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Abstract: WAAM has emerged as a promising technique for manufacturing medium- and large-scale
metal parts due to its high material deposition efficiency and automation level. However, its high
heat accumulation and complex thermal evolution strongly affect the resulting microstructures and
mechanical properties. The heterogeneous and unpredictable nature of these properties hinder the
widespread application of WAAM in the steel construction industry. In this study, an artificial neural
network (ANN) hardness model is developed, based on a thermal–metallurgical model for mild
steel. The objective is to establish non-linear relationships between the input process parameters and
the desired output, i.e., hardness. The thermal–metallurgical model utilizes a well-distributed heat
source model, a death-and-birth algorithm, and a metallurgical model to simulate the temperature
field and to calculate the microstructure phase fraction. The temperature prediction errors at four
thermocouple positions are mostly below 20%. Because of the limited experimental data, twenty-
five simulation experiments are performed using the L25 orthogonal array based on the Taguchi
method. The analysis of variance (ANOVA) reveals that the travel speed has the greatest impact on
hardness. With the dataset from the thermal–metallurgical model, an ANN model to predict hardness
is developed. A comparison to experimental data shows excellent performance and accuracy, with the
Mean Absolute Percentage Error (MAPE) of ANN predictions within 10% of the targeted hardness.

Keywords: thermal–metallurgical prediction; WAAM; finite element simulations; machine learning

1. Introduction

There is a growing interest in advanced additive manufacturing methods, in both
research and industry. Within the realm of metal component manufacturing technologies,
Directed Energy Deposition (DED) has emerged as a prominent technique, wherein focused
thermal energy is utilized to fuse materials by melting them during deposition. DED
encompasses various methods, including both wire-feed and powder-feed processes. One
notable variant is Wire Arc-Directed Energy Deposition (WA-DED), also named Wire Arc
Additive Manufacturing (WAAM), which employs an electric arc as the heat source and
utilizes a filler wire to deposit layers of metals. WAAM has attracted significant attention
for its capability to produce medium- to large-scale components. This is because of the
advantages such as an elevated deposition rate, flexible building volume, high material de-
position efficiency, and the low cost of equipment investment, as well as raw material [1–3].
However, the high heat accumulation and the complex thermal evolution during the de-
position strongly affects the microstructures and the mechanical properties of the as-built
component [4–6], as well as the residual stresses [7]. These effects are generally investigated
using experimental methods. A large number of experiments would be required to establish
the relationship between the process parameters (including welding current, voltage, travel
speed, and the chemical composition of the filler wire) and the resulting microstructure,
as well as mechanical properties. However, due to the high costs involved (especially
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for large-scale components), only a limited number of well-documented experimental
datasets have been reported in scientific literature [8–10]. These limited experimental
results are insufficient to reveal the complex process–structure–property relations in the
WAAM process.

To overcome the above-mentioned challenges, recently, thermal–metallurgical models,
based on finite element simulations and the empirical phase transformation theory, have
been developed to simulate the temperature distribution, phase fraction evolution, and
hardness distribution in the WAAM deposits. For instance, Mehran et al. [11] developed
a thermal–metallurgical-mechanical finite element model to accurately simulate the sin-
gle bead-on-plate welding of an ultra-high strength carbon steel. This model includes
comprehensive solid-state phase transformation modeling, covering both diffusive and
displacive transformation kinetics. For diffusive transformation, the kinetics model of
Machnienko was utilized, while the Koistinen–Marburger kinetics model was employed
for martensitic transformation. The Koistinen–Marburger model was based on an experi-
mentally determined Continuous Cooling Transformation (CCT) diagram. However, the
experimental cost associated with determining the CCT diagram limited the applicability
of the simulation tool. To overcome this problem, Mi et al. [12] implemented a different
calculation model to consider the phase transformations of Q235 steel during a laser weld-
ing process. However, the complex calculation methods and the large number of empirical
parameters inherent to this approach limit its widespread application. Consequently, de-
spite its lower computational accuracy compared to the aforementioned models, Lusk
et al. [13] adopted a traditional calculation method, which includes line interpolation and
the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation, to faster calculate the phase
transformations during WAAM.

It is evident that numerical simulation offers the capability to predict the outcomes for
various configurations of process parameters at a lower cost compared to the experiments.
However, its extensive computation time limits its further application. To address this
challenge, predictive models based on machine learning have been developed, allowing
us to rapidly predict the thermal history and the geometrical information of WAAM
deposits for the given process parameters [14–20]. For instance, Van et al. [18] built a
prediction model for the WAAM thermal history via a feedforward neural network-based
surrogate model (FFNN-SM). The developed FFNN-SM model can accurately estimate the
temperature evolutions at different sample positions, whilst saving 99.75% time compared
to the finite element (FE) simulations. Pant et al. [19] adopted artificial neuron network
and particle swarm optimization (PSO)-ANN algorithms to predict the clad characteristics
of a laser metal deposition process, based on a small dataset. PSO-adaptive neuro-fuzzy
inference system (ANFIS), as well as genetic algorithm (GA)-ANFIS prediction models
were designed by Xia et al. [20] to predict the surface roughness of a WAAM component.
The authors concluded that the prediction models have a high prediction performance and
low computational cost.

