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Abstract: Construction projects and cities account for over 50% of carbon emissions and energy
consumption. Industry 4.0 and digital transformation may increase productivity and reduce energy
consumption. A digital twin (DT) is a key enabler in implementing Industry 4.0 in the areas of
construction and smart cities. It is an emerging technology that connects different objects by utilising
the advanced Internet of Things (IoT). As a technology, it is in high demand in various industries,
and its literature is growing exponentially. Previous digital modeling practices, the use of data
acquisition tools, human–computer–machine interfaces, programmable cities, and infrastructure, as
well as Building Information Modeling (BIM), have provided digital data for construction, moni-
toring, or controlling physical objects. However, a DT is supposed to offer much more than digital
representation. Characteristics such as bi-directional data exchange and real-time self-management
(e.g., self-awareness or self-optimisation) distinguish a DT from other information modeling sys-
tems. The need to develop and implement DT is rising because it could be a core technology in
many industrial sectors post-COVID-19. This paper aims to clarify the DT concept and differentiate
it from other advanced 3D modeling technologies, digital shadows, and information systems. It
also intends to review the state of play in DT development and offer research directions for future
investigation. It recommends the development of DT applications that offer rapid and accurate
data analysis platforms for real-time decisions, self-operation, and remote supervision requirements
post-COVID-19. The discussion in this paper mainly focuses on the Smart City, Engineering and
Construction (SCEC) sectors.

Keywords: digital shadow; digital twin; sensor; internet of things; smart city; engineering; construc-
tion; energy; cyber-physical; deep learning; blockchain; Intelligent construction 4.0

1. Introduction

The exponential development of technology in recent years is highlighted by the
concept of Industry 4.0 and respective initiatives in various contexts of the Smart City,
Engineering and Construction (SCEC) sectors, such as Building 4.0 [1], Real Estate 4.0 [2],
Construction 4.0 [3–6], Mining 4.0 [7,8], Education 4.0 [9–11], and Manufacturing 4.0 [12,13].
The Industry 4.0 concept relies on connecting physical environments with digital ecosys-
tems. At present, there is a demand to investigate advanced automation, the implemen-
tation of robotics, improvements in machine-to-machine (M2M) communication, and
human-to-machine or human–computer–machine communications [14]. Digital Twin (DT)
facilitates the connectivity required for such developments through many self-operative
functionalities. However, the DT concept and its capacity have not been distinguished from
current computing or virtual models and simulations [15]. This paper aims to discuss DT,
review the state of play, and present future directions of DT development and applications.

Before distinguishing DT from other current practices, it is vital to clarify whether DT
can be considered a technology. This is essential to present a consistent understanding of
the context and to align thinking as discussion advances. Technology refers to tools, devices,
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software, hardware, machines, and any combination of, or modification to, them [16–18]. In
the construction context, ‘technology’ refers to tools, equipment, technical methods, specific
construction operations, hand tools, devices, specific materials, and novel scaffolding or
formwork. In general, ‘technology’ comprises artifacts, the knowledge of how to make
them, and practices of using them [18–21]. Through this lens, a DT can be called technology.
Concepts of technology and innovation, and their terminologies, are discussed in the
literature [18,22]. Table 1 shows a list of technologies that are relevant to the five main tasks
of construction projects, as well as examples. Some technologies, such as DT, can be applied
to more than one task in construction. Considering the context of the investigation, a DT can
be named as a technology [23–26], system [27–31], concept [28,32–35], innovation [36,37],
or paradigm [38–41].

Table 1. Technology types based on different construction tasks, with examples.

Task-Based
Technologies Examples of Relevant Technologies More Information or

Selected Applications

(i) office work and
management
technologies

General applications and software that are used for communications and
paperwork, including emails, the cloud, and Intelligent Systems.

iContract [42], artificial
intelligence [43]

(ii) design and
planning technologies

Building Information Modelling, Geographic Information Systems, virtual
reality (VR), Cybersecurity, Simulations, Big Data and analytics

BIM [44], GIS [45],
CyberGIS [46], VR

(iii) production
technologies

3D Printing (3DP), robotics, Tunnel Boring Machine (TBM), automation,
autonomous haulage system, Digital Twin.

