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Abstract: This purpose of this paper is to examine the relationship between crack growth equations
based on Elber’s original plastic wake induced crack closure concept and the fatigue threshold as
defined by the American Society for Testing and Materials (ASTM) fatigue test standard ASTM
E647-15el. It is shown that, for a number of conventionally manufactured metals, the function U(R),
where R is the ratio of the minimum to maximum applied remote stress, that is used to relate the
stress intensity factor ∆K to the effective stress intensity factor ∆Keff is inversely proportional to the
fatigue threshold ∆Kth(R). This finding also results in a simple closed form equation that relates the
crack opening stress intensity factor Ko(R) to ∆K, Kmax, and the fatigue threshold terms ∆Kth(R) and
∆Keff,th. It is also shown that plotting da/dN as function of ∆K/∆Kth(R) would appear to have the
potential to help to identify the key fracture mechanics parameters that characterise the effect of test
temperature on crack growth. As such, for conventionally manufactured metals, plotting da/dN
as function of ∆K/∆Kth(R) would appear to be a useful addition to the tools available to assess the
fracture mechanics parameters affecting crack growth.

Keywords: fatigue crack growth; crack closure; fatigue threshold; additive manufacturing;
temperature effects

1. Introduction

Whilst this paper focuses on fracture mechanics based tools for assessing crack growth
in aerospace structures, it should be noted that the study of crack growth is central to a
wide crossection of industries, viz: rail, nuclear power, offshore oil and gas, etc. Indeed,
to put things into perspective, ref. [1] states that “in the United States of America (USA),
there are more trips per day over structurally deficient bridges than there are McDonald’s
hamburgers eaten in the entire USA”.

The certification requiremets for military aircraft are delineated in MIL-STD-1530D [2].
The guidelines for the airworthiness certification of additively manufactured (AM) and
cold spray additively manufactured (CSAM) parts are gven in United Stes Air Force
Structures Bulletin EZ-SB-19-01 [3]. Both MIL-STD-1530D and EZ-SB-19-01 mandate that
all durability and damage tolerance (DADT) analyses be performed using linear elastic
fracture mechanics (LEFM). Indeed, EZ-SB-19-01 stated that the accurate prediction of the
DADT of an AM part is perhaps the greatest challenge facting the airworthiness acceptance
of AM parts. Consequently, in this paper, we will confine our focus on fatigue crack growth
studies that relate da/dN to ∆K. Here a is the crack length, N is the number of fatigue cycles,
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and ∆K = Kmax − Kmin, where Kmax and Kmin are the maximum and minimum values of the
crack tip stress intensity factor (K) in a load cycle.

As a result, the DADT assessment of conventionall manufactured, AM and CSAM
parts must be based on the appropriate da/dN versus ∆K curve. However, it is now
known [4–20] that the variability in the da/dN versus ∆K curves associated with the
growth of long cracks in more than one hundred and twenty independent tests performed
on a range of additively manufactured (AM) materialscan often be accounted for by
expressing the crack growth rate (da/dN) as a function of ∆κ, where ∆κ is the Schwalbe
crack driving force [21], and by allowing for the effect of the manufacturing process on just
two parameters, namely the cyclic fatigue threshold and the fracture toughness. Here ∆κ is
Schwalbe’s crack driving force which is defined as:

∆κ = (∆K − ∆Kthr)/
√

(1 − Kmax/A) (1)

The terms ∆Kthr and A in Equation (1) are the fatigue threshold and the apparent cyclic
fracture toughness respectively. The additively manufactured materials for which this
observation has been found to hold include: Ti-6Al-4V [6,7,11,12], Inconel 718 [5], Inconel
625 [5], 316L steel [6,17,20], 304L steel [20], Aermet 100 steel [6], 17-4 Ph steel [15], Scal-
malloy [12], an aluminium-scandium-magnesium alloy [4], 18Ni 250 Maraging steel [8,19].
This observation also appears to hold for a range of conventionally manufactured materi-
als [22–29], a range of CSAM materials [20] and for plasma sprayed metals and alloys [30].

Figure 5 can often be predicted by setting the fatigue threshold term in Equation (1) to
a small value, typically in the range 0.1 ≤ ∆Kthr ≤ 0.3 MPa

√
m.

(i) The multi-axial fatigue life of AM parts can often be computed using the same formu-
lation [13,18];

(ii) The variability in the growth of long cracks in conventionally manufactured metals
can also often be captured by allowing for the variability associated with the fatigue
threshold [22].

Indeed, variants of this approach have also been shown to be able to model delam-
ination growth in composites as well as cohesive crack growth in adhesives and nano-
composites, see [31–37].

Many legacy fixed and rotary wing aircraft make extensive use of 7000 and/or
2000 series aluminium alloys. Consequently, the recent finding [38] that Boeing Intelli-
gence and Weapon Systems laser powder bed fusion (LPBF) Scalmalloy has a damage
tolerance that is superior to that of the conventionally manufactured aluminium alloy 7075-
T6 has highlighted the potential of Scalmalloy to be used to print limited life load bearing
parts. However, as previously noted USAF Structures Bulletin EZ-19-01 [3] states that
the accurate prediction of its durability and damage tolerance (DADT) is one of the most
challenging issues facing the acceptance of AM parts. These various findings/observations
raise the question: Can we link the observations delineated above, namely that the fatigue
threshold would appear to be a key parameter in characterising crack growth in AM mate-
rials and cold spray repairs, to the crack closure concept that is commonly used to assess
the damage tolerance of conventionally built aerospace parts?