The above review of the literature indicates that machine learning-based predictive
models can help researchers in developing non-linear mathematical relationships between
WAAM process parameters (e.g., voltage, current, travel speed, wire feed rate, cooling time)
and desired outputs (e.g., mechanical and geometrical properties) with a lower cost and
computation time compared to an experimental- or FE-based approach. However, to the
best of the authors’ knowledge, there is not yet a prediction model revealing the relationship
between the process parameters and the hardness of WAAM component. Additionally,
there is no systematic research developing prediction models that combine generated data
(through FEA and experiments), the design of experiments, and data processing through
ANN. Inspired by the above-mentioned publications and their related theories, this study
develops an ANN hardness tool for mild steel produced by WAAM. The developed model
facilitates the rapid establishment of non-linear mathematical relationships between the
process parameter inputs (travel speed, wire feed rate, and cooling time) and the desired
output, i.e., hardness, with the lowest experiment cost and computation time. For this
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purpose, a thermal–metallurgical model is implemented in finite element software and a
Taguchi design of experiments is used to generate a dataset for training the ANN model.

The global framework of the developed analysis procedure is shown in detail in
Figure 1. The heat transfer analysis, the phase transformation-based metallurgical model,
and the ANN prediction model are performed in the FE software ABAQUS 2019 and
MATLAB Research R2018 platform, respectively. Using the well-distributed volumetric
heat source and the element birth-and-death approach, both a single-pass and a multi-layer
WAAM process are numerically analyzed. The accuracy of the thermal analysis model
is validated by comparing the simulation results with the experimental data reported by
Ding et al. [21] at four different thermocouple measurement positions. First, the nodal
temperatures are extracted from the results datafile via Python scripting. Next, for the
material points that underwent transformation, the relevant kinetics model (implemented
in the MATLAB platform) is applied to obtain the volume fraction of austenite during
the heating process and the transformed phases upon austenite decomposition during the
cooling process. In this context, equations are implemented to determine the variation
of hardness and the phase volume fractions at each node and time increment. After that,
the results of phase volume fractions are employed as solution-dependent state variables
(SDVs), and an input file for ABAQUS is rebuilt to simulate the influence of a change
in phase fractions on the temperature variation, and to obtain updated results including
temperature, phase fractions, and hardness. The developed thermal–metallurgical model
is then employed as a tool to perform a series of numerical experiments designed by
the Taguchi method. Finally, the results from these numerical experiments constitute a
dataset that serves to build an ANN-based prediction model linking the process parameters
to hardness.
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2. Thermal–Metallurgical Prediction Model
2.1. Thermal Analysis
2.1.1. Heat Source Modelling

During a welding process, there are various interactions, including the electric arc, the
filler wire, and the molten pool, operating at different dimensional and time scales. Heat
source models are applied to simplify the modelling of heat transfer and to enhance the
simulation efficiency. In this research, three different heat source models are implemented to
simulate the heat transfer process of WAAM, i.e., the well-distributed volumetric model [22],
the double-ellipsoidal heat source [23], and the Gaussian surface heat source model [24–26].

The double-ellipsoidal heat source and the Gaussian heat source are commonly uti-
lized for simulating electric arc welding processes. The Gaussian heat distribution model
calculates a surface heat flux distribution, while the double-ellipsoidal heat source employs
a volumetric heat flux distribution. The Gaussian heat source distribution is illustrated in
Figure 2c and its flux distribution can be calculated as follows:

q(x, y, z) =
Q

πr2
0

exp

(
− r2

r2
0

)
(1)

with Q as the thermal input power, r0 as the radius of the heat source, and r as the radial
distance to the heat source.
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The double-ellipsoidal heat source considers the effect of heat source movement on
the distribution of heat flow. Figure 2a illustrates its heat distribution; the front and rear
heating regions are dissimilar due to variations in the scanning speed. Their respective
heat flow distributions can be calculated as follows:

q f (x,y,z) =
6
√

3 f f Q

π
3
2 a f bc

exp

(
−3

(
x2

a2
f
+

y2

b2 +
z2

c2

))
, x ≥ 0 (2a)

qr(x,y,z) =
6
√

3 frQ

π
3
2 arbc

exp
(
−3
(

x2

a2
r
+

y2

b2 +
z2

c2

))
, x < 0 (2b)
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with Q is the thermal input power, a f and ar are the semi-axes of the front and rear ellipsoids
in the direction of the travel, respectively, b and c are the other two semi-axes of the front
and read ellipsoids, respectively, and f f and fr are the heat flow density distribution
coefficients of the two parts of the ellipsoid.

Compared to these commonly used heat source models, the well-distributed volumet-
ric heat source model [22] computes the total effective heat input and uniformly distributes
this in the activated grid elements, which can reduce the mesh detail for multi-layer speci-
mens. The model equation for this approach is the following,

q(x, y, z) =
KUI

AVDt
(3)

with I as the welding current, U as the welding voltage, K as the effective thermal efficiency
representing the ratio of the energy delivered to the substrate to the total delivered energy,
A as the cross-sectional area of the activated grid elements, V as the travel speed, and Dt
as the step time.

