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Abstract: Reactor pressure vessel (RPV) steels are highly susceptible to irradiation embrittlement
due to prolonged exposure to high temperature, high pressure, and intense neutron irradiation. This
leads to the shift in nil-ductility transition reference temperature—∆RTNDT. The change in ∆RTNDT

follows a certain distribution pattern and is impacted by factors including chemical composition,
neutron fluence, and irradiation temperature. Existing empirical procedures can estimate ∆RTNDT

based on fitting extensive irradiation embrittlement data, but their reliability has not been thoroughly
investigated. Probability statistical distributions and the Gamma stochastic process were performed
to model material property degradation in RPV steels from a pressurized water reactor due to irradi-
ation embrittlement, with the probability models considered being normal, Weibull, and lognormal
distributions. Comparisons with existing empirical procedures showed that the Weibull distribution
model and the Gamma stochastic model demonstrate good reliability in predicting ∆RTNDT for RPV
steels. This provides a valuable reference for studying irradiation embrittlement in RPV materials.

Keywords: nil-ductility transition reference temperature; irradiation embrittlement; stepwise regres-
sion analysis; gamma process; probabilistic statistics

1. Introduction

As irreplaceable core components of nuclear power plants, reactor pressure vessels
(RPVs) endure prolonged neutron bombardment over their 60 to 80 years of service [1].
This continuous exposure leads to the gradual degradation of their material properties [2],
manifesting as irradiation embrittlement. At the microscopic level, neutron irradiation
causes the formation of defects such as vacancies, interstitial atom point defects, and
clusters, which leads to the precipitation and segregation of solute atoms, notably with
Cu-rich precipitates and P element segregation [3–5]. From a macroscopic perspective,
RPV steels experience embrittlement, evidenced by an increase in nil-ductility transition
reference temperature (RTNDT) [5], a reduction in upper-shelf energy, and diminished
fracture toughness.

Studies have revealed that the irradiation embrittlement of RPV steels is influenced by
several factors, including irradiation temperature [6,7], neutron fluence [8–10], and chemical
composition [11]. Edmondson et al. [12], Miller et al. [13], and Kuleshova et al. [14] explored
the effects of low copper content (less than 0.1%) under high neutron fluence conditions on
RPV steels. The shift in the nil-ductility transition reference temperature (∆RTNDT) serves
as a critical indicator of irradiation embrittlement. Bing et al. [15] believed the irradiation
embrittlement of RPV steels is primarily influenced by neutron fluence. He et al. [16] found,
through fitting, that ∆RTNDT increases rapidly with neutron fluence. Kryukov et al. [10]
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investigated the effect of elements, finding that ∆RTNDT gradually increases with neutron
fluence and tends to stabilize.

To address the challenges related to the time and cost of irradiation experiments,
empirical procedures based on the chemistry of steels (Cu and Ni contents) and the neutron
fluence received have been developed for predicting ∆RTNDT. Examples include RG1.99
(Rev.1), RG1.99 (Rev.2) [17], NUREG/CR [18,19], and ASME-E900 [20] from the United
States; FIS [21] from France; and JEAC [22] from Japan. Given the diverse RPV materials
used by different countries, the targeted elements for study vary accordingly. Specifically,
France concentrates on Cu and P; the European Union and the United States prioritize
Cu, P, and Ni [17]; and Japan focuses on Cu, P, Si, and Ni. At the same time, machine
learning has been performed by numerous scholars to predict the performance of RPV
steels [23–25]. This method, focusing on statistical theories rather than physical details,
identifies optimal mathematical mappings between material properties and performance,
showing significant strengths in addressing complex, coupled, and nonlinear issues. Castin
et al. [26] used a three-layer artificial neural network to predict the radiation hardening of
RPV steels. Following a similar approach, Mathew et al. [27] established a neural network-
based model to forecast irradiation embrittlement of RPV steels. The trends predicted by
both the machine learning-based model and the experience-based model are consistent,
but they neglect the influence of alloy composition on the shift in RTNDT. However,
regardless of whether the approach is machine learning or a traditional empirical procedure,
existing models are based on curves fitted from extensive experimental data, resulting in
deterministic data that lack probabilistic reliability analysis. Given the requirements of
probabilistic fracture mechanics for RPVs under various transients, such as pressurized
thermal shock [28] and pressure–temperature limit curves [29], it is necessary to evaluate
the uncertainty model of ∆RTNDT due to irradiation.

