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Abstract: To examine the acousto-structural behavior of a sandwich cylindrical shell benefiting
from hexagonal honeycomb structures in its core and functionally graded porous (FGP) layers
on its outer and inner surfaces, a comprehensive study based on an analytical model which also
considers the effect of an external flow is conducted. A homogenous orthotropic model is used for
the honeycomb core while its corresponding material features are found from the modified Gibson’s
equation. The distribution pattern of FGP parts is either even or logarithmic-uneven, and a special
rule-of-mixture relation governs their properties. Based on the first-order shear deformation theory
(FSDT), Hamilton’s principle is exploited to derive the final coupled vibro-acoustic equations, which
are then solved analytically to allow us to calculate the amount of sound transmission loss (STL)
through the whole structure. This acoustic property is further investigated in the frequency domain
by changing a set of parameters, i.e., Mach number, wave approach angle, structure’s radius, volume
fraction, index of functionally graded material (FGM), and different honeycomb properties. Overall,
good agreement is observed between the result of the present study and previous findings.

Keywords: honeycomb sandwich cylindrical shells; sound transmission loss; external flow; functionally
graded porous materials; first-order shear deformation theory

1. Introduction

Sandwich structures are multilayer physical members composed of two stiff face
sheets bonded to a core layer. Core layers usually consist of metallic and non-metallic
honeycomb core, open and closed cell foams, and balsa wood [1–5]. One of the promising
ways to reduce material cost and weight is to utilize honeycomb structures of various
shapes. Most frequently, such structures are employed instead of or in combination with
plates and shells, especially as a lightweight core. There have been several applications of
honeycomb materials in various engineering fields, corroborating their numerous benefits
including high specific strength/stiffness, incredibly lower weight, energy damping, and
proper stability. However, their vibration characteristics, especially in combination with
shells and plates, still need further evaluation. Li and Jin [6] investigated the natural
frequencies of symmetric rectangular honeycomb panels under clamped and simply sup-
ported boundary conditions, applying corrected Gibson formula and third-order shear
deformation theory (TSDT). Li et al. [7] analyzed geometrically nonlinear free vibration of
symmetric honeycomb sandwich panels considering simply supported boundary condition
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utilizing homotopy analysis technique and TSDT. Duc et al. [8] analytically studied nonlin-
ear dynamic behavior of sandwich composite cylindrical panels with auxetic honeycomb
core layer subjected to blast, damping, and mechanical loads. Duc et al. [9] employed FSDT
to calculate the dynamic response of composite double curved shallow shells with negative
Poisson’s ratios in auxetic honeycombs core layer. Li et al. [10] predicated the natural
frequencies of a thin-walled hexagonal honeycomb sandwich cylindrical shell according to
Flügge’s shell theory, and used finite element method (FEM) and experimental results to
validate their models. Eipakchi et al. [11] presented a mathematical process to calculate the
critical velocities, dynamic response, and the natural frequencies of composite cylindrical
shells with auxetic honeycombs core layer under a moving pressure. Quyen et al. [12]
carried out the nonlinear dynamic response of a honeycomb sandwich cylindrical panel on
visco-Pasternak substrates under thermal and blast loading.

A shell structure, usually defined as a thin, curved plate, is a generally lightweight
element that can be used in different sizes and applications. The main body of nearly all ve-
hicles is built from such shell elements, and these structures have become an indispensable
part of other advanced technologies such as reactors and gigantic telescopes. Unsurpris-
ingly, they undergo large loads in different environments and scenarios, especially when
placed inside a fluid or when facing aerodynamic loads. The resulting vibrations can
specifically create a strong noise in the surroundings, and are thus required to be fully
investigated under such circumstances [13–17]. In this regard, forced and free vibrations of
cylindrical shells and mechanical properties of polymer based nanocomposite have been
thoroughly investigated in the past, as in the works of [18–24].

