameters, ensuring the 
desired characteristics and quality of the parts. The parameters provided to the suppliers 
as references included a laser power of 400 W, a layer thickness of 45 µm, and a preheating 
building platform temperature of 40 °C, with the atmosphere controlled by nitrogen 
(Argon optional). Supplier experience, technical equipment capabilities, material 
properties, and part geometry considerations guided the determination of laser spot size 
and scan speed. While these parameters were initial guidelines, suppliers could adjust 
and optimise them to suit specific L-PBF technology applications. It is acknowledged that 
the precise settings of these parameters may vary based on material properties, machine 
manufacturers’ recommendations, and the final parts’ desired characteristics, 

Figure 3. Representation of parts produced and used in the initial characterisations: (a) parts 3D
design, and (b) parts dimensions in millimeters (mm).

Metals 2024, 14, x FOR PEER REVIEW 4 of 26 
 

 

transparency, the identities of the selected equipment suppliers will be kept confidential. 
It is important to note that the intention is not to endorse any brand or assert superiority 
among equipment manufacturers. Instead, the focus remains on rigorous evaluation of 
the manufactured parts to glean valuable insights into their performance and 
characteristics. To ensure reproducibility and facilitate understanding, pertinent 
specifications for each L-PBF system utilised in our study will be shared in Table 1. 

All suppliers built four identical parts following the design specifications in Figure 
3, oriented within the L-PBF machine as depicted in Figure 4. 

Initial parts were designed to support the phase 1 investigation (Figure 3). The parts 
designed for the initial phase have a parallelepiped shape, with two chamfers on the top 
and a hole (Figure 3a). The dimensions of the part are as shown in Figure 3b. 

  
(a) (b) 

Figure 3. Representation of parts produced and used in the initial characterisations: (a) parts 3D 
design, and (b) parts dimensions in millimeters (mm). 

 
Figure 4. Illustration depicting the sample preparation for L-PBF, including support structures. 

Initially, CAD 3D slicing (Fusion 360, Autodek, San Francisco, CA, USA) was 
necessary to facilitate production via L-PBF. Each supplier used their own software to 
make production preparation parameters according to their equipment and software. 
However, it was indicated that parts should be produced according to the arrangement 
depicted in Figure 4. The suppliers strictly controlled process parameters, ensuring the 
desired characteristics and quality of the parts. The parameters provided to the suppliers 
as references included a laser power of 400 W, a layer thickness of 45 µm, and a preheating 
building platform temperature of 40 °C, with the atmosphere controlled by nitrogen 
(Argon optional). Supplier experience, technical equipment capabilities, material 
properties, and part geometry considerations guided the determination of laser spot size 
and scan speed. While these parameters were initial guidelines, suppliers could adjust 
and optimise them to suit specific L-PBF technology applications. It is acknowledged that 
the precise settings of these parameters may vary based on material properties, machine 
manufacturers’ recommendations, and the final parts’ desired characteristics, 

Figure 4. Illustration depicting the sample preparation for L-PBF, including support structures.

Initial parts were designed to support the phase 1 investigation (Figure 3). The parts
designed for the initial phase have a parallelepiped shape, with two chamfers on the top
and a hole (Figure 3a). The dimensions of the part are as shown in Figure 3b.

Initially, CAD 3D slicing (Fusion 360, Autodek, San Francisco, CA, USA) was neces-
sary to facilitate production via L-PBF. Each supplier used their own software to make
production preparation parameters according to their equipment and software. However,
it was indicated that parts should be produced according to the arrangement depicted
in Figure 4. The suppliers strictly controlled process parameters, ensuring the desired
characteristics and quality of the parts. The parameters provided to the suppliers as ref-
erences included a laser power of 400 W, a layer thickness of 45 µm, and a preheating
building platform temperature of 40 ◦C, with the atmosphere controlled by nitrogen (Argon
optional). Supplier experience, technical equipment capabilities, material properties, and
part geometry considerations guided the determination of laser spot size and scan speed.
While these parameters were initial guidelines, suppliers could adjust and optimise them
to suit specific L-PBF technology applications. It is acknowledged that the precise settings
of these parameters may vary based on material properties, machine manufacturers’ rec-
ommendations, and the final parts’ desired characteristics, highlighting the importance of
supplier expertise and ongoing advancements in L-PBF technology.
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2.1.2. Powder Characterisation

This comprehensive approach enabled a thorough characterisation of the maraging
steel powder from all suppliers, shedding light on its physical properties, such as particle
size, shape, and chemical composition, thus enhancing our understanding of its suitability
for AM applications. The composition of maraging steel alloy is detailed in Table 2,
underscoring its versatility and relevance across various industrial sectors.

