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Abstract: Reactor pressure vessel (RPV) steels are highly susceptible to irradiation embrittlement
due to prolonged exposure to high temperature, high pressure, and intense neutron irradiation. This
leads to the shift in nil-ductility transition reference temperature—ARTNpt. The change in ARTNpT
follows a certain distribution pattern and is impacted by factors including chemical composition,
neutron fluence, and irradiation temperature. Existing empirical procedures can estimate ARTNpT
based on fitting extensive irradiation embrittlement data, but their reliability has not been thoroughly
investigated. Probability statistical distributions and the Gamma stochastic process were performed
to model material property degradation in RPV steels from a pressurized water reactor due to irradi-
ation embrittlement, with the probability models considered being normal, Weibull, and lognormal
distributions. Comparisons with existing empirical procedures showed that the Weibull distribution
model and the Gamma stochastic model demonstrate good reliability in predicting ARTNpT for RPV
steels. This provides a valuable reference for studying irradiation embrittlement in RPV materials.

Keywords: nil-ductility transition reference temperature; irradiation embrittlement; stepwise regres-
sion analysis; gamma process; probabilistic statistics

1. Introduction

As irreplaceable core components of nuclear power plants, reactor pressure vessels
(RPVs) endure prolonged neutron bombardment over their 60 to 80 years of service [1].
This continuous exposure leads to the gradual degradation of their material properties [2],
manifesting as irradiation embrittlement. At the microscopic level, neutron irradiation
causes the formation of defects such as vacancies, interstitial atom point defects, and
clusters, which leads to the precipitation and segregation of solute atoms, notably with
Cu-rich precipitates and P element segregation [3-5]. From a macroscopic perspective,
RPV steels experience embrittlement, evidenced by an increase in nil-ductility transition
reference temperature (RTnpr) [5], a reduction in upper-shelf energy, and diminished
fracture toughness.

Studies have revealed that the irradiation embrittlement of RPV steels is influenced by
several factors, including irradiation temperature [6,7], neutron fluence [8-10], and chemical
composition [11]. Edmondson et al. [12], Miller et al. [13], and Kuleshova et al. [14] explored
the effects of low copper content (less than 0.1%) under high neutron fluence conditions on
RPV steels. The shift in the nil-ductility transition reference temperature (ARTNpT) serves
as a critical indicator of irradiation embrittlement. Bing et al. [15] believed the irradiation
embrittlement of RPV steels is primarily influenced by neutron fluence. He et al. [16] found,
through fitting, that ARTnpt increases rapidly with neutron fluence. Kryukov et al. [10]
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investigated the effect of elements, finding that ARTnpr gradually increases with neutron
fluence and tends to stabilize.

To address the challenges related to the time and cost of irradiation experiments,
empirical procedures based on the chemistry of steels (Cu and Ni contents) and the neutron
fluence received have been developed for predicting ARTnpr. Examples include RG1.99
(Rev.1), RG1.99 (Rev.2) [17], NUREG/CR [18,19], and ASME-E900 [20] from the United
States; FIS [21] from France; and JEAC [22] from Japan. Given the diverse RPV materials
used by different countries, the targeted elements for study vary accordingly. Specifically,
France concentrates on Cu and P; the European Union and the United States prioritize
Cu, P, and Ni [17]; and Japan focuses on Cu, P, Si, and Ni. At the same time, machine
learning has been performed by numerous scholars to predict the performance of RPV
steels [23-25]. This method, focusing on statistical theories rather than physical details,
identifies optimal mathematical mappings between material properties and performance,
showing significant strengths in addressing complex, coupled, and nonlinear issues. Castin
et al. [26] used a three-layer artificial neural network to predict the radiation hardening of
RPV steels. Following a similar approach, Mathew et al. [27] established a neural network-
based model to forecast irradiation embrittlement of RPV steels. The trends predicted by
both the machine learning-based model and the experience-based model are consistent,
but they neglect the influence of alloy composition on the shift in RTypr. However,
regardless of whether the approach is machine learning or a traditional empirical procedure,
existing models are based on curves fitted from extensive experimental data, resulting in
deterministic data that lack probabilistic reliability analysis. Given the requirements of
probabilistic fracture mechanics for RPVs under various transients, such as pressurized
thermal shock [28] and pressure-temperature limit curves [29], it is necessary to evaluate
the uncertainty model of ARTNpt due to irradiation.