2.1.2. Heat Source Activation Method

The activation method of a heat source plays a crucial role in numerical simulation,
especially for WAAM. In the literature, the quiet element and inactive element methods
are the two most used for the simulations of the WAAM process [27,28]. In the quiet
and inactive element method, the filler metal element is present throughout the entire
simulation, but quiet values are initially assigned to its thermal and elastic properties.
These properties transition progressively from quiet to active values based on the element
temperature. For large components, the continual presence of the filler metal elements
throughout the entire process can result in long computation times. To address this issue, the
death-and-birth element method is combined with the well-distributed heat source model
to simulate the WAAM process in this study. As displayed in Figure 2b, the displacement
of the arc heat source and the deposition of the molten filler wire metal on the substrate
are achieved through the gradual activation of new elements in each time step. During a
time step Dt, nodes within the current grid element are selected, the physical attributes are
assigned, and the well-distributed volumetric heat source is applied to the activated grid
element. In the subsequent time step, the heat source model moves to the next grid element
along the deposition path, the heat source of the previous element grid is removed, and
the new grid element is activated through assigning physical attributes. This sequential
activation (birth) and deactivation (death) of volume elements along the deposition path
mirror the actual deposition process, enhancing the fidelity of the simulation.

2.1.3. Simulation Model

Based on the geometry of the WAAM sample illustrated in Figure 3, the finite
element-based thermal transfer model was developed using Abaqus CAE 2019. The
mesh configuration is illustrated in Figure 4. Linear brick elements with eight nodes
(DC3D8) are used for thermal simulations. The determination of the mesh size and time
increment was carefully carried out to ensure numerical convergence. To accurately
capture the thermal performance around the heat source, a dense mesh with elements of
size 1 mm × 0.833 mm × 1.25 mm was used for the weld beads and the vicinity near the
welding line. The mesh was coarser in the y and z directions away from the welding line.
With regard to the well-distributed heat source model simulation, the cross-sectional
area of the activated grid element is considered as a constant value. This is motivated
by the observations of Ding et al. [22] that the well-distributed heat source model is
insensitive to the mesh, demonstrating its significant advantage with respect to the
computational time.
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The heat transfer model incorporated the three heat source models discussed earlier,
utilizing thermal properties reported by Ding et al. [21]. Similar to the data source pub-
lication [21], the radiation and convection coefficients were set to 0.2 and 5.7 W/m2/K,
respectively. Due to the presence of a cooling system at the bottom of the base plate, the
convection coefficient in that region was defined as 300 W/m2/K. An overview of all
parameters used in the finite element simulations is provided in Table 1.
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Table 1. Overview of the parameters used in the finite element simulations.

Goldak heat
source
model

Parameters a f (mm) ar (mm) b (mm) c (mm) f f fr

Heat loss through the
cooling system
(W·m−2·K−1)

Values 2 6 2.5 3 0.6 1.4 300

Other heat source
models

Parameters r (mm) A (mm2) K Radiation coefficient
(W·m−2.·K−1) Convection coefficient (W·m−2·K−1)

Values 2 10 0.9 0.2 5.7

Thermal
properties of the

solid wire
material

and substrate
material

Temperature (◦C) 0 100 200 300 400 500 600 700

Thermal
conductivity
(W/mm/◦C)

0.0519 0.0511 0.0486 0.0444 0.0427 0.0394 0.0356 0.0318

Specific heat
(kJ/kg/◦C) 486 486 498 515 536 557 586 619

2.2. Thermodynamics Based Solid Phase Transformation

The intricate thermal evolution during the WAAM process leads to solid phase trans-
formation phenomena, influencing the mechanical properties and hardness distribution.
An accurate model must consider the five distinct stages of phase transformation during
the cyclic heating and cooling process. These stages comprise the austenite transformation,
the diffusive ferrite and pearlite transformations, the semi-diffusive bainite transformation,
and the non-diffusive martensite transformation. The approach developed in this study to
compute the actual fraction of each phase is detailed in Section 2.2.2.

2.2.1. Phase Transformation Temperatures

Based on the regression model reported in the work presented in [29], the critical phase
transformation temperatures (◦C), i.e., austenite transformation temperatures A1 (start) and
A3 (finish), bainite transformation temperature BS, pearlite transformation temperature PS,
ferrite transformation temperature FS, and martensite transformation temperature MS can
be calculated using Equation (4a) to Equation (4f).