Table 2. Composition of maraging steel (EN 1.2709) [18,35].

Alloying
Element Fe Ni Co Mo Ti Al Cr

Cu C Mn
Si

P
S

wt% Balance 17~19 8.5~9.5 4.5~5.2 0.6~0.8 0.05~0.15 ≤0.5 ≤0.03 ≤0.1 ≤0.01

A particle size and shape analysis was conducted using scanning electron microscopy
(SEM)(Thermo Fischer Scientific Quanta 400FEG ESEM, Waltham, MA, USA) coupled with
energy-dispersive X-ray spectroscopy (EDS) (EDAX Genesis X4M, AMETEK, Berwyn, PA,
USA); spectra were used to determine chemical composition to complement the evaluation
of maraging steel powder from each supplier. Maraging steel powder was analysed
using the high-resolution SEM images (Thermo Fischer Scientific Quanta 400FEG ESEM,
Waltham, MA, USA), and EDS analysis was accessed using the FEI Quanta 400 FEG
ESEM/EDAX Genesis X4M (Thermo Fischer Scientific Quanta 400FEG ESEM, Waltham,
MA, USA/EDAX Genesis X4M, AMETEK, Berwyn, PA, USA) of high resolution (Schottky).
Particle size distribution and morphology were measured using ImageJ software (version
1.51p, National Institutes of Health, Bethesda, MD, USA).

2.1.3. Dimensional Analysis

A thorough study was conducted on factors affecting dimensional accuracy, including
part orientation, scan strategy, and manufacturing parameters. A DVM6 Digital Microscope
(Leica DVM6, Leica Microsystems GmbH, Wetzlar, Germany) captured high-resolution
images for dimensional analysis, and ImageJ software was used for precise measurements.
Dimensions measured are shown in Figure 5, with a tolerance of ±0.10 mm.
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2.1.4. Surface Roughness

Surface roughness analysis of maraging steel parts from suppliers 1 to 4 was con-
ducted according to the ISO 4287 standard [36]. This standard specifies key parameters
for characterising surface morphology, including Arithmetic Mean Deviation (Ra), Mean
Square Deviation (Rq), Maximum Profile Height (Rz), Asymmetry Factor (Rsk), and Flatness
Factor (Rku).

The Leica DVM6 Digital Microscope, equipped with a magnification objective (max-
imum field of view of 12.55 mm, 50× magnification), was employed for precise surface



Metals 2024, 14, 520 6 of 26

measurements. Leica LAS X software was used for 2D and 3D image acquisition. Leica Map
Start software (Leica Map Start, Leica Microsystems GmbH, Wetzlar, Germany) enabled 3D
surface visualisation, feature characterisation, and calculation of surface texture parameters
according to the standard.

2.1.5. Microstructural Analysis

As-built parts from suppliers 1–4 were prepared for metallographic analysis. Cross-
sections in both XY and Z orientations (see Figure 6) were cut, ground, and polished to a
final finish of 0.03 µm using colloidal silica.
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Optical microscopy (OM) (Leica DM 4000M, Leica Microsystems GmbH, Wetzlar,
Germany) was performed using a Leica DM 4000M microscope equipped with Leica Las
software. Before examination, specimens were etched with a solution of Picral 4% plus Nital
2% to reveal microstructural features. Scanning electron microscopy coupled with energy-
dispersive X -ray spectroscopy (SEM/EDS) was performed for higher resolution analysis
and elemental composition determination using a Thermo Fischer Scientific Quanta 400FEG
ESEM (Waltham, MA, USA), and EDAX Genesis X4M (Schottky) (AMETEK, Berwyn,
PA, USA).

2.1.6. Hardness Testing

Vickers hardness tests were performed on XY and Z cross-sections of as-built parts
according to ISO 6507-1:2005 [37]. Measurements were made using an indenter load of
100 mN for 15 s with Duramin 5 software (Struers, Ballerup, Hovedstaden, Denmark).
Twenty indentions were performed on each specimen.