Numerous methods for estimating reliability from degradation data have been pro-
posed [30,31]. While degradation path modeling is commonly employed, it has limitations
in handling time-varying systems and is effective only when randomness from environ-
mental factors is negligible. Another approach involves stochastic process modeling, with
the Wiener, Gamma, and Inverse Gaussian processes being the most commonly applied
methodologies. The Gamma process model, as a degradation process, exhibits degradation
monotonicity. It characterizes degradation increments by using the Gamma distribution
and offers a reasonable physical interpretation for irreversible degradation phenomena. The
Gamma process was first applied by Moran in a series of papers and a book published in the
1950s to simulate the process of water flowing into a dam [32]. In 1975, Abdel-Hameed [33]
proposed using the Gamma process as a degradation model that occurs randomly over
time. Over the past four decades, the Gamma process has consistently provided good fits
to various types of data, including creep [34], fatigue crack growth [35], and corrosion thin-
ning [36]. Lawless and Crowder [37] incorporated covariates and random effects into the
degradation process model based on the Gamma process to characterize different degrada-
tion rates for different individuals and derived the distribution of failure time. In this paper,
the Gamma process will be used to study the embrittlement behavior of RPV materials,
and neutron fluence will be considered as a function of time to investigate ARTNprT.

This paper aims to predict the shift in nil-ductility transition reference temperature
(ARTnpT) and explain the associated uncertainty based on probability distribution and
the Gamma process. The distribution patterns of changed ARTNpT under varied neutron
fluences are analyzed from a probabilistic statistical perspective, and these changes are
further derived from the perspective of stochastic degradation. The layout of this paper
is as follows: The methodology for data processing and the theoretical framework of the
prediction models are detailed in Section 2. The priority factors affecting ARTNpT and the
construction of prediction models are studied in Section 3. The comparative analysis of the
prediction models, along with an evaluation against traditional empirical procedures, is
discussed in Section 4. Key conclusions are presented in Section 5.
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2. Methods
2.1. Data Collection and Processing

The research data were collected with two data sets. The first data set, containing 1707
data points, originated from the RPV irradiation embrittlement database POLTTER [38].
This data set was used to evaluate the impacts of various factors on irradiation embrit-
tlement. The second data set, with 65 data points, was sourced from the database on the
base materials of RPVs from pressurized water reactor nuclear power plants (900 Mwe)
with neutron energy exceeding 1.0 MeV [39], which was provided by French company EDFE.
This data set was used to develop the prediction models with probability statistics and the
Gamma process.

There are many factors that affect the irradiation embrittlement of RPV steel, such
as the chemical element content [15] and irradiation conditions [40]. It is necessary to
select important factors and eliminate unimportant factors. Therefore, stepwise regression
analysis was used to assess the presence of any correlation between the eight predictors
(the chemical composition of RPV steels: Ni, Mn, Si, P, Cu, and P; irradiation conditions:
neutron fluence, neutron fluence rate, and irradiation temperature) and the shift in nil-
ductility transition reference temperature (ARTnpT; dependent variable) to identify the
most influential factors on this parameter. Regression variables with different units were
standardized firstly, and stepwise linear regression models were established as follows:

Y =po+piXi+e 1)

where Y is the dependent variable, X; represents the independent variables (1 < i < 8), B
is the regression constant, f3; is the regression coefficient for each X;, and ¢ is the error [41].

In regression analysis, variables are added or removed based on the significance level
of the F-value (calculated by using Equation (2)), which was set at 0.05.

F= ! 2)
Y (yi—9:)/n—m—1
i=1
where 7; is the regression value, y; is the actual data value, ¥ is the mean value of the actual

n
data, m is the number of independent variables,  is the sample size, . (7; — y)2 is the sum
i=1

of squares of the regression, and i (yi — yy-)z is the sum of the squared error.