A1 = 739.3 − 22.8(%C)− 6.8(%Mn) + 18.2(%Si) + 11.7(%Cr)− 15(%Ni)− 6.4(%Mo)− 5(%V)− 28(%Cu) (4a)

A3 = 937.3 − 224.5(%C)0.5 − 17(%Mn) + 34(%Si)− 14(%Ni) + 21.6(%Mo) + 41.8(%V)− 20(%Cu) (4b)

BS = 678.9 − 239.6(%C)− 35.2(%Mn)− 1.6(%Si)− 19.8(%Cr)− 27.9(%Ni)− 18(%Mo)− 17.1(%V)
−0.03A1 − 15.5Vr

0.25 (4c)

MS = 532.6 − 396.7(%C)− 33(%Mn)− 1.4(%Si)− 14(%Cr)− 18(%Ni)− 11(%Mo) + 49.7(%V) + 31(%Cu) (4d)

PS = 789.8 − 12.7(%C)− 61(%Mn) + 13.7(%Si)− 5(%Cr)− 30.4(%Ni)− 70.7(%Mo)− 1.4(%V)− 0.016A1
−47.3Vr

0.25 (4e)

FS = 968.7 − 254(%C)− 71(%Mn) + 27.6(%Si)− 30(%Cr)− 44(%Ni)− 54(%Mo) + 95.8(%V)− 0.02A1
−62.8Vr

0.25 (4f)

2.2.2. Phase Transformation Models

1. Austenite transformation during heating

When the metal is heated above the A1 transformation temperature, the original
ferrite–pearlite microstructure starts to transform to austenite, following a linear rule
as follows:

FA =
Tmax − A1

A3 − A1
(5)
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where FA denotes the volume fraction of austenite during austenitic transformation as
a function of the maximum temperature in the heating process, Tmax (between A1 and
A3). A1 and A3 are the lower and upper critical temperatures, respectively, calculated by
Equations (4a) to (4b). If the maximum temperature is higher than A3, the microstructure
will be completely transformed into austenite, i.e., FA = 1.

2. The diffusion transformations during cooling

The volume fractions of ferrite and pearlite during the diffusional phase transforma-
tions can be calculated using the following equations:

τP =
a9

(A1 − T)a11 exp
[

a10
R(T + 273)

]
(6)

FP =
T − BS
PS − BS

∗ FP,max and FF =
T − PS
FS − PS

∗ FF,max (7)

where FP is the pearlite fraction, FF is the ferrite fraction, PS is the pearlite transformation
temperature, FF,max is the maximum ferrite fraction during the cooling process, FP,max is
the maximum pearlite fraction during the cooling process, Fs is the ferrite transformation
temperature, τP is the incubation time of pearlite transformation, R is the gas constant,
a9 and a10 are constants equal to 1397 and 67.73, respectively, and T is the considered
temperature during the cooling stage.

3. The semi-diffusion transformation during cooling

Bainite is formed from the residual austenite when the temperature continues to
decrease from the starting point (BS) whilst remaining above Ms. Based on the work
presented in [30], the incubation time and phase fraction of bainite can be computed
as follows:

τb =
a17

(BS − T)a19 exp
[

a18
R(T + 273)

]
(8a)

FB =
T − MS
BS − MS

∗ FB,max (8b)

where FB is the bainite fraction, FB,max is the maximum bainite fraction during the cooling
process, Bs is the bainite transformation temperature, Ms is the martensite transformation
temperature, τb is the incubation time of bainite transformation, R is the gas constant,
a17 and a18 are constants equal to 24.17 and 24.89, respectively, and T is the considered
temperature during the cooling stage.

4. The non-diffusion transformation during cooling

Martensite is formed from the residual austenite when the temperature continues to
decrease from the starting point (Ms). The phase fraction of martensite can be computed by
employing the Koistinen–Marburger kinetics model (JMAK) [13]:

FM = 1 − exp[−0.011(Ms − T)] (9)

where FM is the martensite fraction, Ms is the martensite transformation temperature, and
T is the considered temperature during the cooling stage.

2.2.3. Hardness Prediction Model

To predict the hardness distribution in the WAAM deposit at each time step, the
hardness model presented by Maynier et al. [31] is utilized. This model calculates the
Vickers hardness of the martensite, bainite, pearlite, and ferrite phase fractions as a function
of chemical composition and cooling rate. The specific expressions for hardness of the
different phases are as follows:

HVM = 127 + 949(%C) + 27(%Si) + 11(%Mn) + 8(%Ni) + 16(%Cr) + 21logVr (10a)
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HVB = 323 + 185(%C) + 330(%Si) + 153(%Mn) + 65(%Ni) + 144(%Cr) + 191(%Mo)
+(89 + 53(%C)− 55(%Si)− 22(%Mn)− 10(%Ni)− 20(%Cr)− 33(%Mo))logVr

(10b)

HVF−P = 323 + 185(%C) + 330(%Si) + 153(%Mn) + 65(%Ni) + 144(%Cr) + 191(%Mo)
+(89 + 53(%C)− 55(%Si)− 22(%Mn)− 10(%Ni)− 20(%Cr)− 33(%Mo))logVr

(10c)

with HVM, HVB, HVF−P the hardness of martensite, bainite, and the mixture of ferrite and
pearlite, respectively. The cooling rate Vr can be calculated as:

Vr = 3600

(
800 ◦C − 500 ◦C

∆t 8
5

)
(11)

After calculating the hardness of each phase, the hardness at each location in the
WAAM deposit is calculated via the rule of mixtures:

HV = FM HVM + FBHVB+(FF + FP)HVF+P (12)