In this context it should be noted that Paris et al. [39] were the first to suggest that,
since [40,41] had shown that the stress-intensity factor K, uniquely characterises the near
tip stress field, then the rate of fatigue crack growth should be a function of ∆K and
Kmax [39,42,43]. However, when expressing da/dN as a function of ∆K it is found that the
resultant da/dN versus ∆K curves can become dependent on the R ratio. (Here R is defined
as R = Kmin/Kmax.)

Frost [44] subsequently revealed, for long cracks, the existence of a fatigue threshold
(∆Kth(R)), which can be a function of the R ratio, below which a crack will not grow. (The
ASTM fatigue test standard ASTM E647-15el [45] defines ∆Kth as the value of ∆Kth at a
crack growth rate da/dN of 10−10 m/cycle.) Elber [46,47] subsequently introduced the
idea that the R ratio dependency of the da/dN versus ∆K curves could be accounted for
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by introducing what was termed an “effective stress intensity factor” (∆Keff) that accounts
for plastic wake induced crack closure. (Here it should be noted that, as a result of the
stress singularity at a crack tip the linear elastic fracture mechanics solution suggests that
the region surrounding the crack will see an infinite stress. In reality, this region will yield.
As a result, during fatigue crack growth the crack will grow through this yielded material
and in the process the material is unloaded. This process results in compressive stresses
behind the crack and the possibility that the crack faces will close. It is this process that
is commonly refered to as “plastic wake induced crack closure. At this point, it should
be mentioned that, whilst, as discussed in [48–53], there are other forms of crack closure
and other formulations that attempt to account for this effect, this paper only addresses
Elber’s [46,47] original formulation and not the larger cross-section of formulations that are
summarised in [52].

As outlined in [48–64] variants of this approach are now widely used to model the
growth of long cracks in conventionally manufactured metals. However, it should also
be noted that it has recently been suggested [65] that R ratio effects on the growth of long
cracks can be interpreted as a reflection of the effect of the environment on the crack tip
region rather than crack closure per se.

The literature also contains a number of other crack growth equations that are based
on the hypothesis that da/dN should be a function of how much ∆K exceeds its threshold
value [4,21,66–80]. As such the purpose of the present paper is to attempt to investigate a
possible relationship between ∆Keff, as originally defined by Elber [46,47], and the fatigue
threshold term ∆Kth. This would provide a link between crack growth equations that are
based on Elber’s plastic wake induced crack closure concept and those that are based on
the assumption that the crack growth rate should be a function of how much ∆K exceeds
its threshold value.

It should be stressed that the findings presented in this paper do not constitute a proof
that the effect of crack closure effects can always be interpreted as being reflected by its
effect on the fatigue threshold. Indeed, this study is specifically confined to those materials
where Elber’s original formulation would appear to be a reasonable first approximation.

We also show that plotting da/dN as function of ∆K/∆Kth(R) would appear to have
the potential to help identify the fracture mechanics parameters that characterise the effect
of the test temperature on crack growth.

2. Materials and Methods

In order to achieve the goals stated above the authors have examined papers that
are available in the open literature. Of the more than one hundred articles examined
ninety eight are in peer reviewed Journals, five are available on the North American
Space Administration (NASA) website, and one is available on the US Federal Aviation
Administration (FAA) website. In those cases where the reference is not a Journal paper
that is available in the open literature the web address of the reference is also given.

2.1. Choice of Materials

A focus of this paper is to examine if this phenomenon holds for a range of aerospace
aluminium, steel, and titanium alloys. (By this we mean if plotting da/dN as a function of
∆K/∆Kth(R) collapses the various R ratio dependent da/dN versus ∆K curves onto a single
master curve). In this context, it should be recalled that [81] had previously illustrated this
phenomenon for a range of older aerospace aluminium alloys, namely 2024-T3, 7075-T651,
7050-T7451, 6013-T651 and 2324-T39. Consequently, we opted to study the more modern
alloys 7085-T7452 [82], which is widely used on the F-35, and AA2524-T3 [83], which is
a replacement for 2024-T3. On the other hand, given the role that [49,50] played in the
development of the discipline, we thought it appropriate to examine if this phenomenon
also held for the aluminium alloy 7055 that was studied in [49,50]. Similarly, crack growth
in the aluminium alloy 7049 [84], which is widely used in military aircraft, is also examined.
Furthermore, since [81] had not investigated stainless steels we opted to study 304L stainless
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steel. Similarly, we chose to study the Titanium alloy Ti622 since it is being considered for
the next generation of supersonic airliners [85].

In the case of the choice of an engine material there were two obvious choices, viz:
Inconel 718 and Inconel 625. However, test data at both a range of R ratio’s and temperatures
was needed. As a result the super alloy GH4169 [86], which is the Chinese version of Inconel
718, was chosen.

Noting that, as previously mentioned, [81] revealed that in the case SLM Inconel
625 plotting da/dN as a function of ∆K/∆Kth(R) collapses the various R ratio dependent
da/dN versus ∆K curves onto a single master curve, we opted to study a quite different
AM material, namely Laser powder bed fusion (LPBF) built Hastelloy X [87]. (The SLM
Inconel 625 sata analysed in [81] was taken from [88]).

The examples given [89,90], were chosen since they illustrated the temperature effects
can sometimes merely reflect the effect of temperature on the fatigue threshold. In the case
of [89] this example was chosen since it related to 304L stainless steel, which is widely used
in aerospace. On the other hand [90] was chosen to investigate a quite different class of
metals, namely medium entroy Cantor alloy CrCoNi.