2.2. Phase 2|Selected Supplier: Further Characterisation and Evaluation and Heat Treatments HT

The supplier demonstrating the best overall performance in Phase 1 was selected
for further analysis. Performance was evaluated based on key metrics, including dimen-
sional accuracy, surface finish, microstructure, and hardness. Additional evaluations were
conducted: strength and impact tests, electron backscatter diffraction (EBSD) (AMETEK,
Berwyn, PA, USA), and heat treatments (HT). The HT samples include microstructural
analysis and hardness tests.

2.2.1. Heat Treatments

The mechanical properties of maraging steel are predominantly determined by its heat
treatment process, which leads to the precipitation of intermetallic phases, consequently
enhancing its mechanical properties, like tensile strength, hardness, ductility, toughness,
wear resistance, and strength [35,38,39]. Maraging steel typically undergoes a thermal
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ageing treatment to enhance its mechanical properties, which is especially crucial in the
context of the L-PBF process. HTs were performed in the best supplier part, solubilisation (S)
and ageing (A). Solubilisation (S) at 850 ◦C for 1 h, followed by air cooling. Subsequently,
the age-hardening (A) was performed with a heating rate of 100 ◦C/h with a stage at
540 ◦C for 6 h, followed by furnace (Termolab, Águeda, Portugal) cooling (Figure 7). The
effect of performing and not performing solubilisation was studied; SA and A samples
were analysed microstructurally and tested (hardness tests were accessed as described in
phase 1).
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2.2.2. Tensile Testing

Six tensile test specimens (Figure 8a) with gauge dimensions of 10 × 10 × 55 mm3

(Figure 8b) were fabricated in two orientations. Three specimens were built with the
longer axis parallel to the building direction (Z, Figure 8d), and the other three were
built with longer and shorter axes parallel to the powder bed (XY, Figure 8d). The
ISO 6892-1:2012B [40] with a Shimadzu UH 1000KN (Shimadzu, Kyoto, Japan) performed
the tensile tests.
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Figure 8. Tensile test samples (a) with 8 × 12 × 185 mm3 gauge dimensions (b) and representation of
XY (c) and Z (d) in millimeters (mm).

2.2.3. Impact Testing

Eight Charpy-V notch specimens (Figure 9a) with gauge dimensions of 10 × 10 × 55 mm3

(Figure 9b) were fabricated in two orientations. Four specimens were built vertically, align-
ing the longer axis parallel to the building direction (Z, Figure 9d), and the remaining four
were constructed with longer and shorter axes parallel to the powder bed (XY, Figure 8c).
Impact tests were conducted according to ISO 148-1 standards [41], with evaluations per-
formed under both as-built and aged conditions (described next). Two specimens from
each orientation (XY and Z) were tested in each condition.
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representation of XY (c) and Z (d) in millimeters (mm).

The specimens were manufactured, including the V notch. As the examples shown
in Figure 10 show, the notch did not meet the requirements (2 mm depth, 45◦ angle, and
0.25 mm tip radius). Specimens were refurbished to obtain these dimensions.
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2.2.4. EBSD

EBSD mapping was performed on a 60 µm2 area on both sections, XY and Z for
supplier 1, using a hexagonal grid with a step of 0.6 µm. Datasets were processed using
OIM Analysis software (version 5.2, AMETEK, Berwyn, PA, USA). The following clean-up
routines were applied: (1) neighbour CI correlation (CI > 0.15) and (2) grain dilation with
minimum grain size of 6 pixels (~1.87 µm2) and minimum grain tolerance angle of 5◦.

3. Experimental Results and Discussion
3.1. Phase 1|Supplier Assessment: Powder and As-Built Parts Evaluation
3.1.1. Powder Analysis

A thorough analysis of powders from all suppliers revealed a predominantly spherical
or near-spherical shape without sharp edges, crucial for good flowability in L-PBF processes.
Particle sizes ranged from 6 to 60 µm, averaging 30 µm (Figure 11).

This size distribution is within the typical range for L-PBF maraging steel [42,43],
ensuring appropriate melt pool formation. However, some minor deviations in powder
characteristics between suppliers were noted. Supplier 2 exhibited a higher presence of
clusters composed of coalesced particles, while supplier 1 had occasional elongated particles
exceeding 60 µm in length. Such variations in particle morphology could potentially
influence powder packing density and melt pool dynamics during the L-PBF process.