Numerous methods for estimating reliability from degradation data have been pro-
posed [30,31]. While degradation path modeling is commonly employed, it has limitations
in handling time-varying systems and is effective only when randomness from environ-
mental factors is negligible. Another approach involves stochastic process modeling, with
the Wiener, Gamma, and Inverse Gaussian processes being the most commonly applied
methodologies. The Gamma process model, as a degradation process, exhibits degradation
monotonicity. It characterizes degradation increments by using the Gamma distribution
and offers a reasonable physical interpretation for irreversible degradation phenomena. The
Gamma process was first applied by Moran in a series of papers and a book published in the
1950s to simulate the process of water flowing into a dam [32]. In 1975, Abdel-Hameed [33]
proposed using the Gamma process as a degradation model that occurs randomly over
time. Over the past four decades, the Gamma process has consistently provided good fits
to various types of data, including creep [34], fatigue crack growth [35], and corrosion thin-
ning [36]. Lawless and Crowder [37] incorporated covariates and random effects into the
degradation process model based on the Gamma process to characterize different degrada-
tion rates for different individuals and derived the distribution of failure time. In this paper,
the Gamma process will be used to study the embrittlement behavior of RPV materials,
and neutron fluence will be considered as a function of time to investigate ∆RTNDT.

This paper aims to predict the shift in nil-ductility transition reference temperature
(∆RTNDT) and explain the associated uncertainty based on probability distribution and
the Gamma process. The distribution patterns of changed ∆RTNDT under varied neutron
fluences are analyzed from a probabilistic statistical perspective, and these changes are
further derived from the perspective of stochastic degradation. The layout of this paper
is as follows: The methodology for data processing and the theoretical framework of the
prediction models are detailed in Section 2. The priority factors affecting ∆RTNDT and the
construction of prediction models are studied in Section 3. The comparative analysis of the
prediction models, along with an evaluation against traditional empirical procedures, is
discussed in Section 4. Key conclusions are presented in Section 5.
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2. Methods
2.1. Data Collection and Processing

The research data were collected with two data sets. The first data set, containing 1707
data points, originated from the RPV irradiation embrittlement database POLTTER [38].
This data set was used to evaluate the impacts of various factors on irradiation embrit-
tlement. The second data set, with 65 data points, was sourced from the database on the
base materials of RPVs from pressurized water reactor nuclear power plants (900 Mwe)
with neutron energy exceeding 1.0 MeV [39], which was provided by French company EDF.
This data set was used to develop the prediction models with probability statistics and the
Gamma process.

There are many factors that affect the irradiation embrittlement of RPV steel, such
as the chemical element content [15] and irradiation conditions [40]. It is necessary to
select important factors and eliminate unimportant factors. Therefore, stepwise regression
analysis was used to assess the presence of any correlation between the eight predictors
(the chemical composition of RPV steels: Ni, Mn, Si, P, Cu, and P; irradiation conditions:
neutron fluence, neutron fluence rate, and irradiation temperature) and the shift in nil-
ductility transition reference temperature (∆RTNDT; dependent variable) to identify the
most influential factors on this parameter. Regression variables with different units were
standardized firstly, and stepwise linear regression models were established as follows:

Y = β0 + βiXi + ε (1)

where Y is the dependent variable, Xi represents the independent variables (1 ≤ i ≤ 8), β0
is the regression constant, βi is the regression coefficient for each Xi, and ε is the error [41].

In regression analysis, variables are added or removed based on the significance level
of the F-value (calculated by using Equation (2)), which was set at 0.05.

F =

n
∑

i=1
(ŷi − y)2/m

n
∑

i=1
(yi − ŷi)

2/n − m − 1
(2)

where ŷi is the regression value, yi is the actual data value, y is the mean value of the actual

data, m is the number of independent variables, n is the sample size,
n
∑

i=1
(ŷi − y)2 is the sum

of squares of the regression, and
n
∑

i=1
(yi − ŷi)

2 is the sum of the squared error.

Then, to predict the irradiation embrittlement behavior of RPV steels, it is essential
to initially analyze the variation in and distribution of the shift in nil-ductility transition
reference temperature (∆RTNDT) within existing irradiated materials, as it serves as a cru-
cial measure of irradiation embrittlement. The statistical analysis was conducted by using
irradiation embrittlement sample data from RPV base materials at 288 ◦C irradiation tem-
perature in pressurized water reactor nuclear power plants. The conventional calculation
criteria for ∆RTNDT also predominantly consider the dependence on three elements: Cu,
Ni, and P. Combining with the above data, the range and average values of key elemental
contents are listed in Table 1. Specifically, the Cu content ranges from 0.04 to 0.07 wt.%, the
Ni content ranges from 0.66 to 0.75 wt.%, and the P content ranges from 0.005 to 0.009 wt.%.
The mean values of 0.06 wt.%, 0.70 wt.%, and 0.007 wt.% for the elemental contents of Cu,
Ni, and P, respectively, were used to estimate ∆RTNDT, as reported in Section 4.