Then, to predict the irradiatlioln embrittlement behavior of RPV steels, it is essential
to initially analyze the variation in and distribution of the shift in nil-ductility transition
reference temperature (ARTNpT) Within existing irradiated materials, as it serves as a cru-
cial measure of irradiation embrittlement. The statistical analysis was conducted by using
irradiation embrittlement sample data from RPV base materials at 288 °C irradiation tem-
perature in pressurized water reactor nuclear power plants. The conventional calculation
criteria for ARTnpt also predominantly consider the dependence on three elements: Cu,
Ni, and P. Combining with the above data, the range and average values of key elemental
contents are listed in Table 1. Specifically, the Cu content ranges from 0.04 to 0.07 wt.%, the
Ni content ranges from 0.66 to 0.75 wt.%, and the P content ranges from 0.005 to 0.009 wt.%.
The mean values of 0.06 wt.%, 0.70 wt.%, and 0.007 wt.% for the elemental contents of Cu,
Ni, and D, respectively, were used to estimate ARTNpr, as reported in Section 4.

Considering the significant impact of neutron fluence on the shift in nil-ductility
transition reference temperature (ARTnprT), Figure 1 shows ARTNpr for different neutron
fluences, based on sample data. Overall, ARTNpT tends to rise with the increase in neu-
tron fluence. Moreover, at the same neutron fluence levels, there appears to be a certain
distribution pattern observed for ARTNpT.
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Table 1. The ranges and average values of key elemental contents in RPV base materials.
Element Minimum Value (wt.%)  Maximum Value (wt.%) Mean Value (wt.%)
Cu 0.04 0.07 0.06
Ni 0.66 0.75 0.70
P 0.005 0.009 0.007
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Figure 1. The shift in nil-ductility transition reference temperature (ARTNpr) for different neutron
fluences.

To deeply understand the distribution pattern of the shift in nil-ductility transition
reference temperature (ARTNpT) at the same neutron fluence levels, a crucial task is to
ensure consistency across multiple data points of neutron fluence. Therefore, the K-means
clustering algorithm was selected for data classification due to its ability to efficiently
handle large-scale data sets [42]. The specific implementation steps are as follows:

Step 1: Divide n data points into k clusters, with each cluster selecting an initial
cluster center.

Step 2: Apply the nearest-neighbor rule for clustering division [43], where each data
point is assigned to the nearest cluster based on the minimum distance principle by using
Equation (3) (also known as Euclidean distance).

d=1/(x— 2+ () ©

where x; and y; are the coordinates of each cluster center.

Step 3: Update the cluster centers according to the sample mean of each cluster.

Step 4: Calculate the root mean square error between the new and old cluster centers
for each cluster. If the error is less than the tolerance limit of 0.0001, then stop. Otherwise,
return to step 2.

It is worth noting that when calculating the Euclidean distance by using Equation (3),
only the distance between the horizontal coordinate points is calculated, while the vertical
differences are ignored. This method is strategically chosen to foster a more vertically
distributed configuration of the resulting clusters, aligning with the analytical objectives.

The data classification results under different cluster numbers are shown in Figure 2,
where different colors represent distinct clusters. The green data are all identified as one
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cluster due to their concentrated distribution along the vertical axis, while other data points,
displaying greater dispersion along the horizontal axis, are challenging to classify. When
the number of clusters, K, is small (Figure 2a), both the red and yellow clusters contain
an excessive number of samples, resulting in reduced precision in the distribution fitting.
As K increases, the degree of aggregation between data points within each cluster rapidly
increases, leading to a noticeable improvement in clustering effectiveness (Figure 2b—d).
However, when K is relatively large (Figure 2e,f), the categorization becomes overly gran-
ular, leading to an insufficient number of data points within each cluster. For example,
the red and gray clusters contain only four data points each. This excessive subdivision
increases the uncertainty in fitting the data rather than reducing it.
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Figure 2. Cluster classification: (a) K=3; (b) K=4; (c) K=5;(d) K=6;(e) K=7; (f) K=8.

Within-Cluster Sum of Square (WCSS), which represents the sum of distances from
each data point within a cluster to its corresponding cluster center, was calculated to select
the most suitable value of K. The sum of squared errors (SSE) was calculated by Equation (4),
and its relationship with the number of clusters is illustrated in Figure 3. Typically, the
point of inflection where the decrease in the sum of squared errors is maximized and
subsequently slows down is considered the optimal number of clusters. It can be observed
that when the number of clusters increases from 3 to 4, there is a significant reduction in
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intra-cluster distances. However, as K continues to increase, the change in SSE becomes
less pronounced. Therefore, clusters with a K of 4 were chosen for subsequent analysis.

k
SSE=Y. Y |p—mf (4)
i=1peC;

where k is the number of cluster centers, C; is the i-th cluster, p represents the neutron
fluence of data points in the i-th cluster, and m is the neutron fluence of the cluster center
point (vertical distance is ignored).