EDS analysis indicated the presence of oxide inclusions rich in oxygen, aluminium,
and titanium on the particle surfaces of all suppliers’ powders (Figure 12). Figure 12
presents the analysis for supplier 1, with an SEM image (Figure 12a) and EDS spectrum of
the powders (Figure 12b, Z6) and inclusions (Figure 12c, Z7), as an example of the powders
from suppliers 2, 3 and 4.

These inclusions are commonly observed in gas-atomised metal powders [44,45].
Although their presence could raise concerns about final part properties, their overall
chemical composition aligns with expectations for maraging steel powders (Table 3).

Table 3. EDS quantification of powder particles (P) and inclusions (I) for each supplier.

Alloying Element (wt%) C O Mo Ti Fe Co Ni Al

Supplier 1 (P) 0.48 1.91 4.96 1.36 66.73 7.57 16.99 7.13
Supplier 1 (I) 0.84 40.01 - 46.69 4.25 1.08 - -
Supplier 2 (P) 0.53 - 5.72 1.44 64.92 9.42 - -
Supplier 2 (I) 0.75 17.34 4.31 2.44 38.19 5.83 10.67 20.48
Supplier 3 (P) 0.69 1.41 5.14 0.75 66.15 8.51 17.35 -
Supplier 3 (I) - 25.87 - 50.49 13.24 - 2.7 7.7
Supplier 4 (P) 0.51 - 5.5 1.31 64.43 9.99 18.26 -
Supplier 4 (I) 0.88 26.62 2.79 12.9 20.92 2.9 4.52 28.46
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Figure 11. SEM image of the maraging steel powders used in this study from suppliers (a) 1, (b) 2,
(c) 3, and (d) 4.

Overall, the powders used by all suppliers exhibited characteristics that were generally
suitable for L-PBF processing. However, the observed subtle differences in particle morphol-
ogy and inclusion content highlight the potential for variations in powder bed behaviour
and differences in melt pool formation and solidification. These differences may contribute
to the variations in surface quality, dimensional accuracy, and microstructure observed
among the suppliers’ parts, a crucial point to explore further in the upcoming sections.
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Figure 12. SEM analysis of supplier 1 maraging steel powder (a), and the result of EDS analysis for
Z6 (b) and EDS analysis for inclusion Z7 (c).

3.1.2. Dimensional Accuracy

Dimensional analysis (Table 4) revealed significant differences in accuracy among
parts produced by the four suppliers. Supplier 1 demonstrated superior performance,
with measurements consistently falling within the specified tolerance limits for dimensions
1, 4, 5, 6, and 7. Conversely, suppliers 2 and 4 exhibited substantial deviations, indicative of
part distortion. Supplier 3, while slightly exceeding tolerances, was closer to the acceptable
range. The interconnected nature of dimensions 2 and 3 likely amplifies discrepancies
when distortions occur.

These findings highlight the complex influence of L-PBF process parameters on di-
mensional accuracy. Variations in laser power, scanning strategy, hatch spacing, or layer
thickness between suppliers can induce different thermal gradients within the part during
the build. These thermal gradients can cause uneven shrinkage and distortion, leading
to the observed dimensional inaccuracies [46–48]. Moreover, the presence of build sup-
ports and their geometry, while necessary, can introduce additional variability due to their
interaction with the part as it is being manufactured.

Methodology refinement is necessary further to improve the reliability of dimensional
analysis for L-PBF parts. Dedicated metrology equipment specifically designed for complex
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AM geometries would provide more precise evaluations of distortion and shrinkage [49,50].
Addressing these challenges is crucial for optimising AM processes and ensuring consistent
dimensional quality.

Table 4. Dimensional analysis. Measure 1 to 7 (description available in Figure 5).

Reference
Dimension

Supplier 1 Supplier 2 Supplier 3 Supplier 4
Dimension

(mm3)
Tolerance

(±0.10 mm)
Dimension

(mm3)
Tolerance

(±0.10 mm)
Dimension

(mm3)
Tolerance

(±0.10 mm)
Dimension

(mm3)
Tolerance

(±0.10 mm)