2.2.4. Phase Transformation Models

In this study, a phase transformation algorithm is devised to compute the actual
fraction of each phase during the WAAM deposition process. Figure 5 shows the flowchart
of this algorithm.
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First, the temperature data is calculated from a thermal FE analysis, and the derivative
of temperature with respect to time is used to distinguish between the heating and cooling
stages. For a positive value (i.e., heating), and when the peak temperature falls within the
range from A1 to A3, all phases (ferrite, martensite, bainite, as well as pearlite) undergo a
transformation into austenite, following a linear rule (see Equation (5)). If temperatures
surpass A3, these phases will be fully transformed to austenite. For a negative value of
the derivative of the temperature, the peak temperature will gradually decrease. During
this cooling process, when the temperature reaches the start temperature of either bainite,
martensite, pearlite, or ferrite phases, the austenite is considered to transform to these
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phases. Once reaching the judgment criterion based on the phase transformation tem-
perature and the incubation time, the phase transformation from austenite to bainite and
pearlite occurs following a linear rule. The transformation from austenite to martensite
follows the JMAK equation.

2.3. Numerical Simulations: Design of Experiments

The thermal–metallurgical model is applied across a range of process parameters to
investigate the impact of the welding process on the thermal history, the phase fractions as
well as the hardness in the WAAM deposit. The following process parameters influence
the thermal and mechanical properties of the WAAM deposit: travel speed (TS), wire feed
rate (WFR), current (I), voltage (U), cooling parameters and so on. For this study, the effect
of the wire diameter and the wire feed rate is neglected, keeping their values constant.
Cooling parameters are simplified to the cooling time. Additionally, the combination of the
current and voltage is considered as a single parameter, i.e., the input energy (Q = U × I).
Hence, in this study, three primary process parameters (travel speed, cooling time, and
input energy) varied at five levels are considered as the input process parameters. The
hardness at the midpoint positions of the first, second, third, and fourth layers (the green
solid points A, B, C, and D as shown in Figure 3) are considered as the output parameters.
The Taguchi method of the design of experiments is chosen due to its simplicity, efficiency,
and structured approach for optimizing processes, quality, and cost. This statistical tool has
been widely utilized by researchers to determine the optimal process parameters with a
minimal number of experiments [32,33]. In this study, a series of numerical experiments is
defined using an L-25 orthogonal array to analyze the effects of the input parameters on
the hardness in different layers, as shown in Table 2.

Table 2. Predicted hardness values for the different combinations of the main process parameters.
The numerical experiments were designed using the L-25 orthogonal array according to the Taguchi
method. Note: as shown in Figure 3, HV1, HV2, HV3, and HV4 are the hardness values at positions
A, B, C, and D, respectively.

Input Energy
Q (W)

Travel Speed
TS (mm/s)

Cooling Time
CL (s) HV1 HV2 HV3 HV4

1845 8.3 300 182.6 161.7 156.3 165.0
2045 8.3 200 158.9 176.1 165.5 162.4
2245 8.3 100 157.7 207.2 153.9 172.1
2445 8.3 50 153.7 181.5 168.5 204.4
2645 8.3 400 162.9 153.9 154.3 155.4
1845 6.5 400 165.6 154.0 160.1 182.2
2045 6.5 300 154.8 154.0 154.6 157.9
2245 6.5 200 154.8 154.0 154.6 157.9
2445 6.5 100 154.0 154.4 154.7 157.8
2645 6.5 50 156.9 162.0 159.4 155.3
1845 10.0 200 194.5 166.4 158.6 174.8
2045 10.0 100 154.8 190.7 172.3 156.9
2245 10.0 50 168.8 155.9 165.4 162.1
2445 10.0 400 155.4 200.5 184.6 156.0
2645 10.0 300 154.7 171.0 161.4 156.3
1845 12.0 100 168.6 233.0 171.8 159.7
2045 12.0 50 203.2 165.6 206.4 191.5
2245 12.0 400 177.8 156.3 216.4 185.5
2445 12.0 300 159.8 189.3 182.4 155.1
2645 12.0 200 154.5 215.4 168.9 158.6
1845 14.0 50 199.1 163.4 213.8 226.8
2045 14.0 400 153.8 188.6 227.5 241.8
2245 14.0 300 154.0 204.1 233.6 178.8
2445 14.0 200 170.1 154.6 238.1 224.3
2645 14.0 100 167.2 220.1 170.3 244.3
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2.4. ANN Based Hardness Prediction Model

A basic artificial neural network comprises an input layer, multiple hidden layers,
and an output layer. The network is basically a web where information flows from each
input to every neuron in the first hidden layer. This information further propagates until it
reaches the output layer. Connections between inputs–neurons–outputs are established
using weights and biases. The complex behavior of the neurons is controlled using an
activation or transfer function. The hidden layer contains numerous neurons which are
to be trained, tested, and validated with various data points. In this study, the dataset (as
defined in Table 2) serves as the basis for the neural network model. It has to be noted
that neural network models have been successfully developed using a small dataset whilst
obtaining a high prediction accuracy, as for example demonstrated in the work presented
in [19]. Therefore, a back propagation neural network structure with a single output is
applied in this work as shown in Figure 6. Similar to Section 2.3, the input energy, travel
speed, and cooling time are taken as the input parameters of the ANN model. The hardness
at the center line of different layers, i.e., the green solid points shown in Figure 6, is defined
as the output parameter.
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For most regression problems in engineering applications, one hidden layer is suffi-
cient, and the number of neurons in the hidden layer is based on the empirical formula
h =

√
p + q + a, where h, p and q are, respectively, the number of neurons in the hidden

layer, input layer and output layer, and a is a constant with a value from 1 to 10. The
tan-sigmoid and pure-line functions are implemented as the activation functions for the
connection of inputs to the hidden layer and for the hidden to the output layers, respec-
tively.