3DP [47–49],
robotics [50]

(iv) job-site vision
technologies

Radio frequency identification (RFID), sensors, Internet of Things (IoT), light
detection and ranging (lidar), laser scanners, cameras for site management,

unmanned aerial systems (UAS), physical progress monitoring, and
productivity, safety, and security.

Lidar applications
[51–54], UAS [55,56]

(v) dependent
high-tech

Global positioning system (GPS), radar, real-time locating system, remote
controlling devices and diagnostic systems attached or imbedded in heavy

equipment such as graders or cranes.

Remote sensing
applications [57],

Real-time locating
systems [58]

The concept of DT is new to the literature in built environment disciplines, including
smart cities, building, construction, and mining. There exists confusion between advanced
applications of some current technologies such as Building Information Modeling (BIM)
and DT that may prevent the acceptance of DT as a new concept or practice. The only
consensus is that a DT is a digital representation of a physical object [59], but there are
more conditions to be satisfied by a DT. The DT concept is initially perceived as use-
ful for monitoring, controlling, or inspecting physical objects such as a vehicle. At the
same time, it works in extreme conditions in remote areas where there is nil accessibility
for inspection once the project has been launched into space [59]. DTs are expected to
have ‘self-awareness’ [59] and self-optimisation to enable bi-directional conversations and
similar controls.

Figure 1 shows the increase in demand for immersive technologies and DT in two
separate years. The figure shows that there might be a large market for virtual reality or
augmented reality tools. While the market for immersive technologies is growing, DT
demand has increased from $US3.8 billion to $US36 billion. DT can exploit and articulate
the unique capabilities of augmented reality and the IoT device for any user [60].
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Figure 1. The increase in developing immersive reality and digital twin markers by 2025. Note: units are USD billion.

This paper addresses two main questions. First, what is a DT and how can it be
distinguished from previous practices of digital modeling. And second, what sub-topics
should be investigated to develop DT further, including DT adoption scenarios for the
post-COVID-19 environment.

2. Scientometric Analysis and Trends

In order to present the quantitative features of digital twin scientific research and
offer an insight into the scholarly publications, this section provides a set of analyses. The
literature suggests the use of scientometric analysis to identify emerging trends, as well
as evaluating relevant literature. This method is deployed to map scientific knowledge in
the selected field and assists scholars to identify the field’s challenges or needs. There are
examples of extensive quantity analysis in smart home [43]; lean construction [61]; Internet
of Things (IoT) [62]; construction delay [63]; Information and Communication Technology
(ICT)-assisted disaster management [64]; and additive manufacturing [47]. Figure 2 offers
a trend analysis of Google search for DT and its application (see the yellow area). The
number of scholarly papers published on DT in Scopus also shows that academia and
practitioner attention has risen, with a large increase in the number of scholarly papers
indexed in Scopus and Google search in recent years (1536 in 2020).
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Figure 2. Trend analysis showing an exponential rise in search for the DT topic.
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Figure 3 shows the co-occurrence of keywords used in the DT literature based on
Scopus search data. The keyword ‘Digital Twin’ was used to search within the title, abstract
and keyword fields. Search results were refined by applying the year limitation (2011–2020)
and by selecting only the journal articles that were published in English. The analysis is
based on a minimum of 635 words out of 6877 from the data set of 817 journal papers
published in the past decade.
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Figure 3. Co-occurrence of keywords in the literature with a minimum of 635 words out of 6877 from the data set of
817 documents published in the past decade (2011 to December 2020).

Figure 4 shows themes that have emerged alongside DT in recent years, such as
blockchain and deep learning. It also shows that one of the earliest applications of DT was
in manufacturing.