1 35.00 34.91 −0.09 34.83 −0.17 34.95 −0.05 34.84 −0.16
2 36.00 36.55 0.55 36.28 0.28 36.30 0.30 35.89 −0.11
3 27.34 27.84 0.50 27.73 0.39 27.72 0.38 27.2 −0.14
4 10.00 9.98 −0.02 10.23 0.23 10.01 0.01 10.02 0.02
5 25.00 25.07 0.07 24.83 −0.17 24.88 −0.12 24.78 −0.22
6 11.00 11.03 0.03 10.85 −0.15 10.89 −0.11 10.89 −0.11
7 6.00 5.98 −0.02 6.04 0.04 6.06 0.06 5.86 −0.14

3.1.3. Surface Roughness

Surface roughness plays a crucial role in the overall quality of L-PBF parts, influencing
dimensional accuracy and critical performance aspects like fatigue strength and surface
finish [48,51]. Leica software enabled roughness analysis, and Figure 13 presents an example
of how it is given in the data collected, in this case for supplier 1. The study revealed that
suppliers 1 and 4 achieved similar Ra values (Table 5), which were significantly lower than
those of suppliers 2 and 3. This aligns with expectations from the literature [48] for metal
AM parts. However, supplier 1 consistently demonstrated the best surface finish among
all suppliers.
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Table 5. Roughness dimensions attained.

Supplier 1 Supplier 2 Supplier 3 Supplier 4

Ra (µm) 2.5 4.0 4.3 2.8
Rq (µm) 3.1 4.9 5.2 3.5
Rz (µm) 12 20 20 14

Rsk 0.11 0.10 0.08 0.36
Rku 2.5 2.7 2.5 2.9

Process parameters and powder characteristics likely underlie these observed dif-
ferences. The solidification behaviour of the melt pool is strongly influenced by factors
like laser power, scanning strategy, and layer thickness, all of which can impact surface
roughness [51–54]. Additionally, variations in powder particle morphology (noted in the
Section 3.1.1) could contribute. Coarser or irregular particles tend to increase surface
roughness [48].

The surface roughness analysis is presented in Table 5 for all suppliers. Suppliers 1
and 4 exhibit similar Ra values, with a slight difference of approximately 0.3 µm, signifi-
cantly smaller than parts from suppliers 2 and 3, which also have a difference of 0.3 µm,
with the highest Rq deviation. The surface characteristics of the analysed parts provide
further insights. Positive Rsk values and Rku values under three for all suppliers suggest the
presence of a surface dominated by peaks rather than valleys. These metrics are essential
for applications where surface contact and friction play a role. Gibson et al. [48] suggest
that acceptable Ra falls within the range of 4 to 6.5 µm. In comparison, Rz falls within
the range of 20 to 50 µm, inferring that suppliers 1 and 4 have values below, indicating
superior quality compared to suppliers 2 and 3. Regarding Rz, suppliers 1 and 4 are below
the reference values again, and suppliers 2 and 3 are within the limits.

Understanding and controlling surface roughness is essential in L-PBF, particularly for
industries with strict surface quality requirements. Surface defects from roughness act as
stress concentrators, promoting fatigue crack initiation, reducing die lifetime, and increas-
ing costly downtime for replacement [52,55]. Optimising L-PBF process parameters and
ensuring powder quality is crucial for achieving the desired surface characteristics, enhanc-
ing fatigue resistance, and ensuring the suitability of parts for their intended applications.

3.1.4. Microstructure

Optical microscopy (OM) analysis of all suppliers’ parts revealed characteristic mi-
crostructural features of L-PBF maraging steel (Figure 14). The presence of overlapping
melt pools (XY direction) and laser scan tracks (Z direction) reflects the layer-wise build
process employed in L-PBF. Suppliers have used varying scanning strategies, as evidenced
by differences in melt pool sizes and scan track patterns. These strategic variations reduce
porosity and internal stresses within the manufactured parts.

A closer examination highlights microstructural variations between suppliers. Except
for supplier 2, the microstructures generally reveal fine cellular and columnar grains
growing perpendicular to the melt pool boundaries along the build direction. This grain
morphology is typical of L-PBF maraging steel and results from the rapid solidification
conditions [17,19,38]. In contrast, supplier 2 exhibits a fine microstructure without clear
cellular or dendritic features, potentially indicating a different thermal history during
processing. This might be due to a strategy involving reheating or extended laser exposure
time after the deposition of each layer.
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Figure 14. Cross-section images at OM of the four as-built parts for supplier 1 ((a). XY, (b). Z),
supplier 2 ((c). XY, (d). Z), supplier 3 ((e). XY, (f). Z), and supplier 4 ((g). XY, (h). Z).