Functionally graded materials (FGMs) are generally characterized by the gradual
changes of composition and structure over volume, thus offering different properties on
different sides of the specimen [25–30]. They have shown promising results in mitigating
common issues found in conventional laminated composites such as interfacial debonding
and matrix cracking while finding their way into different industries. These materials
can be employed in different arrangements, one of which is an FGM sandwich structure
formed around a core layer and covered by external/internal faces. This straightforward
configuration is easy to manufacture and offers various improvements over traditional
FGMs, including better thermal protection and sound absorption. Nevertheless, accurate
models are necessary to analyze them in different applications [31–33]. Loy et al. [34]
studied the effect of constituent volume fractions of FGMs on the natural frequencies of a
cylindrical shell using Love’s shell theory and Rayleigh-Ritz method. Pradhan et al. [35]
used volume fraction power law distribution to analyze the free vibration of FGM cylindri-
cal shells under various boundary conditions. Based on the FSDT in conjunction with the
wave based method (WBM), Liu et al. [36] investigated the effect of material gradient index
on the natural frequencies of FGM cylindrical shells. The influence of the nonlinear tem-
perature variations and porosity volume fraction, and constituent volume on the natural
frequencies of FGM cylindrical shells are presented by Wang et al. [37]. Baghlani et al. [38]
developed and suggested a semi-analytical method to compute the natural frequency
of eccentrically stiffened FGM shells considering fluid-structure interaction and higher-
order shear deformation theory. Sofiyev [39] investigated the dynamic behavior of the
infinitely-long FGM cylindrical shells under moving loads. Baghbadorani and Kiani [40]
performed research on the behavior of a cylindrical shell made of a composite material
reinforced with graphene platelets employing FSDT and Halpin-Tsai micro-mechanical.
Nguyen et al. [41] proposed a semi analytical method to study the nonlinear asymmetric
vibration of corrugated sandwich FGM cylindrical shells containing fluid subjected to
harmonic radial load. Ni et al. [42] investigated the effects of magneto-electro-thermal
loadings and material properties on the free vibration characteristics of FGM cylindrical
shells. Cong and Duc [43] used the Galerkin method and FSDT to predict the nonlinear
thermo-buckling and post-buckling behavior of eccentrically stiffened FGM double curved
shallow auxetic honeycomb sandwich shells.
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Another aspect of FGMs worthy of mention is the formation of voids owing to the
differences in solidification temperature when sintering them, as discovered by Rodrıguez-
Castro [44] through a series scanning electron microscopy studies. The porosity level greatly
affects the mechanical behavior of FGMs, and should thus be precisely characterized to be
able to predict the dynamic response of FGM-incorporated structures. Wang [45] performed
the free vibration of a FGM porous cylindrical shell under different sets of immovable
boundary conditions using sinusoidal shear deformation theory. Cuong-Le et al. [46] stud-
ied the elastic instability and free vibration of annular plate, cylindrical and conical shell
made of FGM porous rock materials using isogeometric analysis (IGA). They assumed that
according to a power-law model, the remarkable material properties are associated with
the porosity volume fraction and are considered to be constantly changeable through the
thickness direction. Shahgholian et al. [47] presented buckling behavior a porous nanocom-
posite cylindrical shell reinforced with graphene platelets (GPLs) based on the FSDT and
Halpin-Tsai micromechanics approach. Ghadiri and SafarPour [48] used modified couple
stress theory in conjunction with FSDT to investigate the free vibration analysis of a FGM
porous cylindrical microshell under a thermal environment. Keleshteri and Jelovica [49]
denoted that both porosity coefficient and porosity distribution have a notable effect on the
nonlinear natural frequencies of FG porous cylindrical panels using FSDT and generalized
differential quadrature method (GDQM). Li et al. [50] investigated the thermal vibration
problem of an FG porous stepped cylindrical shell applying characteristic orthogonal
polynomials and FSDT.