In order to learn from the VR literature, keywords suggested by Khan, et al. [65]
were used to identify themes covered previously. Figure 5 shows how the literature is
fragmented and that many countries have contributed to developing virtual applications.
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Figure 5. Conceptualised themes and contributions in the VR literature. (a) Visualising the 12 fragmented themes identified;
(b) the contribution of different countries in developing VR applications.

Figure 5a shows 12 main themes of VR technologies and their applications in the
literature. The search keywords and content review are presented by Khan, Sepasgozar,
Liu and Yu [65]. Applications in the VR dataset were mostly used for educational game
and training, defect management, and design objectives. However, the VR literature shows
that, as a whole, the body of knowledge for the built environment, including construction,
lacks direction. Such objectives could be improved by developing DT with the utilisation
of VR or XR; however, it now exhibits a gap in the literature. Figure 5b shows that some
regions and collaborations between researchers from these countries extended the body
of literature. These regions include, but are not limited to, the United States, Britain,
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France, Germany, China, Hong Kong, Turkey, Taiwan, Poland, and Singapore. However,
the literature shows that more investigations are needed in other countries, particularly
developing nations, to ensure that their industries can embrace and enhance the use of AR
and VR.

3. Distinction between Digital Shadow and Digital Twin

Very few papers referred to digital models (e.g., BIM) and DT as similar concepts or
used them interchangeably [33,66,67]. However, there is a significant difference between
DT and current digital 3D models and 3D systems. If a virtual model represents the
physical model only, with one-way data flow, this is considered to be a Digital Shadow
(DS) [66]. Figure 6 shows the one-way data flow from a digital model to a physical entity
of a tower crane in a DS. However, in a DT, both the virtual and physical entities should
communicate with each other. A decade ago, an early definition of DT was considered
to be an integration of the multi-physics of a vehicle with probabilistic simulation that
mirrored its life [68]. Later in the literature, the vehicle was replaced with a machine,
factory, processes, labour, and many other physical entities [69], and the replication of this
concept in many other disciplines is growing.
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Figure 6 shows the bi-directional data flow between digital model and tower crane
in a proposed DT. Digital Twin (DT) emphasises bi-directional conversations [60,70,71],
and data flow is automated [15]. This means that every digital representative of a physical
object cannot be considered to be a DT [15].

The current DT definitions stress that the digital entity reflects the geometric dimen-
sions, shapes, and other attributes of physical objects [72]. The DT should also be able
to map the logic and rules used in the process or behaviour of the physical entities [73].
Furthermore, the DT should be able to codify the data and reflect past, current, and future
predictions of the physical entity, including assets or processes.

In order to provide greater insight into the definition of DT, a set of 21 definitions
published in the literature from 2012 [68] to 2019 [35,38] was analysed. Figure 7 shows
the outcome of this analysis, providing an understanding of the most frequent keyword
and unique terms used to define a DT. Figure 7 shows that ‘digital’, ‘twinning’, ‘physical’,
and ‘modeling’ have the highest frequency greater than 12 and the weighted percentage
above 3.23 among all stemmed words used in definitions. However, other keywords
used for defining a DT are real-time possibility, system, simulation, asset, and data. The
key characteristics of DT as mentioned in the definitions are: fidelity [74,75], real-time
control [76], real-time optimisation, virtual replica [60,77], dynamic digital replica [78], and
dynamic bi-directional [35,79].
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In recent years, DT has also been divided into different types, as shown in Figure 8.
The digital twin prototype (DTP) refers to an artifact’s prototype, including the information
required to represent the virtual model. This can be developed for aircraft, processes, and
operations [80]. It may refer to a rich BIM created by the designer before the construction
phase and used to create a building, which is why the DT is sometimes misunderstood as
BIM [67,81]. However, the rest of DT characterisation, such as bi-directional information
flow during the lifecycle, was ignored here. The digital twin instance (DTI) refers to each
individual instance of the object where it is created, including Geometric Dimensioning
and Tolerancing (GD&T) [82–84]. The DT aggregate/environment (DTD/E) refers to
multi-domain applications for employing the DT to meet various needs [82].
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4. State of Play and an Agenda for Future