2.2. The Relationship between Plasticity Induced Crack Closure and the Fatigue Threshold

Examining the above references revealed that Elber [46,47] was the first to introduce a
function U(R), which he [47] suggested was independent of both ∆K and Kmax, that was
used to define a term ∆Keff, viz:

∆Keff = U(R) ∆K (2)

such that, for long cracks that experience plastic wake induced crack closure, the resultant
da/dN versus ∆Keff curves associated with each individual R ratio dependent da/dN versus
∆K curve all fell onto a single curve regardless of the R ratio.

Several possible forms of this (scaling) function U(R) are discussed in [50–56,59]. Here
it should be noted that in [47] the function U was only a function of R. (A brief discussion
of this statement is given in Appendix A) In such cases it thus follows from Equation (2)
and from the facts that

(a) if as per Elber [47] U(R) is only a function of R rather than of both ∆K and Kmax;
(b) and, if as per [47] for a given value of R the function U(R) has a fixed (constant) value;

then if each R ratio dependent da/dN versus ∆K curve is to collapse onto a single
da/dN versus ∆Keff curve by merely multiplying (each value of) ∆K by the function U(R),
then Equation (2) can be rewritten in the form:

∆Keff = (∆Keff,th/∆Kth(R)) ∆K (3)

Here ∆Keff,th is the value of ∆Keff at a crack growth rate da/dN of 10−10 m/cycle, and ∆Kth(R)
is the value ∆K, for a given R ratio dependent crack growth curve, at a crack growth rate
da/dN of 10−10 m/cycle respectively. A graphical explanation of this, for two arbitrary
R ratios, which we have termed R = R1 and R = R2, is shown in Figure 1. (Equation (3)
forces the various (scaled) R ratio dependent da/dN versus ∆K curves to coincide at a crack
growth rate da/dN = 10−10 m/cycle). It thus follows that, for long cracks where crack
growth is consistent with Elber’s plastic wake induced crack closure equation, the function
U(R) can be expressed as:

U(R) = ∆Keff,th/∆Kth(R) (4)

In other words ∆Keff, as defined by Elber [46,47], should be linearly proportional to
∆K/∆Kth(R).
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Figure 1. A graphical presentation of Elber’s crack closure concept.

Elber [46,47] also introduced a function Ko(R), which is a function of the R-ratio and
which he defined as the value of the stress intensity factor at which a crack opens, such that

U(R) = (Kmax − Ko(R))/(Kmax − Kmin) (5)

As a result it is common to plot da/dN as a function of (Kmax − Ko(R)). However, as
explained in [49,50], it is sometimes best to plot da/dN as a function of ∆K2/π0, where
∆K2/π0 = (Kmax − 2Ko(R)/π). This formulation, which [49–51] termed the ∆K2/π0 approach,
is discussed further in Appendix A.

Equations (4) and (5) enable us to determine a simple (closed form) equation that
relates the crack opening stress intensity factor Ko(R) to ∆K, Kmax and ∆Kth(R), viz:

Ko(R) = Kmax (1 − (1 − R) ∆Keff,th/∆Kth(R)) (6)

which, when expressed in terms of the energy release rate G becomes

√
Go(R) =

√
G max (1 − (1 − R) ∆

√
Geff,th/∆

√
Gth(R)) (7)

It follows from the above discussion that whenever Elber’s approach to plastic
wake-induced crack closure, i.e., Equation (2), holds, then when da/dN is plotted against
∆K/∆Kth(R) the various “normalised” curves should also all fall onto a single curve. How-
ever, it is important to note that, as shown in [61,91–94], the use of the ASTM load-reducing
test protocol to determine the fatigue crack thresholds can (sometimes) result in erroneous
values of ∆Kth(R). Hence, Equation (4) may not (always) hold for data sets obtained using
the American Society for Testing and Materials (ASTM) ASTM E647-15el [45] load-reducing
test protocol, see Appendix B. As such, the use of the equation:

Ko(R) = Kmax (1 − (1 − R) ∆K’eff,th /∆K’th(R)) (8)

where ∆K’eff,th and ∆K’th(R) are the values of ∆Keff and ∆K(R) at a crack growth rate of
da/dN = 10−8 m/cycle, may sometimes be more appropriate.

Furthermore, as illustrated in [95–97] there are a range of metals that whilst they have
an R ratio dependency in the near threshold region, see minimal R ratio effects outside
of this region and hence see little (if any) crack closure in the Paris region. As a result,
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the concept of crack closure and the concept discussed in this paper does not hold for
these materials.

Similarly, Appendix X3 (contained) in the fatigue test standard ASTM E647-15el [45]
notes that it is not clear if a fatigue threshold exists for small naturally occurring cracks.
This finding has significant implications when assessing the durability of metallic airframes
since it means that the crack growth equation needed to assess the durability can differ
from that associated with the closure free crack growth curve, see [19] for more details. A
more detailed discussion on the state of the art can be found in [61,98,99].

To the best of the authors knowledge, the observation that, for long cracks, when
da/dN was plotted against ∆K/∆Kth(R) the resultant R ratio dependent curves collapsed
onto a single curve was first presented in [100]. This paper studied crack growth in: 17-4PH
steam turbine blade steel tested in air at 90 ◦C at R ratio’s that ranged from −1 to 0.9.
A range of additional examples, viz: 7050-T7451, 20-23-T39, 2024-T3, 6013-T651, 7075-
T6511, 7055-T6511, a cold-rolled metastable Austenitic stainless steel, and an additively
manufactured Inconel 625 material built using selective laser melt (SLM) tested with the
crack at different orientations to the build direction, were subsequently presented in [81].