Considering the significant impact of neutron fluence on the shift in nil-ductility
transition reference temperature (∆RTNDT), Figure 1 shows ∆RTNDT for different neutron
fluences, based on sample data. Overall, ∆RTNDT tends to rise with the increase in neu-
tron fluence. Moreover, at the same neutron fluence levels, there appears to be a certain
distribution pattern observed for ∆RTNDT.
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Table 1. The ranges and average values of key elemental contents in RPV base materials.

Element Minimum Value (wt.%) Maximum Value (wt.%) Mean Value (wt.%)

Cu 0.04 0.07 0.06
Ni 0.66 0.75 0.70
P 0.005 0.009 0.007
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Figure 1. The shift in nil-ductility transition reference temperature (∆RTNDT) for different neutron
fluences.

To deeply understand the distribution pattern of the shift in nil-ductility transition
reference temperature (∆RTNDT) at the same neutron fluence levels, a crucial task is to
ensure consistency across multiple data points of neutron fluence. Therefore, the K-means
clustering algorithm was selected for data classification due to its ability to efficiently
handle large-scale data sets [42]. The specific implementation steps are as follows:

Step 1: Divide n data points into k clusters, with each cluster selecting an initial
cluster center.

Step 2: Apply the nearest-neighbor rule for clustering division [43], where each data
point is assigned to the nearest cluster based on the minimum distance principle by using
Equation (3) (also known as Euclidean distance).

d =

√
(x − xi)

2 + (y − yi)
2 (3)

where xi and yi are the coordinates of each cluster center.
Step 3: Update the cluster centers according to the sample mean of each cluster.
Step 4: Calculate the root mean square error between the new and old cluster centers

for each cluster. If the error is less than the tolerance limit of 0.0001, then stop. Otherwise,
return to step 2.

It is worth noting that when calculating the Euclidean distance by using Equation (3),
only the distance between the horizontal coordinate points is calculated, while the vertical
differences are ignored. This method is strategically chosen to foster a more vertically
distributed configuration of the resulting clusters, aligning with the analytical objectives.

The data classification results under different cluster numbers are shown in Figure 2,
where different colors represent distinct clusters. The green data are all identified as one
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cluster due to their concentrated distribution along the vertical axis, while other data points,
displaying greater dispersion along the horizontal axis, are challenging to classify. When
the number of clusters, K, is small (Figure 2a), both the red and yellow clusters contain
an excessive number of samples, resulting in reduced precision in the distribution fitting.
As K increases, the degree of aggregation between data points within each cluster rapidly
increases, leading to a noticeable improvement in clustering effectiveness (Figure 2b–d).
However, when K is relatively large (Figure 2e,f), the categorization becomes overly gran-
ular, leading to an insufficient number of data points within each cluster. For example,
the red and gray clusters contain only four data points each. This excessive subdivision
increases the uncertainty in fitting the data rather than reducing it.
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Figure 2. Cluster classification: (a) K = 3; (b) K = 4; (c) K = 5; (d) K = 6; (e) K = 7; (f) K = 8.

Within-Cluster Sum of Square (WCSS), which represents the sum of distances from
each data point within a cluster to its corresponding cluster center, was calculated to select
the most suitable value of K. The sum of squared errors (SSE) was calculated by Equation (4),
and its relationship with the number of clusters is illustrated in Figure 3. Typically, the
point of inflection where the decrease in the sum of squared errors is maximized and
subsequently slows down is considered the optimal number of clusters. It can be observed
that when the number of clusters increases from 3 to 4, there is a significant reduction in
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intra-cluster distances. However, as K continues to increase, the change in SSE becomes
less pronounced. Therefore, clusters with a K of 4 were chosen for subsequent analysis.

SSE =
k

∑
i=1

∑
p∈Ci

|p − mi|2 (4)

where k is the number of cluster centers, Ci is the i-th cluster, p represents the neutron
fluence of data points in the i-th cluster, and m is the neutron fluence of the cluster center
point (vertical distance is ignored).
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2.2. Prediction by Probability Statistical Models

After analyzing and processing the data from the second data set, each group of data
was subjected to statistical distribution fitting, and the common distributions lognormal,
normal, and Weibull were applied to fit the left-skewed sample data. Then, the distribution
parameters of the probabilistic statistical models were analyzed for the shift in nil-ductility
transition reference temperature (∆RTNDT) at 4 neutron fluence levels. The cumulative
probability functions (F(t)) for the 3 distributions are provided by Equations (5)–(7), where
t refers to ∆RTNDT. Specifically, to determine the distribution parameters for the prediction
models, the y-axis values (∆RTNDT) of the clustered data were systematically sorted from
the lowest to the highest, and the Hensen formula was used to establish the relationship
between the values of ∆RTNDT and the cumulative probability functions of each data point,
as shown in Equation (8).

lognormal distribution F(t) =
∫ t

0

1√
2πσx

e−
1
2 (

ln x−µ
σ )

2

(5)

normal distribution F(t) =
∫ t

0

1√
2πσ

e−
1
2 (

x−µ
σ )

2

dx (6)

Weibull distribution F(t) = 1 − e−( t
η )

m

(7)

Hansen formula Fn(ti) = (i − 0.5)/n (8)
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where µ is the mean value, σ is the standard deviation, m is the shape parameter, η
represents the characteristic lifetime or true scale parameter, i is the rank, and n is the
sample size.