This section discusses the state of play and suggests important directions for further
developing the DT and ensuring it is widely accepted. The DT offers a variety of func-
tionality to practitioners in various sectors. The heavy-equipment manufacturing and
construction industries are both concerned about the performance, durability, maintenance,
safety, and productivity of equipment. While manufacturers develop many simulations
and models for equipment, the end-user has less access, knowledge, and skill to create or
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use such complex simulation models. Digital versions of the equipment will help end-users
to achieve their daily goals on hazardous or congested construction sites. Figure 9 shows
an example of an excavator digital twin on a small scale. It was developed to simulate
and learn from excavation, so that such models could help the end-user control or monitor
equipment remotely.
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In this instance, the excavator can be controlled in two ways. The bi-directional data
exchange helps the end-user run the equipment from a distance or provide a decentralised
platform for collaboration. One of the remote controls directly communicates with the
excavator. A tablet with an augmented model of the excavator can also be used. Any
change or control made via the augmented model can be transferred to the physical system.

DT technology enables practitioners and managers to improve resilience, manage risk,
and save energy and resources. The literature is still embryonic, and many issues or gaps
should be addressed before DT is widely accepted in the industry. One recognised need
is for constant or near-real-time data exchange using a secure, reliable, and high-speed
network. There is no consensus on specific technical components, protocols, or tools to
create a DT or define it as a universal technology [35]. However, the literature suggests
that the various types of tools used for DT are as listed, but not limited to:

• communication or wireless technologies used for DT, such as the fourth/fifth-generation
cellular network (4/5G), NB-IoT, Sigfox, Bluetooth, LoRaWAN, ZigBee, Z-Wave, GSM,
802.11 ah, 802.11 n, LTE-M, BLE, and WirelessHART [35];

• layer protocols applications used for DT, such as HTTP, MQTT, mDNS, CoAP, XMPP,
DDS, AMQP, and OPC UA [35];

• recent platforms such as Predix (GE Digital) for data analytics and industrial moni-
toring; MindSphere (Siemens) for storing operational data; ThingWorx; Watson IoT
Platform; Ditto; Azure Digital Twins [85];

Advanced technologies such as wireless sensor networks, industrial AI, blockchain,
and transfer learning algorithms must be appropriately integrated and used to improve the
functionality and capability of DT in various SCEC sectors. Table 2 shows the application
of different tools to DT developers. Based on the DT’s capability, the following directions
are recommended for future studies in the SCEC context.

The main elements of a useful DT are smart sensors, actuators, or controllers. At
the same time, major potential issues in DT design would include data synchronisation,
high latency, high energy consumption, security, and privacy holes. While there are few
case studies in the literature, the market offers different tools to develop DTs. General
Electric (GE) offers Predix, a platform that enables asset connectivity and edge-to-cloud
data processing. Predix helps practitioners to connect assets and IoT data, receive alerts
for industrial events, and regularly monitor the conditions of each process [15,86]. Other
platforms and tools in the market can be used to develop DTs, as mentioned in Table 2.



Buildings 2021, 11, 151 9 of 16

One major current challenge transferring big data for real-time controls and immediate
scenario optimisations should be addressed in the future with the availability of 5G. This
will facilitate the data exchange and required connectivity [87]. Another challenge to be
addressed is disconnection due to network gaps in the field [88]. Future work should focus
on designing and examining innovative DTs to present useful benchmarks for practitioners
and scholars [34]. The following research questions are put forward for investigation:

Table 2. State of play and suggestions for future investigations and application development.