An interesting, and possibly related, feature of [81]was that it was shown that for
studies into delamination growth in double cantilever beam (DCB) composite laminates
the da/dN versus ∆

√
G curves, where G is the energy release rate, were a strong function of

the level of pre-cracking. However, when da/dN was plotted as a function of ∆
√

G/∆
√

Gth
these different curves essentially collapsed onto a single curve. (The different da/dN versus
∆
√

G curves are as a result of the retardation due to the different levels of fibre bridging
that are associated with the different levels of pre-cracking).

3. Illustrative Examples

To further illustrate this phenomenon, i.e., that when da/dN is plotted against ∆K/∆Kth(R)
the resultant “normalised” curves can collapse onto a single curve, let us consider crack
growth in the aluminium alloy AA7085-T7452 which is extensively used in the Lockheed
F-35 Joint Strike Fighter (JSF). The R = 0.1 and 0.8 da/dN versus ∆K curves given in [82]
for this material are reproduced in Figure 2. These curves were obtained from tests on
specimens with an array of surface beaking defects, The corresponding da/dN versus
∆K/∆Kth curves are shown in Figure 3. Here we see that when normalised in this fashion
the R = 0.1 and 0.8 da/dN versus ∆K/∆Kth curves do indeed collapse onto a single curve.
The values of ∆Kth used in Figure 3 are given in Table 1.

To continue this study, let us next consider the R = 0.1 and 0.5 da/dN versus ∆K curves
given in the NASA study [85] into crack growth in the titanium super alloy Ti-6A1-2Zr-
2Cr-2Sn-2Mo (Ti-6-2-2-2-2). These da/dN versus ∆K curves, which were obtained using
ASTM E447 standard eccentrically-loaded single edge notch tensile (ESE(T)) specimens, are
shown in Figure 4.

In this instance, estimated values of ∆Kth were given in [85]. These values of ∆Kth
are reproduced in Table 2. These values of ∆Kth can now be used to plot da/dN against
∆K/∆Kth(R). The corresponding “normalised plot” is shown in Figure 5, where we also see
that when plotted in this fashion the R = 0.1 and 0.5 curves again essentially collapse.

These observations, when taken together with Equation (4) and the additional exam-
ples given in [81,100] and in and Appendices A and C, support the conclusion reached
above that crack growth rate in conventionally manufactured metals would often appear
to be primarily controlled by the fatigue threshold.

The observation that for conventionally manufactured metals the R ratio effect on crack
growth is, to a first approximation, often reflected in the change of the fatigue threshold
∆Kth, is also consistent with the hypothesis first proposed by Hartman and Schijve [66], and
also by a number of other subsequent authors [61,67–80], that the crack growth rate (da/dN)
should be a function of how much ∆K exceeds its threshold value (∆Kth). This hypothesis,
i.e., that the crack growth rate (da/dN) should be a function of how much ∆K exceeds its
threshold value, would appear to be supported by the data presented in [4–29,81] for crack
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growth in conventionally manufactured, AM and CSAM metals. However, as illustrated
in [5–7,11,20], when when using the Hartman-Schijve crack growth equation to model
crack growth in AM and CSAM metals it would appear that allowance must also be made
for the variability in the fracture toughness that arises due to the manufacturing process
used to build the part and the anisotropic nature of AM and CSAM materials.
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Figure 3. The da/dN versus ∆K/∆Kth curves for the aluminium alloy AA7085-T7452.

Table 1. The values of ∆Kth used in Figure 3.

Material and R Ratio ∆Kth MPa
√

m

7085-T7452, R = 0.1 0.75

7085-T7452, R = 0.8 1.02



Metals 2024, 14, 523 8 of 25Metals 2024, 14, 523 8 of 26 
 

 

 
Figure 4. The R = 0.1 and 0.5 da/dN versus ΔK curves for the titanium alloy Ti-6-2-2-2-2. 

In this instance, estimated values of ΔKth were given in [85]. These values of ΔKth are 
reproduced in Table 2. These values of ΔKth can now be used to plot da/dN against 
ΔK/ΔKth(R). The corresponding “normalised plot” is shown in Figure 5, where we also see 
that when plotted in this fashion the R = 0.1 and 0.5 curves again essentially collapse. 

Table 2. The values of ΔKth used in Figure 4. 

Material and R Ratio ΔKth MPa √m 
Ti-6-2-2-2-2, R = 0.5 2.22 
Ti-6-2-2-2-2, R = 0.1 3.21 

 
Figure 5. The da/dN versus ΔK/ΔKth curves for the titanium alloy Ti-6-2-2-2-2. 

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1 10 100

da
/d

N
(m

/c
yc

le
)

ΔK (MPa √m)

R = 0.1
R = 0.5

1 × 10-5

1 × 10-6

1 × 10-7

1 × 10-8

1 × 10-9

1 × 10-10

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1 10 100

da
/d

N
(m

/c
yc

le
)

ΔK/ΔKth (MPa √m/(MPa √m))

R = 0.1
R = 0.5

1 × 10-5

1 × 10-6

1 × 10-7

1 × 10-8

1 × 10-9

1 × 10-10

Figure 4. The R = 0.1 and 0.5 da/dN versus ∆K curves for the titanium alloy Ti-6-2-2-2-2.

Table 2. The values of ∆Kth used in Figure 4.