SEM analysis (Figure 15) further confirmed microstructural similarities between sup-
pliers 1, 3, and 4, consisting of fine martensitic structures with precipitates, as expected for
maraging steel under rapid cooling conditions [16,38,56]. The differences in grain morphol-
ogy observed under OM are likely due to subtle variations in cooling rates and thermal
gradients experienced during the build, influenced by supplier-specific process parameters.
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conditions [17,19,38]. In contrast, supplier 2 exhibits a fine microstructure without clear 
cellular or dendritic features, potentially indicating a different thermal history during 
processing. This might be due to a strategy involving reheating or extended laser exposure 
time after the deposition of each layer. 

SEM analysis (Figure 15) further confirmed microstructural similarities between sup-
pliers 1, 3, and 4, consisting of fine martensitic structures with precipitates, as expected 
for maraging steel under rapid cooling conditions [16,38,56]. The differences in grain mor-
phology observed under OM are likely due to subtle variations in cooling rates and ther-
mal gradients experienced during the build, influenced by supplier-specific process pa-
rameters. 
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EDS analysis revealed inclusions rich in titanium, aluminium, and oxygen, likely 
oxides (Figure 16), which is consistent with the literature’s findings on maraging steel 
[16,18]. The EDS spectrum of the Z1 area (Figure 16a–c) and the Z3 area (Figure 16d) re-
vealed titanium, aluminium, and oxygen, enabling the titanium and aluminium combined 
oxides (TiO2:Al2O3). Supplier 3 demonstrated the smallest quantity and size of inclusions, 
while supplier 2 showed the most inclusions aligned along the laser scan direction. The 
variances in inclusion characteristics suggest potential differences in powder quality (as 
seen in point 3.1.1) and oxygen control during the L-PBF process. 
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Figure 15. Maraging steel SEM microstructure for the four parts for supplier 1 ((a). XY, (b). Z),
supplier 2 ((c). XY, (d). Z), supplier 3 ((e). XY, (f). Z), and supplier 4 ((g). XY, (h). Z).

EDS analysis revealed inclusions rich in titanium, aluminium, and oxygen, likely ox-
ides (Figure 16), which is consistent with the literature’s findings on maraging steel [16,18].
The EDS spectrum of the Z1 area (Figure 16a–c) and the Z3 area (Figure 16d) revealed
titanium, aluminium, and oxygen, enabling the titanium and aluminium combined oxides
(TiO2:Al2O3). Supplier 3 demonstrated the smallest quantity and size of inclusions, while
supplier 2 showed the most inclusions aligned along the laser scan direction. The variances
in inclusion characteristics suggest potential differences in powder quality (as seen in
point 3.1.1) and oxygen control during the L-PBF process.
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3.1.5. Hardness

Hardness testing provided valuable insights into the mechanical properties of the
L-PBF-produced maraging steel parts, indicating their suitability for industrial applications.
The hardness values across the four suppliers exhibited variations (Figure 17). Supplier 1
demonstrated the highest average Vickers hardness (XY: 371 ± 13 HV, and Z: 388 ± 17 HV),
while suppliers 2, 3, and 4 exhibited lower average values (between 340 and 360 HV to
XY, and 360 and 380 HV). These variations suggest that even subtle differences in L-PBF
process parameters can significantly impact the mechanical characteristics of the final parts.
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3.2. Phase 2|Selected Supplier: Further Characterisation and Evaluation and Heat Treatments HT

The inherent layer-by-layer nature of L-PBF introduces microstructural anisotropy
that can influence hardness and other mechanical properties [57–59]. Variations in thermal
gradients during the build process, influenced by process parameters, can lead to localised
grain structure and precipitate distribution differences. Understanding how specific L-PBF
process parameters impact hardness is crucial for optimising parts for specific industrial
applications. Maraging steel’s well-known corrosion resistance [19,54,60] remains an
additional advantage of this class of alloys for demanding applications.