Direction State of Play–Key Tools or Limitations Suggestions for Future Applications or Investigations

Technology
development

Predix (GE Digital) for data analytics and
industrial monitoring; MindSphere (Siemens) for
storing operational data; ThingWorx; Watson IoT
Platform; Ditto; Ansys simulation platform [89];

Azure Digital Twins

Develop an autonomous resilient response to breakdown
and failures in systems or processes [85]; response to
unexpected incidents before occurring [90] Address

network gaps in the field and underground sites

Connectivity,
data mapping,

and data fusion

The use of individual technologies such as data
mapping tools [66]; fuzzy sets, rule-based

reasoning, and intelligent algorithms [91]; 5G;
wireless sensor networks, industrial AI;

blockchain; and transfer learning; Beacons and
RTLS (real-time locating system) [58]; and RFID

(radio-frequency identification) [92] for collecting
motion data from mobile production equipment

such as cranes and excavators.

Collect quality motion data from sites and optimise in
near real-time; apply advanced analytics methods to
enhance self-configure, self-adapt, and self-learning

capability of the DT [85]; integrate and connect to BIM
[44,48]; collect multi-modal (e.g., radar, laser, or lidar),

multi-source and homogeneous data, apply multi-actor
game-theory decision algorithms considering dynamic
factors [93]; connecting energy networks; decentralised

digital twin models [94] and integration with blockchain.

Application
identification,
learning, and

decision-
making

Earth-DT with the integration of the human
dimensions for achieving SDGs [95]; further
development of disaster city-DT [93,96] for

emergency management; DT for smart city [96,97];
optimise life cycle management [33,81]; smart

campus’ DT for comfort assessment [98];
DT-Enabled Energy Management [99].

Apply optimisation scenarios for decision-making [85].
Develop autonomous resilience control; apply

decision-support tools.

Readiness
investigations

Advantages, drivers, and barriers of
technology acceptance.

Develop novel digital business models for post-COVID-19
based on DT; Shared technology and process for the

circular economy.

(a) Future directions on enabling technologies for modeling and simulation should
address the following:

• How different virtual entities or systems, including BIM (e.g., 6D BIM) and
GIS, can be integrated with a two-way conversation between them in a project
ecosystem that considers all stakeholders (Lack of a common framework for
creating digital twin models should be addressed).

• How simulation and optimisation can be done in near real-time.

(b) Future directions on data fusion and integration should address the following:

• How intelligence-enabling technologies (e.g., IoT, CPS, DT, big data analytics)
can be integrated to improve smart construction processes or smart cities by
automating motion data collection. How virtual and real fusion optimisation
processes can be improved with regard to digital mode richness.

• How the combinations of mechanisms, accuracy, quality, and real-time optimisa-
tion of data analysis can be improved.

(c) Future directions on interaction and collaboration can address the following:

• How the generated data and digital entity can be shared among various un-
trusted stakeholders or sub-contractors during a project’s life cycle, considering
human interactions (e.g., different types of human–machine, machine–machine,
and human–computer–machine interactions).
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• How cyber-physical systems (CPS) can be used to develop a self-organising
system for different tasks by utilising intelligence-based mechanisms that enable
decentralisation and collaboration.

(d) Future directions on DT service and implementation can address the following:

• Technical or managerial barriers and potential solutions to successfully imple-
ment a DT in a company. The extent to which companies different in size
(e.g., small, medium-sized, and large) are ready to apply innovative DTs for
various operational or managerial tasks.

• How the DT and data ownership, privacy, level of accessibility by each stake-
holder, and security issues can be resolved using blockchain or other approaches.