Material and R Ratio ∆Kth MPa
√

m

Ti-6-2-2-2-2, R = 0.5 2.22

Ti-6-2-2-2-2, R = 0.1 3.21
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4. The Potential to Help Clarify Seemingly Anomalous Behaviour

The paper by Jones et al. [81] also reported that plotting da/dN as a function of
∆K/∆Kth appeared to have the ability to help understand what, at first glance, appeared
to be anomalous da/dN versus ∆K curves. To further illustrate this let us consider the
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da/dN versus Kmax curves given in [83] for crack growth in underaged (UA) high strength
7049 aluminium alloy tested in air at R = 0, −1, −2, −3. These curves, which were obtained
using ASTM E647 standard middle tension (MT) specimens,

Here it should be noted that ASTM E647-15el [45] states that for R ≤ 0 when plotting
the da/dN versus ∆K curve the term ∆K can be approximated by Kmax. As such it is unusual
to see that whilst the R = −1, −2, −3 curves lie on a single curve the R = 0 curve lies on a
quite different curve, see Figure 6. However, when these curves are plotted with da/dN
expressed as a function of Kmax/Kmax,th, where Kmax,th is the value of Kmax at a crack growth
rate (da/dN) of 10−10 m/cycle, then the two different curves collapse onto a single curve,
see Figure 7. The values of Kmax,th used in Figure 7 are given in Table 3. As such it would
appear that, from a mechanics perspective, the reason for the difference shown in Figure 6
is due to the different fatigue threshold that arose when testing at negative R ratio’s.
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Figure 6. The da/dN versus Kmax curves for AA7049.
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Table 3. The values of Kmax,th used in Figure 7.

R Ratio Kmax,th (MPa
√

m)

R = −1, −2, −3 3.9

R = 0.0 5.0

5. The Potential to Help Clarify Temperature Effects

To continue this study let us next examine the R = 0.1 and 0.7 da/dN versus ∆K curves
presented in [86] for the growth of cracks in the Ni-based supper alloy GH4169 tested at
room temperature (RT) and also at 550 ◦C. (GH4169 is a Chinese developed superalloy that
has similar mechanical properties to Inconel 718 (IN718) [86]). The room temperature and
550 ◦C R = 0.1 and 0.7 da/dN versus ∆K curves are shown in Figure 8. Here we see that the
da/dN versus ∆K curves are a function of both the test temperature and the R ratio.
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Figure 8. The 550◦C and RT R = 0.1 and 0.7 da/dN versus ∆K curves the super alloy GH4169.

Since Figure 8 does not contain crack growth data beneath a crack growth rate of
approximately 10−8 m/cycle the various curves were normalised by dividing ∆K by the
estimated value of ∆K at a crack growth rate of da/dN = 10−8 m/cycle, which we will
define as ∆K′

th. The resultant normalised plots are shown in Figure 9. Interestingly
Figure 9 reveals that, when normalised in this fashion, both the R ratio and the temperature
dependency effects shown in Figure 8 essentially vanish. In other words, for this material,
the temperature and R ratio effects are (to a first approximation) reflected in their effect on
a single parameter. Other examples that illustrates how expressing da/dN as a function of
∆K/∆K′

th can sometimes help when evaluating the effect of temperature on crack growth
are given in Appendix C. The values of ∆K′

th used in Figure 9 are given in Table 4.
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Figure 9. The 550 ◦C and RT R = 0.1 and 0.7 da/dN versus ∆K/∆K’th curves shown in Figures 10 and 11
for the super alloy GH4169.
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Figure 10. The da/dN versus ∆K curves for LPBF Hastelloy X.



Metals 2024, 14, 523 12 of 25

Metals 2024, 14, 523 13 of 26 
 

 

Table 5. The values of ΔK’th used in Figure 11. 

Material, Build Direction and R Ratio  ΔK’th MPa √m 
LPBF Hastelloy X, HIP-0 9.4 
LPBF Hastelloy X, HIP-0 10.1 
LPBF Hastelloy X, SHT-0 12.5 
LPBF Hastelloy X, SHT-90 11.0 

 
Figure 11. The da/dN versus ΔK/ΔK’th curves for LPBF Hastelloy X. 

7. Brief Summary 
Table 6 contains a brief summary of the finding seen in this study. Here we see that 

in each case expressing da/dN as a function of ΔK/ΔK’th appears to have collapsed the var-
ious R ratio and/or temperature depemdency seen when da/dN vwas expressed as a func-
tion of ΔK. 

Table 6. Summary Table. 

Material, Test Conditions, and Reference Outcome 

7085-T7452 (an aluminum alloy), specimen con-
tained an array of surface notched and was 

tested at R = 0.1 and 0.8, [82]. 

Expressing da/dN as a function of 
ΔK/ΔK’th essentially collapsed the R ratio 
dependent da/dN versus ΔK curves onto 

a single curve. 
7055 (an aluminium alloy), tested at R = 0.75, 

0.5, 0.3, and −1, the specimen geometry was not 
specified, [49.50]. 

ibid. 

2524-T3 (an alumium alloy), ASTM E647 
ESE(T) specimens that were tested at R = 0.1, 

0.2, 0.3, and 0.5 [83]. 
ibid. 

7049 (aluminium alloy), tested at R = 0, −1, −2 
and −4, [84]. 

Expressing da/dN as a function of 
ΔK/ΔK’th essentially removed the 

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1 10

da
/d

N
(m

/c
yc

le
)

ΔK/ΔKth ((MPa √m)/(MPa √m ))

HIP-0 HIP-0 HIP-90 SHT-0 SHT-90

1 × 10-5

1 × 10-6

1 × 10-7

1 × 10-8

1 × 10-9

1 × 10-10

Figure 11. The da/dN versus ∆K/∆K’th curves for LPBF Hastelloy X.

Table 4. The values of ∆K’th used in Figure 9.