Sound transmission through different objects in another interesting area of study for
vibro-acoustic engineers [51]. More specifically, STL determines the amount of sound
(usually in decibels/dB) isolated by a certain structure, and is considered to be an impor-
tant quantity when acoustic effects are not negligible. Generally, a plethora of analytical
equations have been proposed to obtain the sound transmission characteristics of most
common structures, such as fuselages and building walls as in the study by Heckl [52]. A
major hindrance, however, to implement these equations is to find their exact solutions,
hence giving rise to various approximate approaches over the course of time. Pellicier
and Trompette [53] provided a comprehensive review of such techniques. Ramezani and
Talebitooti [54] used the three different distribution models, including power-law, sigmoid,
and exponential types, to predict STL across a double-walled FGM porous sandwich cylin-
drical shell. Daneshjou et al. [55] presented STL of a thick-walled cylindrical shell based
on three dimensional (3-D) theory of elasticity. Oliazadeh and Farshidianfar [56] applied
Donnell’s shell theory to analyze STL through double- and triple-walled cylindrical shells.
Ahmadi et al. [57] analyzed the effect of different models of carbon nanotube distribution
on the variation of acoustic transmission of FGM carbon nanotube-reinforced composite
cylindrical shells using FSDT. Hasheminejad et al. [58] performed STL through a sandwich
cylindrical shell with electrorheological fluid core. Fu et al. [59] indicated the effects of
gradient index, porosity volume fraction, and porosity distribution type on the variations of
STL of a FG porous cylindrical shell under nonlinear thermal loading. Hasheminejad and
Jamalpoor [60] improved the diffuse STL across a smart hybrid double concentric sandwich
circular cylindrical shell structure under internal and external air gap mean flows using
multi-input multi-output (MIMO) sliding mode control (SMC). According to the hyperbolic
tangent shear deformation assumption, Li et al. [61] calculated the natural frequencies and
STL of FG honeycomb sandwich plates.

To the best of authors’ knowledge, no study has considered the sound transmission
and wave propagation of FGM-incorporated honeycomb sandwich cylindrical shells until
now. To fill this gap, this paper examines the behavior of an incident sound wave passing
through a honeycomb sandwich shell filled with air and benefiting from FGP layers. For a
more realistic evaluation, the whole structure is assumed to be located in fluid flow, and the
structural response is analyzed via the FSDT. A power law model is necessary to describe
the varying material properties caused by two porosity patterns (i.e., even distribution and
logarithmic-uneven pattern). For the simulation part of this study, the honeycomb core is
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represented by a homogenous orthotropic material whose different features are explained
via a modified Gibson’s equation.

The outline of the paper is as follows. Section 2 expresses the acoustic equation of fluids
and the governing equations, whereas in Section 3 the STL is defined. Finally, comparisons
and parametric results to study the acousto-structural behavior of a honeycomb sandwich
cylindrical shell with FGP layers are proposed in Section 4.

2. Mathematical Model

Figure 1 shows the schematic of the problem at hand. The honeycomb core of the
sandwich cylindrical shell has a radius of R and thickness of H. The hexagonal cells are
characterized by tc, lc, and θc. The exterior and the interior of this core are enclosed by
porous layers of FG materials, each having a thickness of h. The external FG layer also faces
a steady fluid flow, which is air in this case. Finally, the hollow section of the sandwich
structure houses air, with the characteristic impedance of (ρ0, c0). In addition, a steady flow
of air passes over the structure at the velocity V .
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Figure 1. The schematic of a honeycomb sandwich cylindrical shell with FGP layers under
incidence wave.

2.1. Acoustic Equation of Fluids

The wave equation in the external fluid medium (incident region) considering an
airflow with constant velocity (V) can be expressed as [62]

c0
2∇2

(
pI

1 + pR
1

)
+

(
∂

∂t
+ V .∇

)2(
pI

1 + pR
1

)
= 0, (1)

where ∇2 = 1
r

∂
∂r

(
r ∂

∂r

)
+ 1

r2
∂2

∂θ2 + ∂2

∂x2 refers to the Laplacian operator in the cylindrical

coordinate system. Furthermor pI
1 and pR

1 are the acoustic pressures associated with the
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incident and reflected waves, respectively. The acoustic wave equation in the internal fluid
medium (transmitted region) is indicated as