The root mean square error (RMSE) was introduced to evaluate the fitting effectiveness
and determine the optimal probability distribution of the 3 distribution models with
Equation (9). A larger RMSE value indicates poorer fitting performance.

RMSE =

√
1
n

n

∑
i=1

(
Ytesti − Ypredicti

)2
(9)

where Ytesti is the test data value of the i-th ∆RTNDT corresponding to a neutron fluence
from the database and Ypredicti

is the predicted value of the i-th ∆RTNDT obtained from the
prediction models.

2.3. Prediction by Gamma Stochastic Process Model

On the other hand, the impact of time on the degradation of the mechanical properties
of RPV steels was considered. After neutron irradiation, the shift in the nil-ductility
transition reference temperature (∆RTNDT) of RPV steels exhibits a gradual upward trend
with the increase in neutron fluence, characterized by both randomness and irreversibility.
The process of ∆RTNDT variation is well suited for analysis using the Gamma process, which
features independent and non-negative increments [30]. This allows for the quantification
of the degradation process of RPV steels after neutron irradiation. Given the influence of
chemical elements on the shift in nil-ductility transition reference temperature (∆RTNDT),
this effect was here transformed into a stochastic impact of neutron fluence on ∆RTNDT.

If the shift in nil-ductility transition reference temperature x(t) of RPV steels follows
a Gamma process [31], that is, x(t) ∼ Ga(t; v, u), where x(0) = 0, t represents neutron
fluence rather than time, v is the deterministic shape parameter, and u is the random scale
parameter, the cumulative probability function of the shift in the nil-ductility transition
reference temperature (∆RTNDT) of RPV steels caused by neutron irradiation is given by
Equation (10).

Ga(x|v, u ) =
uvxv−1 exp(−ux)

Γ(v)
I0,∞(x) (10)

where Γ(v) is the gamma function, Γ(v) =
∫ ∞

0 tv−1e−tdt, and I0,∞(x) =
{

1 x ∈ (0, ∞)
0 x /∈ (0, ∞)

.

In any neutron fluence interval
(

fi, f j
)
, the change in ∆RTNDT follows a distribution

denoted by ∆Rij ∼ Ga
[
v( fi)− v

(
f j
)
, u

]
. Based on the properties of the Gamma process,

the expected value (mean value) (E(x(t))) and variance (Var[x(t)]) of ∆RTNDT are calculated
by using Equations (11) and (12), respectively, and the relationship between the expected
value and variance with scale parameter u is given by Equation (13). It is important
to highlight that when fitting the cluster centers obtained from the K-means clustering
algorithm (as described in Section 2.1), ∆RTNDT increases with the neutron fluence, as
shown in Figure 4. Therefore, shape parameter v is regarded as a linear function of the
neutron fluence, that is, v = at, where the expression for a is provided by Equation (14).

E
(
∆Rij

)
=

a
(

fi − f j
)

u
(11)

Var
(
∆Rij

)
=

a
(

fi − f j
)

u2 (12)

u =
E
(
∆Rij

)
Var

(
∆Rij

) (13)

a =
u2[E

(
∆Rij

)
+ Var

(
∆Rij

)]
( fi − fi)(u + 1)

(14)
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Figure 4. The fitting curve between the shift in nil-ductility transition reference temperature (∆RTNDT)
and neutron fluence.

Before parameter estimation, it is necessary to obtain sufficient data samples regarding
the change in the shift in nil-ductility transition reference temperature (∆RTNDT). Based on
the fitted curve, neutron fluence was divided into 14 intervals in the range [0.5, 1], [1, 1.5],
. . ., [6.5, 7]. The linear interpolation method was applied to obtain the value of ∆RTNDT at
each interval point, thereby calculating the change in ∆RTNDT within these ranges. Since the
maximum neutron fluence in the original samples is only 7.3 × 1019 n·cm−2, the maximum
value of the intervals was controlled at 7 × 1019 n·cm−2 to ensure the reliability of the data.