In this work, the search grid technology was applied to optimize the parameters of the
ANN model. The search space for the learning rate was chosen as [0.001, 0.01, 0.1, 1, 10],
while the range for the number of neurons in the hidden layer spanned from 3 to 13 with a
step size of one. Additionally, to prevent overfitting and underfitting, the early stopping,
drop-out, and L2 regularization techniques available in the MATLAB code toolbox were
added to improve the generalization ability of the ANN model. The final ANN parameters
with the best performance are displayed in Table 3. It should be noted that the loss function
of the ANN is determined by the root mean squared error (RMSE) value, which quantifies
the difference between the predicted and target values.
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Table 3. Optimized parameter values of the ANN algorithm.

ANN structure 3-10-1 Maximum iterations 1000

Training function Levenberg–Marquardt Learning rate 0.01

Performance (RMSE) 10−6 Activation function Sigmoid–Purelin

Firstly, the process parameters in the dataset were normalized based on the Z-score
normalization, and the dataset was segmented into three parts with a ratio of 0.7:0.15:0.15.
In other words, 70% of the data is used for generating the training dataset, 15% of the data
is used for testing, and 15% for validation of the prediction model. Secondly, the training
dataset is used to build the ANN model. Thirdly, the ANN-based hardness predictions are
compared to the simulation data using different criteria, such as the correlation coefficient(

R2), the root mean squared error (RMSE), and the mean absolute percentage error
(MAPE) to assess the accuracy of the developed model. These metrics are calculated
as follows:

RMSE =

[
1
n∑n

j=1

∣∣∣xexp
j − xpre

j

∣∣∣2]0.5
(13a)

R2 = 1 −

∑n
j=1 [x

exp
j − xpre

j

]
∑n

j=1 [x
exp
j − xm

]
 (13b)

xm =
∑n

j=1 xexp
j

n
(13c)

MAPE =
1
n∑n

j=1

∣∣∣xexp
j − xpre

j

∣∣∣
xexp

j
× 100% (13d)

j = 1, 2 ∼ n applied in Equation (13a) to Equation (13d).
Where xexp

j is the target value determined from the thermal–mechanical simulations,

xpre
j is the predicted value using the ANN toolbox, and xm is the mean value of the

simulation data.

3. Results and Discussion
3.1. Temperature Validation

The results of a WAAM experiment conducted by Ding [21] were used to validate
the accuracy of the thermal simulations using various heat source models. As shown
in Figure 3, a beam structure with a width of 5 mm was built along the center line of a
baseplate using a moving heat source. The traverse speed of the torch was set at 0.5 m/min
(8.33 mm/s), and a single path of the heat source along the longitudinal direction was
performed for each layer with a thickness of 2 mm. The base plates used in the experiments
were rolled structural steel plates (grade S355JR-AR). The chemical composition of the alloy
(in wt.%) is 0.24% C, 1.60% Mn, 0.55% Si, 0.045% P, 0.045% S, 0.009% N, 0.003–0.100% Nb,
and Fe balance. The chemical composition of the solid wire (in wt.%) is 0.08% C, 1.50%
Mn, 0.92% Si, 0.16% Cu, 60.040% P, 60.035% S, and Fe balance. The cooling time after the
deposition of each layer was 400 s to mitigate the thermal distortion and residual stress.
The heat input for the welding process was 269.5 J/mm, assuming an efficiency of 0.9.
Additionally, four K-type thermocouples (TP1, TP2, TP3, and TP4) were spot-welded at
the positions indicated in Figure 3 to record the temperature variation at these positions
during the WAAM process.

To validate the independence of the grid model, three mesh configurations were
employed, including a coarse mesh (element size 1 mm × 0.833 mm × 1.25 mm), a medium
mesh (element size 0.667 mm × 0.595 mm × 0.833 mm), and a fine mesh (element size
0.2 mm × 0.4165 mm × 0.625 mm) for the weld layers. It can be seen from Figure 7 that the
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temperature–time curves at position A for these three models are in very good agreement,
which indicates the reliability of the employed mesh configurations. Therefore, the coarse
mesh configuration was applied to simulate the WAAM process.
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Figure 7. Comparison of the temperature–time curves for the three mesh configurations with
experimental values.

Figure 8 displays the evolution in temperature at four positions, both in terms of nu-
merical simulation results (for three different heat source models) as well as experimentally
determined values. It is evident that the numerical simulations, using the Gaussian surface
heat source model, the double-ellipsoid heat source model, and the well-distributed heat
source model, yield almost identical results. These are also very close to the experimental
data, perfectly displaying the periodic variations during each layer deposition, thereby
confirming the accuracy of the implemented simulation models. The peak temperatures
of the double-ellipsoid heat source and the well-distributed heat source model are almost
identical to the experimental results. The peak temperatures at position TP3, predicted by
the Gaussian heat source model, are higher than the experimental values.