c0
2∇2 pT

2 =
∂2

∂t2 pT
2 , (2)

where pT
2 decsribes the transmitted wave. For cylindrical coordinate system, the terms of

time-harmonic pressure waves are defined as [63]

pI
1(r, θ, x, t) = p0ei(Ωt−kx x) ∑∞

n=0 εn(−i)n Jn(k1rr) cos(nθ),

pR
1 (r, θ, x, t) = ei(Ωt−kx x) ∑∞

n=0 P̃R
1n H(2)

n (k1rr) cos(nθ),

pT
2 (r, θ, x, t) = ei(Ωt−kx x) ∑∞

n=0 P̃T
2nH(1)

n (k3rr) cos(nθ),

(3)

It should be noted that ε0 = 1, εn = 2(n ≥ 1), p0 expresses the amplitude of pressure
of the incident wave, Ω displays the angular frequency, i =

√
−1, Jn signifies the cylindrical

Bessel function of the first kind and n-th order, and H(1)
n and H(2)

n indicate, respectively,
the cylindrical Hankel functions of the first and second kinds. Also,

(
P̃R

1n, P̃T
2n, P̃R

2n, P̃T
3n

)
are unknown complex coefficients. Furthermore, the radial and axial components of the
wavenumbers are stated as

kx = k1 sin α, k1r = k1 cos α =
[
k2

1 − k2
x
]1/2,

k2r =
√

k2
2 − k2

x, k1 = Ω/[c0(1 + M sin α)], k2 = Ω/c0,
(4)

in which M = V/c0 refers to the Mach number of the external flow.

2.2. Equations of Motion

Despite the generally acceptable results obtained from FSDT, it poses certain difficulties
for some thick laminates in sandwich configurations whose transverse shear modulus is not
large enough [64,65]. As varying transverse shear strains are not inherently implemented
in this approach, it is assumed that virtual transverse shear strains are presented on the
surfaces of sandwich structures. To express the displacement fields under such assumptions,
one can write [66]

u(x, θ, z, t) = U(x, θ, t) + zφx(x, θ, t) ,
v(x, θ, z, t) = V(x, θ, t) + zφθ(x, θ, t) ,
w(x, θ, z, t) = W(x, θ, t),

(5)

where U and V describe the in-plane deflections of the mid-surface along x and θ direc-
tions, respectively. Also, the transverse deflection of the structure is expressed with W.
Furthermore, the rotation angles of the middle plane along θ and x directions are signified
by φθ and φx, respectively. The displacement and rotation terms are stated as [67,68]

〈U, W, φx〉 = ∑∞
n=0 ei(Ωt−kx x)〈U, W, φx〉 cos(nθ),

〈V, φθ〉 = ∑∞
n=0 ei(Ωt−kx x)〈V, φθ〉 sin(nθ),

(6)

in which 〈U, φx, V, φθ , W〉 denote the unknown modal factors. However, the strain compo-
nents in terms of the curvature and mid-surface strain of the sandwich shell are written
as follows

εxx = ∂U
∂x + z ∂φx

∂x ,

εθθ = 1
R

∂V
∂θ + z

R
∂φθ
∂θ + W

R ,

γxθ = ∂V
∂x + 1

R
∂U
∂θ + z

(
1
R

∂φx
∂θ + ∂φθ

∂x

)
,

γθz = φθ +
1
R

∂W
∂θ −

V
R ,

γxz =
∂W
∂x + φx.