30
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The Sum of Squared Error(SSE)

0 ey
3 4 5 6 7 8
Number of clustering centers

Figure 3. Relation between the number of clusters and the sum of squared errors.

2.2. Prediction by Probability Statistical Models

After analyzing and processing the data from the second data set, each group of data
was subjected to statistical distribution fitting, and the common distributions lognormal,
normal, and Weibull were applied to fit the left-skewed sample data. Then, the distribution
parameters of the probabilistic statistical models were analyzed for the shift in nil-ductility
transition reference temperature (ARTNpT) at 4 neutron fluence levels. The cumulative
probability functions (F(t)) for the 3 distributions are provided by Equations (5)—(7), where
t refers to ARTNpr. Specifically, to determine the distribution parameters for the prediction
models, the y-axis values (ARTNpr) of the clustered data were systematically sorted from
the lowest to the highest, and the Hensen formula was used to establish the relationship
between the values of ARTNpt and the cumulative probability functions of each data point,
as shown in Equation (8).

1

t nx—u 2
lognormal distribution F(t) = / e ) (5)
0 V2mox
| 1x=p2
normal distribution F(t) = / — 2% ) ax (6)
0 V2mo
Weibull distribution F(t) = 1 — ¢~ (1) @)

Hansen formula F, (t;) = (i —0.5)/n (8)
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where yu is the mean value, ¢ is the standard deviation, m is the shape parameter, 5
represents the characteristic lifetime or true scale parameter, i is the rank, and # is the
sample size.

The root mean square error (RMSE) was introduced to evaluate the fitting effectiveness
and determine the optimal probability distribution of the 3 distribution models with
Equation (9). A larger RMSE value indicates poorer fitting performance.

1¢ 2
RMSE = \/nz (Ytesti — Ypredicl‘,‘) (9)

i=1

where Y., is the test data value of the i-th ARTNpr corresponding to a neutron fluence
from the database and Y),gjc, is the predicted value of the i-th ARTNpr obtained from the
prediction models.

2.3. Prediction by Gamma Stochastic Process Model

On the other hand, the impact of time on the degradation of the mechanical properties
of RPV steels was considered. After neutron irradiation, the shift in the nil-ductility
transition reference temperature (ARTnpT) of RPV steels exhibits a gradual upward trend
with the increase in neutron fluence, characterized by both randomness and irreversibility.
The process of ARTNpr variation is well suited for analysis using the Gamma process, which
features independent and non-negative increments [30]. This allows for the quantification
of the degradation process of RPV steels after neutron irradiation. Given the influence of
chemical elements on the shift in nil-ductility transition reference temperature (ARTNpT),
this effect was here transformed into a stochastic impact of neutron fluence on ARTNpT.

If the shift in nil-ductility transition reference temperature x(t) of RPV steels follows
a Gamma process [31], that is, x(t) ~ Ga(t;v,u), where x(0) = 0, t represents neutron
fluence rather than time, v is the deterministic shape parameter, and u is the random scale
parameter, the cumulative probability function of the shift in the nil-ductility transition
reference temperature (ARTNpr) of RPV steels caused by neutron irradiation is given by
Equation (10).
ux~exp(—ux)

I'(v)

where I'(v) is the gamma function, I'(v) = [;° t*"e~dt, and Ipeo(x) = {

Ga(x|v,u) = Ip o () (10)
1 x€(0,0)
0 x¢&(0,00)°
In any neutron fluence interval (f;, f;), the change in ARTxpr follows a distribution
denoted by AR;; ~ Ga[v(f;) — v(f;),u]. Based on the properties of the Gamma process,
the expected value (mean value) (E(x(t))) and variance (Var[x(t)]) of ARTnpr are calculated
by using Equations (11) and (12), respectively, and the relationship between the expected
value and variance with scale parameter u is given by Equation (13). It is important
to highlight that when fitting the cluster centers obtained from the K-means clustering
algorithm (as described in Section 2.1), ARTNpr increases with the neutron fluence, as
shown in Figure 4. Therefore, shape parameter v is regarded as a linear function of the
neutron fluence, that is, v = at, where the expression for a is provided by Equation (14).

a(fi— f;)

E(ARy) = == (11)
vwdARﬁ)ztdﬁ;;ﬁ) (12)
_ E(ARy)
“ 7 Var(aRy) 13)
2 . .
. u[E (ARU) + Var(ARZ])} 14

(fi = fi)(u+1)
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Figure 4. The fitting curve between the shift in nil-ductility transition reference temperature (ARTNpT)
and neutron fluence.