Table 2 shows that one main task for utilising a DT is connectivity and data fusion,
which mainly refers to preprocessing big data, data mining, and real-time optimisation [91].
The data can be generated from physical entities and many associated applications, which
can make data format, type, and reliable communication between all respective devices
and entities challenging. Connectivity is a core element in smart systems such as smart
cities or construction that should be improved as a critical requirement of DT [46]. This
can help to improve and develop the designed system to enable the following tasks or
processes: integrity management, regular risk-based inspection, automated optimisation of
construction operations (e.g., excavation strategies), enhancing maintenance and safety,
integrating and exchanging data with intelligence contract [42,100], preventing opera-
tion risks, optimising energy consumption [101], and enabling energy management [99].
Another critical concern in several sectors that DT can improve is Prognostic Health Man-
agement (PHM), as shown in Figure 10. Among different maintenance strategies, such
as reactive, preventive, condition-based, predictive, and prescriptive maintenance, the
last two approaches may benefit most from the digital concepts [66]. Recently, a DT was
recommended for sustainability [102]. This can be achieved by developing sustainable
intelligence sub-systems, including equipment, services, construction tasks, and activities.
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A DT can be used to ‘learn’ and suggest new scenarios before building an object,
manufacturing tools and heavy equipment, creating the asset, developing a construction
process, and planning for developing other smart cities [15]. Figure 10 defines different
‘levels’ for a DT, such as description, prediction, and prescription capability. The main
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value of learning with the combination of predictive and prescriptive DT processes lies
in reducing downtime, breakdowns, costs, energy waste, and in achieving Sustainable
Development Goals (SDGs). Such learning advantages are in line with DT’s capability for
simulation, monitoring, lifecycle assessment, sensing, optimisation, and prediction.

In SCEC, the key purpose of a DT is to improve productivity, sustainability, safety,
and/or achieve other objects of an organisation or project. However, the main obstacle to
developing a DT for such purposes is the system architecture and reliability of the DT [35].
Since a DT’s key element is data exchange, the integration of the blockchain with the DT
would result in decentralisation, improved security, and immutable data exchange among
various stakeholders. Blockchain can enhance construction companies’ digital values and
facilitate smart monetary transactions in a smart environment [103]. At the same time, the
need to save the earth by reducing carbon footprints, preventing rapid climate change,
and increasing sustainability led united nations to develop and present a vital agenda and
implementation plan for archiving the SDGs. Current smart systems such as smart homes
should be redesigned with consideration to DT’s capability [43,104].

The possibility of using diverse wearable sensors, smartphones, tablets, and other
intelligent sensors may accelerate the acceptance of DT in different contexts. The diversity
of these devices may present challenges of data granularity, interoperability, the hetero-
geneity of information, multi-source information, and many attributes such as data format,
data sampling intervals, data security, and trust. These will need to be resolved to increase
industry readiness for utilising the DT. For example, the most common source of data is im-
ages or videos, and recently handheld mobile scanners are widely available to collect point
cloud datasets. However, collecting point cloud data frequently from the built environment
and construction sites can be expensive. Previous studies have examined different tools
for point cloud data acquisition and suggested that handheld tools are more convenient
and efficient, depending on the accuracy required [52,105–108]. Figure 11 shows how
both images and point clouds are collected from outdoor areas of a light rail construction
project. A handheld tool was used for data acquisition, and Sepasgozar, Forsythe and
Shirowzhan [106] discussed the advantages of the handheld scanner in comparative ex-
perimentation. Using handheld mobile scanners helps practitioners to collect data easily
and more quickly than using terrestrial scanners. Providing a comprehensive image of the
built environment can be possible if a multi-modal data acquisition method is adopted,
although it can be technically challenging. This approach was used in other disciplines,
such as modern automobiles [109].
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5. Conclusions

This paper has reviewed the current DT literature and discerned that it is embryonic
and developing in two main directions. One direction focuses mainly on the definition,
defining dimensions and functionalities of DT for different contexts. Another direction
focuses on extending current DS practices, assuming it is digital twinning. The missing
core element of these practices is the bi-directional flow of data between digital and
physical entities.

The position of this paper was to differentiate DT from other modeling practices, and
to distinguish the DT concept from the digital shadow (representing a physical model with
a one-way data flow). The DT concept was discussed, along with presenting the case of an
excavator DT that can be considered as capable of replicating in different contexts.

As with many studies that focus on technology development and applications, the
current emerging literature on DTs focuses on SDGs and relevant concepts. This study
suggests that the implementation of SDGs should be considered in the development of
the DT.

The value of this study lies in making a crucial distinction between DT and DS
technologies and suggesting a set of directions for further investigation.
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Data Availability Statement: The data presented in this study are available on request from the
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