Material, R Ratio and Test Temperature ∆K′
th MPa

√
m

Room temperature tests

GH4169, R = 0.1 17.0

GH4169, R = 0.7 13.2

Tests at 550 ◦C

GH4169, R = 0.1 13.8

GH4169, R = 0.7 10.5

6. The Potential to Help Clarify Crack Growth in AM Hastelloy X

We have previously noted that, as previously mentioned, [81] revealed that in the
case SLM Inconel 625 plotting da/dN as a function of ∆K/∆Kth(R) collapses the various R
ratio dependent da/dN versus ∆K curves onto a single master curve. Consequently. To
further investigate the potential for this approach to assit in understanding crack growth
in additively manufactured materials we analysed the (room temperature) R = 0.1, da/dN
versus ∆K curves associated with laser bed powder fusion (LPBF) built ASTM standard CT
tests on Hastelloy X where the crack was at either 0◦ or 90◦ degrees to the build direction.
This paper presented the R = 0.1 crack growth curves associated with two different post-
build treatments, viz: solution heat treatment (SHT); and hot isostatic pressing (HIP), with
the crack at either 0 degress or 90 degress to the build direction.. The resultant the da/dN
versus ∆K curves given in [87] are shown in Figure 10.

The corresponding da/dN versus ∆K/∆K’th curves are shown in Figure 11. Figure 11
again appears to suggest that when normalised in this fashion the effect of anisotropy
essentially vanishes. The values of ∆K’th used in Figure 11 are given in Table 5.
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Table 5. The values of ∆K′
th used in Figure 11.

Material, Build Direction and R Ratio ∆K′
th MPa

√
m

LPBF Hastelloy X, HIP-0 9.4

LPBF Hastelloy X, HIP-0 10.1

LPBF Hastelloy X, SHT-0 12.5

LPBF Hastelloy X, SHT-90 11.0

7. Brief Summary

Table 6 contains a brief summary of the finding seen in this study. Here we see that
in each case expressing da/dN as a function of ∆K/∆K’th appears to have collapsed the
various R ratio and/or temperature depemdency seen when da/dN vwas expressed as a
function of ∆K.

Table 6. Summary Table.

Material, Test Conditions, and Reference Outcome

7085-T7452 (an aluminum alloy), specimen contained an array
of surface notched and was tested at R = 0.1 and 0.8, [82].

Expressing da/dN as a function of ∆K/∆K’th essentially
collapsed the R ratio dependent da/dN versus ∆K curves onto a

single curve.

7055 (an aluminium alloy), tested at R = 0.75, 0.5, 0.3, and −1,
the specimen geometry was not specified, [49.50]. ibid.

2524-T3 (an alumium alloy), ASTM E647 ESE(T) specimens that
were tested at R = 0.1, 0.2, 0.3, and 0.5 [83]. ibid.

7049 (aluminium alloy), tested at R = 0, −1, −2 and −4, [84].
Expressing da/dN as a function of ∆K/∆K’th essentially
removed the anomalous behaviour seen in the R ratio

dependent da/dN versus Kmax curves.

The titanium alloy Ti-6-2-2-2-2, an ASTM E647 ESE(T)
specimens that were tested at R = 0.1 and 0.5, [85].

The R ratio depemdency essentially vanished when da/dN was
plotted as a function of ∆K/∆K’th.

GH4169 (a Chinese super alloy that has mechanical properties
similar to Inconel 718), ASTM E647 CT specimens that were

tested at R = 0.1 and 0.7 at both RT and 550 ◦C, [86].

Both the R ratio and temperature dependent effects essentially
vanishwd when da/dN was plotted as a function of ∆K/∆K’th.

AM (LPBF) Hastelloy X, an ASTM E647 CT specimens that were
either solution heat treated (SHT) or subjected to hot isostatic

pressing (HIP) and tested at R = 0.1, [87].

The anisotropy seen in the da/dN versus ∆K curves essentially
vanished when da/dN was plotted as a function of ∆K/∆K’th.

304L stainless steel, ASTM E647 CT specimens tested at
cryogenic temperatures and at two different R = 0.05 and 0.5

and at RT with R = 0.05, [89].

Both the temperature and R ratio dependency essentially
vanished when da/dN was plotted as a function of ∆K/∆K’th.

The medium entropy alloy CrCoNi, an ASTM E647 CT
specimens that were tested with R = 0.1 and at 77K, 189K and

293K (room temperature), [90].

The effect of the test temperature essentially vanished when
da/dN was plotted as a function of ∆K/∆K’th.

8. Conclusions

This paper has shown that, whenever Elber’s crack closure based approach to mod-
elling crack growth in conventionally manufactured metals is valid, the function U(R) that is
used to relate the stress intensity factor ∆K to the effective stress intensity factor ∆Keff, so as
to account for plastic wake induced crack closure, would appear to be (to a first approxima-
tion) inversely proportional to the fatigue threshold. It thus follows that, in such instances,
from a fracture mechanics perspective crack growth in conventionally manufactured metals
would often appear to be primarily controlled by the fatigue threshold.

This finding also results in a simple closed-form equation that relates the crack opening
stress intensity factor Ko(R), that was originally introduced by Elber, to ∆K, Kmax, the fatigue
thresholds ∆Kth(R) and ∆Keff,th.
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At this point it should be restated that this paper does not constitute a proof that
R ratio effects can always be interpreted as being reflected by its effect on the fatigue
threshold. Indeed, there are numerous examples where whilst there are clear R ratio effects
in the near threshold region this R ratio dependency essentially vanishes in the Paris region.
Consequently, the discussion presented in this paper is not applicable for such materials.
Indeed, the present paper is specifically confined to those materials where Elber’s original
formulation, by this we mean Equation (2), is a reasonable first approximation. That said,
there would appear to be numerous examples where the simplification proposed in this
paper would appear to be a reasonable first approximation.