Figure 9 presents the contour plots of temperature obtained from the original publica-
tion [21] and the results for the three different heat source models used in this study. The
temperature distribution from the work presented in [21] is quite comparable to the results
from the numerical simulations, using the double-ellipsoid heat source model and the
well-distributed heat source model, indicating the feasibility of these heat source models to
predict the temperature field during the WAAM process.

To determine the most efficient heat source model, the computational time used for
the different heat source models is also compared and presented in Table 4. All simulations
were calculated on a grid computing system with four processors. The results clearly reveal
that the time needed for the well-distributed heat source model was around 55.3% of that
for the Gaussian heat source model, and around 79.8% of that of the double-ellipsoid heat
source. Additionally, the relative errors between the thermocouple measurements and the
simulation results for the well-distributed heat source model are provided in Figure 8e.
The relative errors for each measurement point are within ±20% during almost the entire
deposition process. For a limited number of time steps, typically at the start and finish of
the deposition layers, the relative errors are beyond the ±20% range. This is attributed to
the fact that the simulations consider a steady-state process, which is not the case for the
start and end of the deposition. Thus, based on the computational time and relative error
analysis, the well-distributed model was considered the most efficient heat source model.
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Table 4. Computational time for the different heat source models.

Heat Source Model Thermal Analysis Time

Well-distributed model 2 h 8.5 min
Gaussian model 4 h 47.6 min
Ellipsoid model 10 h 36.2 min

3.2. Phase Fraction Distributions

Following the thermal analysis, the temperature data serves as the input to calculate
the phase fraction evolution during the WAAM process, as illustrated in the schematic dia-
gram of Figure 5. The prediction accuracy of the phase fractions via thermal–metallurgical
simulations has already been verified in the work presented in [11,12,34].

To comprehensively understand the distribution of phase fractions in both the sub-
strate and WAAM deposit, the temperature variations are extracted at points indicated on
Figure 10. At the interface between the substrate and deposit, i.e., position S1, the peak tem-
perature during the deposition of the first and second layer was higher than A3, indicating
complete austenization during the heating process. During the subsequent cooling process,
the high cooling rate resulted in complete martensite transformation. Thereafter, during
the deposition of the third and fourth layer, the peak temperature at S1 remained below A1,
which means that there is no transformation into austenite. Because the peak temperature
at S1 during the deposition of the third and fourth layer was higher than the martensite
transformation temperature, and because of the low cooling rate, the non-equilibrium
martensite was transformed into ferrite. This is similar to a tempering treatment [35].
Similarly, the peak temperatures at location S0 all remained below A1, and thus austenite
transformation does not occur.
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the substrate.

Considering the locations in the WAAM deposit, the peak temperatures at points C and
D during the deposition of the fourth layer were higher than 2000 ◦C, and the high cooling
rate led to the formation of martensite. The peak temperatures at points A and B in the
second layer exceeded A3, leading to the complete transformation into austenite followed
by martensite formation due to high cooling rates. During the subsequent deposition of the
third and fourth layer, the bainite and ferrite phases partially occurred due to the sufficient
incubation time for bainite transformation and the lower cooling rate.

The phase and hardness distributions are displayed in Figure 11a–f, and the detailed
values of the phases at each position are illustrated in Table 5.
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Figure 11. Distribution of the (a–e) phases at the mid-section: ferrite, pearlite, bainite, austenite,
martensite; and (f) hardness.

Table 5. Phase fraction values (in weight fraction) at positions A, B, C, D, S1, and S0 following the
WAAM process.

Phases A B C D S0 S1

Ferrite 0.822 0.668 0.000 0.000 0.992 0.992
Pearlite 0.002 0.000 0.000 0.000 0.001 0.001
Bainite 0.079 0.127 0.000 0.000 0.000 0.000

Martensite 0.097 0.205 0.991 0.991 0.007 0.007
Austenite 0.000 0.000 0.009 0.009 0.000 0.00

3.3. Analysis of Numerical Results

The values of the process parameters used in the simulations and the corresponding
hardness results are displayed in Table 2. The signal-to-noise (S/N) ratio and the mean of
the simulation results are analyzed and reported in Figure 12c,d respectively. Based on this
analysis, it can be concluded that the input parameter with the most significant impact on
hardness is the travel speed. Thereafter, both the input energy and cooling time have a
similar impact on the hardness.
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Figure 13. Contour plots of the hardness (HV = (HV1 + HV2 + HV3 + HV4)/4) vs. (a) travel speed
(TS) and cooling time (CL); and (b) travel speed (TS) and thermal input power (Q).

3.4. Analysis of Results Obtained from the ANN Prediction Model

As discussed in Section 2.4, the number of neurons in the hidden layer varied from
3 to 13. The corresponding performance metrics R2, RMSE, and MAPE were calculated and
are shown in Figure 14. Based on the maximum R and minimum RMSE values, the optimal
number of neurons in the hidden layer for determining hardness was determined to be 10.
Therefore, the ANN models for HV1, HV2, HV3, and HV4 are developed using a 3-10-1
network architecture unless specified otherwise. The values of the performance metrics are
summarized in Table 6.
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Table 6. Performance of the different hardness models.