The initial assessment phase employed a comprehensive suite of analyses, including
dimensional measurements, surface roughness evaluation, and hardness testing, to assess
the mechanical properties of L-PBF fabricated parts for industrial applications. While all
parts utilised the same maraging steel material and L-PBF technology, clear distinctions
emerged among the suppliers. Supplier 1’s parts consistently surpassed expectations
in critical areas. Dimensional analysis revealed exceptional accuracy, consistently meet-
ing specified tolerances. Surface roughness analysis confirmed excellent surface quality,
exceeding industry standards for similar dies. Microstructure examinations further bol-
stered these positive findings, showcasing fine martensitic structures and precipitates the
characteristics of high-performance maraging steel. These combined results highlight the
significant influence that process parameter variations can exert on final part properties.
Consequently, the part manufactured by supplier 1 was chosen for in-depth mechanical
testing in Phase 2. This strategic selection leverages the part’s demonstrated superiority
in dimensional accuracy, surface finish, and microstructure, offering the highest potential
for meeting the performance demands of industrial applications. Phase 2 adds additional
evaluations of the mechanical behaviour of this supplier, evaluating its performance in both
as-built and in HT conditions. This analysis aims to elucidate the intricate relationships
between L-PBF process parameters, microstructure development, and resulting mechanical
properties, ultimately paving the way for optimising L-PBF parts for industrial success.

3.2.1. EBSD

Maraging steels exhibit commendable strength and toughness, attributes achieved
through age hardening, or ageing, of a ductile, low-carbon body-centred cubic (BCC)
martensitic structure with relatively robust strength [16]. The inverse pole figure (IPF)
maps obtained by EBSD for supplier 1 (Figure 18) reveal the grain structure along XY
and Z sections, respectively, with a full BCC crystal structure. The IPF map in Figure 18a,
observed along the XY section similar to Figure 14a, shows a crossed grain structure
obtained by the crossed remelting paths imposed by the laser. The progressive remelting,
layer by layer, leaves behind a characteristic broken columnar structure that promotes grain
refinement with enhanced mechanical properties. The remelt pool features of Figure 14b are
also visible in Figure 18b, corresponding to the Z section with the typical columnar grain
growth parallel to the heat gradient during solidification. A refined grain structure is better
perceived in the grain boundary maps displayed in Figure 14c,d, with an average grain
size of 3.07 and 3.22 µm, respectively (grains touching the observation field limits were not
considered). Sub grain boundaries, a 5–15◦ misorientation angle, accounting for nearly 20%
of the total boundaries, is identified on both maps. A high entropy structure is a result of
quick solidification and cooling processes, which will promote structure recrystallisation
in the subsequent heating and cooling steps during the fusion of upper layers. Grain
growth is very limited due to the quick nature of these steps, which results in a refined
grain structure. Texture plots in Figure 14e,f suggest different crystallographic orientation
preferences between section XY and section Z. The calculated orientation distribution peak
for Z is approximately two-fold higher than for the XY section. However, the interpretation
of texture based on these maps is somewhat limited since the area observed is relatively
small. A larger observed area coupled with a higher-resolution image would be required
for a more statistically significant texture analysis.
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3.2.2. Impact Testing

Charpy impact tests (Table 6) further highlight the crucial influence of both build
orientation and heat treatment on the impact resistance of supplier 1’s L-PBF maraging
steel part. As-built specimens demonstrated a striking anisotropy: Z-oriented specimens
exhibited significantly higher impact energy absorption (38.6 J) than XY-oriented specimens
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(4.4 J). This aligns with the expected impact behaviour due to the layer-by-layer nature
of the L-PBF process. While post-build ageing led to a marginal improvement in impact
energy for XY specimens (4.9 J), it had minimal effect on the already higher toughness
of Z-oriented specimens (36.5 J). These findings indicate that while heat treatment can
offer some benefits, build orientation remains the dominant factor influencing impact
resistance. This emphasises the importance of carefully considering both build parameters
and potential post-processing treatments during the design and manufacturing stages to
achieve the desired impact performance in L-PBF parts.

Table 6. Charpy impact test results for supplier 1, as-built and ageing, in building directions XY
and Z.