Before parameter estimation, it is necessary to obtain sufficient data samples regarding
the change in the shift in nil-ductility transition reference temperature (ARTNpT). Based on
the fitted curve, neutron fluence was divided into 14 intervals in the range [0.5, 1], [1, 1.5],
..., [6.5,7]. The linear interpolation method was applied to obtain the value of ARTNpT at
each interval point, thereby calculating the change in ARTNpt within these ranges. Since the
maximum neutron fluence in the original samples is only 7.3 x 10! n-cm~2, the maximum
value of the intervals was controlled at 7 x 10! n-cm~2 to ensure the reliability of the data.

3. Results
3.1. Impact Factor Analysis

The regression model coefficients and test results are listed in Table 2. The neutron
fluence rate was excluded from the model due to its lack of significance. Typically, when
the p-value is less than 0.05, the independent variable is considered significant for the
model [44]. It can be observed that the chemical composition, neutron fluence, and ir-
radiation temperature all have an impact on the shift in nil-ductility transition reference
temperature (ARTNpr). Higher coefficient values () suggest a stronger influence on this
increment, regardless of their positive or negative signs. For a variable with a negative
standardized coefficient, such as irradiation temperature, its effect on ARTnNpT is nega-
tive. The absolute values of the standardized coefficients for each variable are shown in
Figure 5. The collinearity diagnostic results indicate that the Variance Inflation Factor (VIF)
is below 1, significantly lower than the threshold value of 10. Moreover, the tolerance
values approach 1, suggesting minimal multicollinearity issues among the independent
variables in this model. Furthermore, the reliability of the regression model was evaluated
by using the F-test, the coefficient of determination (R?), and the Durbin-Watson (D-W)
test. The results indicate that the model fits well (R? = 0.676) and has statistical significance
(F =505.777, p < 0.001). The D-W value closer to 2 indicates a greater assurance of no
autocorrelation in the regression residuals. The results demonstrate that the error terms of
the model are independent, and the regression model is reliable (D-W = 1.077).
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Table 2. The coefficients and test results of the stepwise regression analysis (n = 1707).
Unstandardized Coefficients Stand?r.dlzed Collinearity Diagnostics
Coefficients t p
B Standard Error B VIF Tolerance
Constant 144.975 13.640 - 10.628 0.000 - -
Ni (w%) 20.083 1.358 0.215 14.784 0.000 1.104 0.906
Mn (w%) 9.769 1.424 0.099 6.862 0.000 1.087 0.920
Si (w%) 5.061 4.937 0.015 1.025 0.305 1.051 0.951
P(w%) 294.988 45.152 0.092 6.533 0.000 1.044 0.958
Cu (w%) 215.541 14.233 0.216 15.144 0.000 1.071 0.934
Fluence [n/cm?] 0.000 0.000 0.673 46.739 0.000 1.086 0.920
Temperature [°C] —0.611 0.046 —0.187 —13.271 0.000 1.039 0.962
R 0.676
F F(7,1699) = 505.777, p = 0.000
D-W 1.077

As seen in Figure 5, neutron fluence has the most significant positive impact on
ARTNpT, thereby greatly influencing the irradiation embrittlement of RPV steels. Addi-
tionally, the chemical composition affects irradiation embrittlement, with Cu, Ni, Mn, P,
and Si showing decreasing levels of impact in sequence, and Si content shows minimal
to negligible effects on irradiation embrittlement. Considering the significant influence of
neutron fluence, the probability distribution of the shift in nil-ductility transition reference
temperature at different neutron fluence levels was analyzed and predicted, as shown
in Section 3.2. The irradiation embrittlement model incorporating the stochastic effect of
neutron fluence was established and is discussed in Section 3.3.