ANN R2 RMSE MAPE

HV1 0.9232 0.0239 2.4
HV2 0.9231 0.0235 2.5
HV3 0.9581 0.0203 1.8
HV4 0.9601 0.0179 2.0

In this study, back propagation ANNs with the selected architecture were developed.
A comparison of the target values and prediction results obtained for HV1, HV2, HV3, and
HV4 is shown in Figure 15. In most conditions, the same values are obtained for the targets
and predicted results. The maximum relative errors of HV1, HV2, HV3, as well as HV4,
are within ±20%. These observations are the first evidence of the ANN model performance.
Additionally, the performance is analyzed based on the R2, RMSE, and MAPE metrics which
are reported in Table 6. The MAPE values for the ANN estimations are 2.4% for HV1, 2.5%
for HV2, 1.8% for HV3, and 2.0% for HV4. The results confirm that the ANN yields a high
prediction accuracy for hardness for the range of simulated process parameters. In addition,
the training of neurons reveals a high correlation for the output parameters HV1, HV2, HV3,
and HV4 (Figure 16). Based on the above results, it can be concluded that the ANN model
shows a good prediction performance for the studied set of numerical experiments.
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4. Conclusions

This manuscript discussed the development of an ANN hardness prediction tool,
based on the finite element implementation of a thermal–metallurgical model for mild steel
produced by WAAM. The following three main conclusions can be drawn:

1. The proposed thermal–metallurgical model for mild steel not only accurately quanti-
fies the heating and cooling cycles during the wire arc additive manufacturing process,
but also predicts the complex distribution of microstructural phases and the related
hardness for the WAAM component.

2. A series of thermal–metallurgical simulations, defined using the Taguchi design
of experiments, clearly indicated that travel speed is the most significant process
parameter with respect to hardness. Complementary, the input energy and cooling
time exhibit noticeable effects on hardness.

3. The developed ANN prediction model demonstrates a high accuracy in predicting
hardness values.

In future work, the models will be extended towards the prediction of residual stresses
that are known to impact fatigue strength.
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29. Trzaska, J.; Dobrzański, L.A. Modelling of CCT Diagrams for Engineering and Constructional Steels. J. Mater. Process. Technol.

2007, 192–193, 504–510. [CrossRef]
30. Kakhki, M.E.; Kermanpur, A.; Golozar, M.A. Numerical Simulation of Continuous Cooling of a Low Alloy Steel to Predict

Microstructure and Hardness. Model. Simul. Mater. Sci. Eng. 2009, 17, 045007. [CrossRef]
31. Maynier, P.; Dollet, J.; Bastien, P. Prediction of Microstructure via Empirical Formulae Based on Cct Diagrams; Metallurgical Society

AIME: San Ramon, CA, USA, 1978; pp. 163–178.
32. Pradeep Kumar, J.; Jaanaki Raman, R.; Jerome Festus, N.; Kanmani, M.; Praveen Nath, S. Optimization of Wire Arc Additive

Manufacturing Parameters Using Taguchi Grey Relation Analysis. In Proceedings of the 2023 International Conference on Intelligent
Systems for Communication, IoT and Security (ICISCoIS), Coimbatore, India, 9–11 February 2023; pp. 108–113. [CrossRef]

33. Taguchi, G.; Yokoyama, Y.; Wu, Y. Taguchi Methods: Design of Experiments; ASI Press: Okhotsk, Japan, 1993.
34. Denlinger, E.R.; Irwin, J.; Michaleris, P. Thermomechanical Modeling of Additive Manufacturing Large Parts. J. Manuf. Sci. Eng.

Trans. ASME 2014, 136, 061007. [CrossRef]
35. Yu, F.; Wei, Y. Phase-Field Investigation of Dendrite Growth in the Molten Pool with the Deflection of Solid/Liquid Interface.

Comput. Mater. Sci. 2019, 169, 109128. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/BF02667333
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120103
https://doi.org/10.1016/j.ijthermalsci.2021.107350
https://doi.org/10.1016/j.cma.2010.02.018
https://doi.org/10.1002/cnm.414
https://doi.org/10.1016/j.jmatprotec.2007.04.099
https://doi.org/10.1088/0965-0393/17/4/045007
https://doi.org/10.1109/ICISCoIS56541.2023.10100337
https://doi.org/10.1115/1.4028669
https://doi.org/10.1016/j.commatsci.2019.109128

	Introduction 
	Thermal–Metallurgical Prediction Model 
	Thermal Analysis 
	Heat Source Modelling 
	Heat Source Activation Method 
	Simulation Model 

	Thermodynamics Based Solid Phase Transformation 
	Phase Transformation Temperatures 
	Phase Transformation Models 
	Hardness Prediction Model 
	Phase Transformation Models 

	Numerical Simulations: Design of Experiments 
	ANN Based Hardness Prediction Model 

	Results and Discussion 
	Temperature Validation 
	Phase Fraction Distributions 
	Analysis of Numerical Results 
	Analysis of Results Obtained from the ANN Prediction Model 

	Conclusions 
	References