3. Results
3.1. Impact Factor Analysis

The regression model coefficients and test results are listed in Table 2. The neutron
fluence rate was excluded from the model due to its lack of significance. Typically, when
the p-value is less than 0.05, the independent variable is considered significant for the
model [44]. It can be observed that the chemical composition, neutron fluence, and ir-
radiation temperature all have an impact on the shift in nil-ductility transition reference
temperature (∆RTNDT). Higher coefficient values (β) suggest a stronger influence on this
increment, regardless of their positive or negative signs. For a variable with a negative
standardized coefficient, such as irradiation temperature, its effect on ∆RTNDT is nega-
tive. The absolute values of the standardized coefficients for each variable are shown in
Figure 5. The collinearity diagnostic results indicate that the Variance Inflation Factor (VIF)
is below 1, significantly lower than the threshold value of 10. Moreover, the tolerance
values approach 1, suggesting minimal multicollinearity issues among the independent
variables in this model. Furthermore, the reliability of the regression model was evaluated
by using the F-test, the coefficient of determination (R2), and the Durbin–Watson (D-W)
test. The results indicate that the model fits well (R2 = 0.676) and has statistical significance
(F = 505.777, p < 0.001). The D-W value closer to 2 indicates a greater assurance of no
autocorrelation in the regression residuals. The results demonstrate that the error terms of
the model are independent, and the regression model is reliable (D-W = 1.077).
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Table 2. The coefficients and test results of the stepwise regression analysis (n = 1707).

Unstandardized Coefficients Standardized
Coefficients t p

Collinearity Diagnostics

B Standard Error β VIF Tolerance

Constant 144.975 13.640 - 10.628 0.000 - -
Ni (w%) 20.083 1.358 0.215 14.784 0.000 1.104 0.906
Mn (w%) 9.769 1.424 0.099 6.862 0.000 1.087 0.920
Si (w%) 5.061 4.937 0.015 1.025 0.305 1.051 0.951
P(w%) 294.988 45.152 0.092 6.533 0.000 1.044 0.958

Cu (w%) 215.541 14.233 0.216 15.144 0.000 1.071 0.934
Fluence [n/cm2] 0.000 0.000 0.673 46.739 0.000 1.086 0.920
Temperature [°C] −0.611 0.046 −0.187 −13.271 0.000 1.039 0.962

R 0.676
F F(7,1699) = 505.777, p = 0.000

D-W 1.077

As seen in Figure 5, neutron fluence has the most significant positive impact on
∆RTNDT, thereby greatly influencing the irradiation embrittlement of RPV steels. Addi-
tionally, the chemical composition affects irradiation embrittlement, with Cu, Ni, Mn, P,
and Si showing decreasing levels of impact in sequence, and Si content shows minimal
to negligible effects on irradiation embrittlement. Considering the significant influence of
neutron fluence, the probability distribution of the shift in nil-ductility transition reference
temperature at different neutron fluence levels was analyzed and predicted, as shown
in Section 3.2. The irradiation embrittlement model incorporating the stochastic effect of
neutron fluence was established and is discussed in Section 3.3.

3.2. Probability Statistical Model

For reliability values of 5%, 50%, and 95%, the fitting results for normal, Weibull, and
lognormal distributions are shown in Figure 6. The detailed data can be found in Table 3.
The results indicate that the fitting performance of the lognormal distribution is significantly
inferior to that of the Weibull distribution and normal distribution. However, the difference
between the Weibull distribution and the normal distribution is not significant, and further
analysis is needed.
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Figure 6. The fitting curves and root mean square error (RMSE) diagrams for the three distributions:
(a) normal distribution; (b) Weibull distribution; (c) lognormal distribution; (d) RMSE comparison
diagrams.

Table 3. Data in different distributions and reliability values.

Neutron Fluence/1019·n cm−2 1.75 3.52 5.14 6.93

Normal
distribution

5% 1.58 15.48 30.86 38.41
50% 13.71 36.24 54.52 58.80
95% 25.85 57.01 78.19 79.19

Lognormal
distribution

5% 3.63 18.13 33.59 40.08
50% 11.28 33.91 52.59 57.45
95% 35.09 63.41 82.33 82.33

Weibull
distribution

5% 2.67 15.78 30.38 36.44
50% 12.61 36.07 55.02 59.55
95% 30.16 57.41 76.82 78.49

To predict the variation in ∆RTNDT at other neutron fluence levels, the relationship
between the parameters of the Weibull distribution and normal distribution (denoted by y)
and the neutron fluence (denoted by x) was studied. Due to the inconvenience of calculating
coefficients with neutron fluence values of 1019, the existing four neutron fluence cluster
values were normalized by using Equation (15) to fall within the range [0, 1], with xmax of
7.5 × 1019 n·cm−2.

x =
x

xmax
(15)

Figure 7 shows the fitted curves of Weibull distribution parameters and normal distri-
bution parameters with different neutron fluences. The four points on the plot represent the
actual values of distribution parameters at known neutron fluences, and the dashed lines
represent the fitting curves. The coefficient of determination (R2) reflects the goodness-of-fit
of these curves. The R2 for the curves of the four distribution parameters are 0.983 (µ),
0.9903 (σ2), 0.988 (m), and 0.9814 (η), all approaching 1.0. This indicates strong interpretabil-
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ity of the curves and excellent fitting performance. The expressions of the distribution
parameters are detailed in Table 4.
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Figure 7. The fitting curves of Weibull distribution parameters and normal distribution parameters
with neutron fluence: (a) normal distribution parameter µ; (b) normal distribution parameter σ2;
(c) Weibull distribution shape parameter m; (d) Weibull scale parameter η.