It is also shown that plotting da/dN as function of against ∆K/∆Kth(R) would appear
to have the potential to help identify the key fracture mechanics parameters that charac-
terise the effect of the test temperature on crack growth. However, it should be stressed
that this may not always be the case. Nevertheless, replotting the da/dN versus ∆K(R)
curve with da/dN plotted as function of against ∆K/∆Kth(R) would appear to be a useful
additional approach to help to identify the (fracture mechanics based) parameters affecting
crack growth.

In the case of the annealed SLM Inconel 625 tests and the various R = 0.1 tests on
LPBF Hastelloy X specimens that are examined in this study it would appear that plotting
da/dN versus ∆K/∆Kth may also help to identify the fracture mechanics parameters that
characterise the effect of the build direction on crack growth in AM materials. However, it
should be stressed that further work is needed to investigate if this hypothesis holds for
other AM materials.
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Nomenclature

Material and R ratio ∆Kth MPa
√

m
a crack length
AM additive manufacturing
ASTM American Society for Testing and Materials (ASTM)
da/dN the increment in the crack length per cycle
DADT durability and damage tolerance
G the energy release rate
Gmax the maximun value of G in a load cycle
Gmin the minimun value of G in a load cycle
∆ √G range of √G in a fatigue cycle, as defined below∆√G =

√Gmax − K√Gmin
∆√Gth the value of ∆√G at a crack growth rate (da/dN) of 10−10 m/cycle
∆√Ge f f the crack closure corrected value of ∆√G
∆√Ge f f ,th the value of ∆√Ge f f at a crack growth rate (da/dN) of 10−10 m/cycle
Go(R) the value of G at which the crack first opens
K stress-intensity factor
Kmax the maximun value of K in a load cycle
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Kmin the minimun value of K in a load cycle

∆K
range of the applied stress-intensity factor in the fatigue cycle, as defined
below∆K = Kmax − Kmin

∆Kth the value of ∆K at a crack growth rate (da/dN) of 10−10 m/cycle
∆K’th the value of ∆K at a low crack growth rate, typically da/dN = 10−8 m/cycle
∆Keff The crack closure corrected value of ∆K that is defined as ∆Keff = U(R) ∆K
∆Keff,th the value of ∆Keff at a crack growth rate (da/dN) of 10−10 m/cycle
Ko(R) the value of K at which the crack first opens

∆K2/π0,
an alternative formulation for the crack closure corrected value of ∆K,
namely∆K2/π0 = (Kmax − 2Ko(R)/π)

∆κ the Schwalbe crack driving force
LBPF laser bed powder fusion, an additive manufacturing process
LEFM linear-elastic fracture-mechanics
R the R ratio, defined as R = Kmin/Kmax
SLM Selective laser melting, an additive manuring process

U(R)
Elber’s crack closue function that relates ∆K to ∆Keff,
viz: U(R) = (Kmax − Ko(R))/(Kmax − Kmin)

USA United States of America
USAF United States Air Force

Appendix A

Whilst, as shown in [52,53,55], Elber’s [47] statement that for plasticity induced crack
closure the function U is essentially only a function of R is supported by numerous studies
there are also studies that suggest otherwise, see [48–52]. Unfortunately, as illustrated in
[91.95] and in Appendix B, the load reducing test protocol described in the ASTM Fatigue
Test Standard ASTM E647-15el [45] can sometimes lead to erroneous da/dN versus ∆K
curves. The problem of assessing Elber’s the validity of original hypothesis is further
complicated by:

(i) The variability in the measured da/dN versus ∆K curves that is known to be associated
with repeat tests [22,101];

(ii) The level of experimental error that is often associated with the crack growth rates,
particularly at low crack growth rates. The experimental data presented in [52] is a
good example of the latter;

(iii) The need, as delineated by Paris et al. [50], for precise computer controlled load-
displacement data.

Consequently, it is sometimes difficult to make a statement with respect to the voracity
or otherwise of Elber’s hypothesis that U is essentially only a function of the R ratio.
However, in light of the data given in [52,53,55], which suggest that to a first approximation
U is often essentially only a function of R, and given that [81,84] have shown that there are
a number of examples where the experimental data reveals that U can often be reasonably
well approximated as being inversely proportional to ∆Kth, the present paper suggests that
Elber’s statement may often represent a reasonable first approximation.

Nevertheless, it also should be emphasised that the findings outlined in the present
paper, that expressing da/dN as function of ∆K/∆Kth(R) would appear to have the potential
to help identify the fracture mechanics based parameters that characterise crack growth,
are (in theory) specifically confined to those materials where Elber’s original formulation,
i.e., Equation (2), is a reasonable first approximation.

Let us now return to the question of crack closure and the R ratio dependency of
the da/dN versus ∆K curves. References [49,50] gave a number of examples where whilst
expressing da/dN as a function of (Kmax − Ko(R)) helped collapse the various curves in
region where da/dN was greater than approximately 10−8 m/cycle this was not the case
for the region where da/dN was less than approximately 10−8 m/cycle. Whilst [49,50]
revealed an improvement could be achieved by representing da/dN as a function of both
Kmax and (Kmax − Ko(R)) they reported that the best result was achieved by plotting da/dN
as a function of ∆K2/π0.
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In this context, it should be noted that reference [81] illustrated that the various R ratio
dependent crack growth curves given in [49,50] for the aluminium alloys 6013-T651 and
2324-T39 collapsed if da/dN was plotted as a function of ∆K/∆Kth. However, [49,50] also
presented data for the aluminium alloy 7055. Neither the heat treatment or the nature of
the specimen geometry was given in [49,50]. The R = 0.75, 0.5, 0.3, and −1 da/dN versus
∆K curves given in [49,50] for this alloy are shown in Figure A1. Since not all curves have
crack growth data at 10−10 m/cycle the various curves were normalised by dividing ∆K
by its estimated value at a crack growth rate of da/dN = 10−8 m/cycle, which we will
define as ∆K’th. The resultant normalised plots are shown in Figure A2 where we see that,
to a first approximation, the various (normalised) R ratio dependent curves also collapse.
Consequently, for this material, the R ratio effects shown in Figure A1 would appear to be
(to a first approximation) reflected by their effect on the fatigue threshold.