3.2. Probability Statistical Model

For reliability values of 5%, 50%, and 95%, the fitting results for normal, Weibull, and
lognormal distributions are shown in Figure 6. The detailed data can be found in Table 3.
The results indicate that the fitting performance of the lognormal distribution is significantly
inferior to that of the Weibull distribution and normal distribution. However, the difference
between the Weibull distribution and the normal distribution is not significant, and further
analysis is needed.
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Figure 6. The fitting curves and root mean square error (RMSE) diagrams for the three distributions:
(a) normal distribution; (b) Weibull distribution; (c) lognormal distribution; (d) RMSE comparison
diagrams.

Table 3. Data in different distributions and reliability values.

Neutron Fluence/10'%-n cm—2 1.75 3.52 5.14 6.93
Nosmal 5% 1.58 15.48 30.86 38.41
di O}t’)ma, 50% 13.71 36.24 54.52 58.80
istribution 95% 25.85 57.01 78.19 79.19
L . 5% 3.63 18.13 33.59 40.08
d,ogr,‘gm,‘a 50% 11.28 33.91 52.59 57.45
istribution 95% 35.09 63.41 82.33 82.33
Weibull 5% 267 15.78 30.38 36.44
di e,i)u, 50% 12.61 36.07 55.02 59.55
istribution 95% 30.16 57.41 76.82 78.49

To predict the variation in ARTNpT at other neutron fluence levels, the relationship
between the parameters of the Weibull distribution and normal distribution (denoted by v)
and the neutron fluence (denoted by x) was studied. Due to the inconvenience of calculating
coefficients with neutron fluence values of 10!, the existing four neutron fluence cluster
values were normalized by using Equation (15) to fall within the range [0, 1], with xpax of

7.5 x 10Y n-cm—2. .

X = (15)

Xmax
Figure 7 shows the fitted curves of Weibull distribution parameters and normal distri-
bution parameters with different neutron fluences. The four points on the plot represent the
actual values of distribution parameters at known neutron fluences, and the dashed lines
represent the fitting curves. The coefficient of determination (R?) reflects the goodness-of-fit
of these curves. The R? for the curves of the four distribution parameters are 0.983 (i),
0.9903 (0'2), 0.988 (1), and 0.9814 (1), all approaching 1.0. This indicates strong interpretabil-
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ity of the curves and excellent fitting performance. The expressions of the distribution
parameters are detailed in Table 4.
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Figure 7. The fitting curves of Weibull distribution parameters and normal distribution parameters
with neutron fluence: (a) normal distribution parameter y; (b) normal distribution parameter o?;

(c) Weibull distribution shape parameter m; (d) Weibull scale parameter 7.

Table 4. The expressions of the four distribution parameters.

Type Parameter Parameter Equation
. u u = 34.366In(x) + 63.745
Normal distribution o2 0% = —740.2x% + 1007.2x — 142.92
. e m m = 2.6335In(x) + 5.385
Weibull distribution " 7 = 36.774In(x) + 69.491

The neutron fluence data from the POLTTER database in Section 2.1 were selected
to validate the accuracy of both the Weibull distribution model and the normal dis-
tribution model. The cumulative probability function curves for neutron fluences of
2.46 x 10" n-cm~2 and 4.75 x 10! n-cm~?2 are shown in Figure 8. The y-axis represents
the probability of material failure, where ARTNpr is less than or equal to a specific value.
From Figure 8, it can be seen that at a neutron fluence of 2.46 x 10" n-cm~2, when ARTNDT
is approximately below 30 °C (Figure 8a), the cumulative probability function (F(t)) of the
predicted values exceeds that of the test data values. Similarly, at a neutron fluence of
4.75 x 10" n-cm~2, when ARTypr is below 40 °C (Figure 8b), the same trend is observed.
Thus, in both scenarios, the predicted values obtained from the prediction models exhibit
a higher failure probability compared with the test data values, indicating a more conser-
vative estimation at the same ARTNpr values. Furthermore, in high-probability situations
(F(t) > 0.8), the predicted values of ARTNpr are higher than the test data values. This
implies a larger increment in the nil-ductility transition reference temperature, bringing
RTnpr closer to the safety threshold assumed for RPV failure. Consequently, the service
life of the material is shortened, resulting in a more conservative estimation.
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