Table 4. The expressions of the four distribution parameters.

Type Parameter Parameter Equation

Normal distribution
µ µ = 34.366ln(x) + 63.745
σ2 σ2 = −740.2x2 + 1007.2x − 142.92

Weibull distribution
m m = 2.6335ln(x) + 5.385
η η = 36.774ln(x) + 69.491

The neutron fluence data from the POLTTER database in Section 2.1 were selected
to validate the accuracy of both the Weibull distribution model and the normal dis-
tribution model. The cumulative probability function curves for neutron fluences of
2.46 × 1019 n·cm−2 and 4.75 × 1019 n·cm−2 are shown in Figure 8. The y-axis represents
the probability of material failure, where ∆RTNDT is less than or equal to a specific value.
From Figure 8, it can be seen that at a neutron fluence of 2.46 × 1019 n·cm−2, when ∆RTNDT
is approximately below 30 ◦C (Figure 8a), the cumulative probability function (F(t)) of the
predicted values exceeds that of the test data values. Similarly, at a neutron fluence of
4.75 × 1019 n·cm−2, when ∆RTNDT is below 40 ◦C (Figure 8b), the same trend is observed.
Thus, in both scenarios, the predicted values obtained from the prediction models exhibit
a higher failure probability compared with the test data values, indicating a more conser-
vative estimation at the same ∆RTNDT values. Furthermore, in high-probability situations
(F(t) > 0.8), the predicted values of ∆RTNDT are higher than the test data values. This
implies a larger increment in the nil-ductility transition reference temperature, bringing
RTNDT closer to the safety threshold assumed for RPV failure. Consequently, the service
life of the material is shortened, resulting in a more conservative estimation.
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Figure 8. The curves of the cumulative probability function (F(t)) for two neutron fluences:
(a) 2.46 × 1019 n·cm−2; (b) 4.75 × 1019 n·cm−2.

The cross-entropy between predicted and test data values under different probability
distribution functions was calculated by using Equation (16). The results indicate that
at a neutron fluence of 2.46 × 1019 n·cm−2, the cross-entropy values for the Weibull and
normal distributions are 3.598 and 3.926, respectively. Similarly, at a neutron fluence of
4.75 × 1019 n·cm−2, the values are 3.750 and 4.377, respectively. A smaller cross-entropy
value indicates a higher degree of conformity between the two distributions, suggesting
that the Weibull distribution provides a better fit for the prediction model.

H(p, q) = −∑
x

p(x) log q(x) (16)

where p(x)is the probability distribution of the test data values, q(x)is the probability
distribution of the predicted values, and x represents the specific value of ∆RTNDT.

The RMSEs between the predicted values from the two distribution models and the
test data values were calculated, as shown in Figure 9. The Weibull distribution has a
smaller RMSE compared with the normal distribution. Furthermore, the trend of the
Weibull distribution parameters is more uniquely determined, indicating higher reliability
of the estimation method, which is more suitable for engineering applications. Therefore,
it is recommended to use the Weibull distribution for predicting the shift in nil-ductility
transition reference temperature that changes with neutron irradiation.
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3.3. Gamma Stochastic Model

According to the parameter estimation method for the Gamma process, the data results
are listed in Table 5.

Table 5. The results of linear interpolation for the change in ∆RTNDT.

Neutron Fluence
1019 n/cm2

∆RTNDT
/◦C

Change in ∆RTNDT
/◦C

0.5 3.910 3.910
1 7.820 3.910

1.5 11.730 3.910
2 16.661 4.931

2.5 22.641 5.980
3 28.621 5.980

3.5 34.601 5.980
4 40.796 6.196

4.5 46.985 6.189
5 53.173 6.189

5.5 55.759 2.586
6 57.043 1.284

6.5 58.327 1.284
7 59.611 1.284

The data obtained from Table 5 were substituted into Equations (10)–(13); combined
with the parameter estimation method for the Gamma process, the mean value (E) and
variance (Var) were calculated to be 4.256 and 3.865, respectively. Gamma distribution
parameters u and v were then obtained as per Equation (17).{

u = 1.102
v = 9.381t

(17)

The predicted values obtained from the Gamma stochastic process were compared
with the test data values, and the cumulative probability functions under different neutron
fluences are shown in Figure 10. The cumulative probability function of the test data values
was calculated by using the Weibull distribution parameters from Section 3.2. Specifically,
six neutron fluences were considered, including the four neutron fluences obtained after
clustering and other neutron fluences selected from the POLTTER database (as mentioned in
Section 2). When the cumulative probability exceeds 0.3 (i.e., the 30% percentile), the errors
between the predicted values and the test data values for different neutron fluences are
below 20%, except for the neutron fluence of 6.93 × 1019 n·cm−2, reflecting the reliability of
the stochastic model at high and medium quantile points. Enhancing the model’s reliability
at low quantile points will be a focus of future research. Specifically, at the neutron fluence
of 6.93 × 1019 n·cm−2 (Figure 10f), the predictive performance of the model based on the
Gamma stochastic process is poor, possibly due to the neutron fluence approaching the
maximum value at the edge.