Orientation Build Orientation Energy (J)

XY
XY 4.4 ± 0.4
XY 38.6 ± 0.9

Z
Z 4.9 ± 0.5
Z 37 ± 1

3.2.3. Heat Treatment Effects

Heat treatment dramatically altered the microstructure and mechanical properties of
supplier 1’s L-PBF maraging steel part. Age hardening, compared to the as-built condition
(Figure 19), resulted in a substantial increase in hardness, particularly in the Z-direction
which showed an increase of around 40% (from 371 ± 13 HV to 522 ± 23 HV in XY, and from
388 ± 17 HV to 566 ± 29 HV in Z) [61]. This improvement is attributed to the formation
of intermetallic precipitates, which refine the microstructure and promote homogenous
precipitate distribution. Microstructural analysis (Figure 20) confirms this transformation,
revealing that both ageing (A) and solubilisation with ageing (SA) treatments eliminate
the characteristic as-built cellular/columnar microstructure. This is replaced by a massive
martensitic structure with very fine precipitates, explaining the increased hardness.
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While hardness measurements suggest a slight advantage for solubilisation treatments,
microstructural observations (Figure 20) reveal minimal differences between the A and
SA conditions. This raises the possibility that the microstructural “history” induced by
the L-PBF process itself may facilitate the formation of a refined microstructure during
ageing, even without a separate solubilisation step. Further investigation is warranted to
determine if the practical benefits of solubilisation outweigh the additional processing time
and energy costs involved.

3.2.4. Tensile Testing

Tensile tests (Table 7) exposed anisotropy in the mechanical behaviour of supplier
1’s L-PBF maraging steel part. Z-oriented specimens (aligned with the build direction)
demonstrated superior yield strength (Rp0.2 = 1066 ± 52 MPa), ultimate tensile strength
(Rm = 1178 ± 16 MPa), and elongation at fracture (13 ± 1%) compared to XY-oriented speci-
mens. Conversely, XY specimens exhibited a higher modulus of elasticity (E = 212 ± 69 GPa)
than their Z-oriented counterparts (E = 208 ± 57 GPa). This distinct variation in strength,
ductility, and stiffness underscores the profound impact of build orientation on the me-
chanical properties of L-PBF-manufactured parts. Understanding and accounting for this
anisotropy, driven by the process-induced microstructure, is essential when designing
L-PBF parts to ensure they meet the specific performance demands of their intended
applications.

Table 7. Tensile strength for supplier 1.

Orientation Rp0.2 (MPa) Rm E (GPa) Elongation (%)

XY 972 ± 53 1073 ± 13 212 ± 69 9 ± 1
Z 1066 ± 52 1178 ± 16 208 ± 57 13 ± 1

4. Conclusions

To fully realise the potential of AM for die manufacturing, this study undertakes
a comprehensive benchmarking analysis of four L-PBF systems encompassing powder
analysis, dimensional accuracy, surface finish, microstructure, and hardness. The main
conclusions are as follows:

• Powders present variations in particle morphology and amount of oxide inclusions. It
was also observed that the presence of particle clusters or elongated particles, in some
cases, can potentially impact powder bed and melt pool behaviours.
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• The observed variations in dimensional accuracy between suppliers underscore the
profound sensitivity of L-PBF processes to parameter variations. These variations can
significantly alter thermal gradients and shrinkage behaviour within the part.

• Suppliers 1 and 4 had the best surface finish. Process parameters and powder charac-
teristics likely influence surface roughness.

• Suppliers 1, 3, and 4 exhibited typical L-PBF maraging steel microstructures with
fine cellular and columnar grains growing perpendicular to the melt pool boundaries
along the build direction, characteristic of rapid solidification conditions in L-PBF. The
absence of clear cellular or dendritic features in supplier 2’s microstructure suggests
a different thermal history during processing, potentially involving extended laser
exposure or a reheating strategy.

• Supplier 1 had, on average and considering both directions, the highest hardness, indi-
cating that process parameter variations can significantly impact mechanical properties.

The conclusions based on further characterisation of supplier 1 are as follows:

• EBSD analysis showed a refined grain structure in XY and Z due to the rapid L-PBF
process. Differences in crystallographic orientation between XY and Z sections suggest
microstructural anisotropy.

• Tensile test results demonstrated a significant anisotropy, with the Z section showing
superior strength and ductility but lower stiffness.

• Impact tests showed that the as-built Z section had superior toughness. Heat treatment
had a minimal effect, emphasising this build orientation’s dominance.

• HT eliminates the characteristic as-built cellular/columnar microstructure. Age hard-
ening transformed massive martensite into fine precipitates, resulting in a hardness
increase from 371 to 522 HV and from 388 to 566 HV in XY and Z sections, respectively.
Solubilisation before ageing offered a slight hardness gain, but its practical benefits
need further investigation.

• The variability observed in this study reinforces the need for industry-wide standards
in L-PBF, standardised process control methods and technical specifications for AM-
produced components.
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