Table A1. The values of ∆K′
th used in Figure A1.

R Ratio ∆K′
th MPa

√
m

R = 0.75 3.0

R = 0.5 3.5

R = 0.3 4.3

R = 0.1 5.0

R = −1 10.2
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Figure A1. The R = 0.75, 0.5, 0.3, and −1 da/dN versus ∆K curves for the aluminium alloy 7055.
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alloy 7055.

That the purpose of this particular example is not to suggest that whenever the
function U would appear to be a function of both Kmax and R the curves will nevertheless
collapse if da/dN was plotted as a function of ∆K/∆Kth. However, as illustrated above,
there are cases when it will. As such, evaluationg if this concept holds would appear to be a
useful addition to the tools available to assess the fracture mechanics parameters affecting
crack growth.

Appendix B

It is now known [61,91–94] that the ASTM load reducing test protocol can results in
da/dN versus ∆K curves that are dependent on the specimen test geometry. Furthermore,
it is also known [101] that, for a given specimen geometry, even if both the loads and the
starting crack size are tightly controlled the da/dN versus ∆K curve is not necessarily unique.
(This observation is supported by the test data discussed in [22,102]). As a result of these
and related observations, the NASA Fracture Control Handbook NASA-HDBK-5010 [103]
mandates the use of the worst case da/dN versus ∆K curve.

These observations complicate our assessment of the suggestion that, to the best of
the author’s knowledge was first delineated in [84], that for long cracks the function U(R)
could be a function of both R and Kmax. Consequently, the present paper is focused on those
data sets that would appear to conform to Equation (2).

At this point, it should also be noted that the present paper does not propose to
advocate either for or against the use of crack closure based crack growth equations. It’s
purpose is to:

(i) Examine the relationship between Elber’s original equation, i.e., Equation (2), and
those equations that are based on the assumption that crack growth is a function of
how much ∆K exceeds the fatigue crack growth threshold;

(ii) Present a new tool to help assess the fracture mechanics parameters affecting crack growth.

Appendix C. Additional Examples

To further illustrate this phenomenon let us consider the R = 0. 1, 0.2, 0.3, and 0.5 da/dN
versus ∆K curves presented in [83] for the aluminium alloy 2524-T3. These curves, which
were obtained using ASTM E647-15el standard compact tension (CT) specimens, are shown
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in Figure A3. Since Figure A3 does not contain crack growth data beneath 10−8 m/cycle the
various curves were normalised by dividing ∆K by the estimated value of at a crack growth
rate of da/dN = 10−8 m/cycle, which we will define as ∆K’th. The resultant normalised
plots are shown in Figure A4 where we see that, to a first approximation, the various
(normalised) R ratio curves also collapse. The values of ∆K’th(R) used in Figure A4 are
listed in Table A2. Consequently, it would appear that, to a first approximation, the R ratio
effects shown in Figure A3 are reflected by their effect on the fatigue threshold.
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Table A2. The values of ∆K′
th used in Figure A4.

R Ratio ∆K′
th MPa

√
m

R = 0.1 6.6

R = 0.2 6.3

R = 0.3 5.9

R = 0.5 5.6

To continue this study let us next consider the R = 0.05 and 0.5 da/dN versus ∆K curves
presented in [89] for crack growth in 304L stainless steel tested at cryogenic temperatures
(77K) and the R = 0.05 da/dN versus ∆K curve presented in [89] for crack growth in 304L
stainless steel at room temperature (RT). These curves, which were obtained using ASTM
E647 standard compact tension (CT) specimens, are reproduced in Figure A5.

Figure A5 reveals that the da/dN versus ∆K curves are functions of both the test
temperature and the R ratio. Figure A6 reveals that when da/dN is plotted as function of
∆K/∆Kth(R) then, to a first approximation, these curves also essentially collapse onto a
single curve. In other words, for this material, the R ratio and temperature dependencies
seen in Figure A5 are (to a first approximation) reflected by their effect on a single parameter.
The values of ∆Kth(R) used in Figure A6 are listed in Table A3.
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Figure A5. The da/dN versus ∆K curves for 304L stainless steel tested at room temperature and 77 K.

To further illustrate the potential advantages of plotting da/dN as function of ∆K/∆Kth(R)
let us examine the R = 0.1 da/dN versus ∆K curves presented in [90]. for the 7 µm (fine
grained) medium entropy alloy (MEA) CrCoNi tested at 77 K, 189 K and 293 K (room
temperature), see Figure A7. These curves were obtained using disk-shaped compact-
tension DC(T) specimens. The da/dN versus ∆K/∆Kth(R) curves associated with these test
temperatures are shown in Figure A8. Here we again see that, to a first approximation,
when plotted in this fashion the effect of the test temperature essentially vanishes. In
other words, for this R ratio, the temperature dependencies seen in Figure A5 are (to a first
approximation) reflected by their effect on a single parameter. The values of ∆Kth(R) used
in Figure A8 are given in Table A4.
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Figure A7. The R = 0.1 da/dN versus ∆K curves for 7 µm (fine grained) medium entropy alloy (MEA)
CrCoNi tested at 77 K, 189 K and 293 K (room temperature).
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