Metals 2024, 14, 580 14 of 19Metals 2024, 14, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 10. Cumulative probability function (F(t)) for different neutron fluences: (a) 1.75 × 1019 n·cm−2; 
(b) 2.45 × 1019 n·cm−2; (c) 3.52 × 1019 n·cm−2; (d) 4.61 × 1019 n·cm−2; (e) 5.14 × 1019 n·cm−2; (f) 6.93 × 1019 
n·cm−2. 

4. Discussion 
4.1. Comparison with Probability Statistical Model and Stochastic Process 

Considering the 5%, 50%, and 95% percentiles, the relationship between ∆RTNDT and 
neutron fluence was explored by using both the Gamma stochastic process and the 
Weibull distribution prediction models, as shown in Figure 11. When the reliability 
reaches the 50% percentile and above, the predicted values of the two models are close. 
However, at lower percentiles (Figure 11a), the Gamma process predicts higher values 
than the Weibull distribution, suggesting a more conservative estimation. 

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 fu

nc
tio

n

ΔRTNDT/℃

Gamma stochastic process

Weibull distribution

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 fu

nc
tio

n

ΔRTNDT/℃

Gamma stochastic process

Weibull distribution

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 fu

nc
tio

n
ΔRTNDT/℃

Gamma stochastic process

Weibull distribution

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 fu

nc
tio

n

ΔRTNDT/℃

Gamma stochastic process

Weibull distribution

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 fu

nc
tio

n

ΔRTNDT/℃

Gamma stochastic process

Weibull distribution

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 fu

nc
tio

n

ΔRTNDT/℃

Gamma stochastic process

Weibull distribution

(a) (b)

(c) (d)

(e) (f)

Figure 10. Cumulative probability function (F(t)) for different neutron fluences: (a) 1.75 × 1019 n·cm−2;
(b) 2.45 × 1019 n·cm−2; (c) 3.52 × 1019 n·cm−2; (d) 4.61 × 1019 n·cm−2; (e) 5.14 × 1019 n·cm−2;
(f) 6.93 × 1019 n·cm−2.

4. Discussion
4.1. Comparison with Probability Statistical Model and Stochastic Process

Considering the 5%, 50%, and 95% percentiles, the relationship between ∆RTNDT and
neutron fluence was explored by using both the Gamma stochastic process and the Weibull
distribution prediction models, as shown in Figure 11. When the reliability reaches the
50% percentile and above, the predicted values of the two models are close. However, at
lower percentiles (Figure 11a), the Gamma process predicts higher values than the Weibull
distribution, suggesting a more conservative estimation.
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Figure 11. Comparison between the Gamma process and the Weibull distribution models’ predictions:
(a) 5%; (b) 50%; (c) 95%.

4.2. Comparison with Empirical Prediction Models

The shift in nil-ductility transition reference temperature (∆RTNDT) can be obtained by
the Charpy pendulum impact test. Various countries have developed empirical procedures
to predict ∆RTNDT based on test results. Notable examples include French FIS [21], Japanese
JEAC-4201 [22], American RG1.99-Rev2 [18], and the American ASTM model. These models
provide expressions for calculating ∆RTNDT, as presented in Equations (18)–(21).

French FIS:

∆RTNDT = 8 +
[

24 + 238(Cu − 0.008)+
1537(P − 0.008) + 19Ni2 × Cu

] [
f

1019

]0.35
(18)

Japanese JEAC-4201:

∆RTNDT =
[
−16 + 1210P + 215Cu + 77

√
Cu × Ni

]
× f 0.29−0.04 log f (°C)

(19)

American RG1.99-Rev2:
∆RTNDT = (CF) f (0.28−0.10 log f ) (20)

American ATSM-E900:

TTS = TTS1 + TTS2

TTS1 = A × 5
9 × 1.8943 × 10−12 · Φ0.5695

(
1.8T+32

550

)−5.47(
0.09 + P

0.012

)0.216(
1.66 + Ni

8.54

0.63

)0.39(
Mn
1.36

)0.3

TTS2 = 5
9 × max[min(Cu, 0.28)− 0.053, 0]× M

M = B × max
{

min
[
113.87

(
ln(Φ)− ln

(
4.5 × 1020)), 612.6

]
, 0
}
·(

1.8T+32
550

)−5.45(
0.1 + P

0.012

)−0.098(
0.168 + Ni

0.58

0.63

)0.73

(21)
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where f and Φ represent neutron fluence in n/cm2 and n/m2 (E > 1 MeV), T is the

irradiation temperature in ◦C, A =

 1.011 for forgings
1.080 for plates and SRM plates
0.919 for welds

, and B =

 0.738 for forgings
0.819 for plates and SRM plates
0.968 for welds

.

In the empirical procedures, the irradiation temperature was set to 288 ◦C, and the
contents of Cu, P, and Ni were taken as 0.06 wt.%, 0.70 wt.%, and 0.007 wt.%, respectively
(as described in Section 2). CF was determined to be 37 according to the standard.

Since test results have often been converted into mean values to determine the for-
mulas, data in the 50% percentile were selected for both the Weibull distribution and
Gamma stochastic process prediction models. The predicted values from these two models
were compared with the predictions obtained from existing empirical procedures, and
the results are shown in Figure 12. The ∆RTNDT predicted by both models accelerates
rapidly with the increase in neutron fluence, while the curve obtained from the empirical
procedures is more gradual. The difference can be attributed to the traditional empirical
procedures giving more weight to chemical element and placing less emphasis on the
neutron fluence factor during data fitting. According to the priority analysis of factors
influencing ∆RTNDT (Figure 5), the importance of neutron fluence should far exceed that of
elemental composition.
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Though the predicted values of ∆RTNDT from our model exceed those derived from
empirical procedures under high-neutron-fluence conditions, this discrepancy is consistent
with documented behaviors of steel under specific irradiation conditions, rather than
being an anomaly. To support our results, we refer to several key studies that align
with our observations and further validate the accuracy and applicability of our model.
Kuleshova et al. has shown that for 15Kh2NMFAA steel, when subjected to an irradiation
temperature of 300 ◦C and a neutron fluence of 4.5 × 1019 n·cm−2, the ∆RTNDT value
reaches 46 ◦C [6]. This figure notably surpasses the fitting values yielded by conventional
empirical procedures, which stay below 40 ◦C. Similarly, Wan et al. have found that for
the base material at a high neutron fluence of 5.24 × 1019 n·cm−2, the maximum ∆RTNDT
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value observed is 83 ◦C. For weldments, with a neutron fluence of 7.26 × 1019 n·cm−2, the
highest ∆RTNDT value recorded is 89 ◦C [39], significantly exceeding the predictions of
empirical procedures. These findings indicate that under certain conditions, the ∆RTNDT
value can indeed be higher than those traditionally predicted. Furthermore, Kryukov’s
work on WWER-440 steel supports our model’s findings. For high neutron fluences, the
rate of increase in ∆RTNDT with neutron fluence rises sharply [10], aligning with the trend
observed in our model. This alignment further strengthens the credibility of our model.
Therefore, we believe that the two prediction models still maintain high reliability.

5. Conclusions

In this paper, a stepwise analysis method was used to prioritize factors influencing
the shift in nil-ductility transition reference temperature (∆RTNDT). Subsequently, the
relationship between neutron fluence and ∆RTNDT was studied. By using the K-means
algorithm, ∆RTNDT values for different neutron fluence levels were clustered to form
cluster centers. Three probability distribution models, including normal, Weibull, and
lognormal distributions, were then fitted to determine the distribution parameters and
predict ∆RTNDT at a given neutron fluence. Considering the random effects of chemical
elements, the Gamma stochastic process was applied to predict ∆RTNDT, and the parameters
of the Gamma distribution were fitted accordingly. The results of ∆RTNDT predicted by
the models were compared with those obtained by existing empirical procedures. This
study provides a certain reference for predicting ∆RTNDT based on neutron fluence. Key
conclusions are as follows.

(1) Neutron fluence, chemical elements, and irradiation temperature all influence the
∆RTNDT. Neutron fluence has a significant impact on ∆RTNDT compared with chemical
elements, while irradiation temperature negatively affects it.

(2) The lognormal distribution was excluded due to its large root mean square error
in fitting. Comparison with test data revealed that the Weibull distribution model is more
suitable for engineering applications compared with the normal distribution model.

(3) The prediction models based on the Weibull distribution and the Gamma process
both exhibit a degree of reliability. The predicted values of ∆RTNDT obtained by the
prediction models are larger than the results of the empirical procedure under the high-
neutron-fluence conditions, indicating an increased level of conservatism. This conservative
bias underscores the superiority of prediction models in enhancing the rigor of security
assessments. For practical engineering purposes, it is advisable to adopt the conservative
estimates provided by both models as reference values.
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