(7)
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in which normal and shear strains are signified by (εxx, εθθ) and (γxθ , γxz, γθz), respec-
tively. The stress-strain relation for inner and outer FGP layers can be expressed as



σT,B
xx

σT,B
θθ

τT,B
xθ

τT,B
θz

τT,B
xz


=



ET,B(z)
1−ϑT,B(z)ϑT,B(z)

ϑ(z)ET,B(z)
1−ϑT,B(z)ϑT,B(z) 0 0 0

ϑT,B(z)ET,B(z)
1−ϑT,B(z)ϑT,B(z)

ET,B(z)
1−ϑT,B(z)ϑT,B(z) 0 0 0

0 0 ET,B(z)
2(1+ϑT,B(z))

0 0

0 0 0 ET,B(z)
2(1+ϑT,B(z))

0

0 0 0 0 ET,B(z)
2(1+ϑT,B(z))




εxx
εθθ

γxθ

γθz
γxz

, (8)

where the superscript T and B are the top and bottom layers, respectively. Furthermore, E
and ϑ refer to the Young’s modulus and Poisson’s ratio, respectively. To achieve FG-like
properties, the bottom and top surfaces of the sandwich structure are purely made from
metal and ceramic, respectively. As already described, two porosity distribution patterns,
namely even and logarithmic-uneven, were considered for this study. Accordingly, the
corresponding values of elastic modulus, mass density, and Poisson’s ratio based on the
rule of mixture are described as [69]

Even porosity dispersion:

ET(z) = (Ec − Em)(z/h− H/2h)p + Em − 0.5ξ(Ec + Em),
ρT(z) = (ρc − ρm)(z/h− H/2h)p + ρm − 0.5ξ(ρc + ρm),
ϑT(z) = (ϑc − ϑm)(z/h− H/2h)p + ϑm − 0.5ξ(ϑc + ϑm),
EB(z) = (Ec − Em)(z/h + H/2h)p + Em − 0.5ξ(Ec + Em),
ρB(z) = (ρc − ρm)(z/h + H/2h)p + ρm − 0.5ξ(ρc + ρm),
ϑB(z) = (ϑc − ϑm)(z/h + H/2h)p + ϑm − 0.5ξ(ϑc + ϑm),

(9)

Logarithmic uneven porosity dispersion:

ET(z) = (Ec − Em)(z/h− H/2h)p + Em − log(1 + 0.5ξ)
(

1− 2 |z|h
)
(Ec + Em),

ρT(z) = (ρc − ρm)(z/h− H/2h)p + ρm − log(1 + 0.5ξ)
(

1− 2 |z|h
)
(ρc + ρm),

ϑT(z) = (ϑc − ϑm)(z/h− H/2h)p + ϑm − log(1 + 0.5ξ)
(

1− 2 |z|h
)
(ϑc + ϑm),

EB(z) = (Ec − Em)(z/h + H/2h)p + Em − log(1 + 0.5ξ)
(

1− 2 |z|h
)
(Ec + Em),

ρB(z) = (ρc − ρm)(z/h + H/2h)p + ρm − log(1 + 0.5ξ)
(

1− 2 |z|h
)
(ρc + ρm),

ϑB(z) = (ϑc − ϑm)(z/h + H/2h)p + ϑm − log(1 + 0.5ξ)
(

1− 2 |z|h
)
(ϑc + ϑm),

(10)

where m and c signify metal and ceramic phases, respectively. Also, ρ is the mass density.
The always-positive gradient index (p) is used in this study to determine the changes of
a specific property in the thickness direction. The greater the gradient index, the more
metallic the structure. Furthermore, ξ expresses the porosity coefficient. The classical
constituent relations between stress and strain tensors for honeycomb core layer can be
presented as:


σC

xx

σC
θθ

τC
xθ

τC
θz

τC
xz





EC
1

1−ϑC
12ϑC

21

ϑC
12EC

2
1−ϑC

12ϑC
21

0 0 0

ϑC
21EC

2
1−ϑC

12ϑC
21

EC
2

1−ϑC
12ϑC

21
0 0 0

0 0 GC
12 0 0

0 0 0 GC
12 0

0 0 0 0 GC
12




εxx
εθθ

γxθ

γθz
γxz

, (11)
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where G is the shear modulus. It should be noted that based on the corrected Gibson’s for-
mula, the corresponding material properties of honeycomb core layer are defined as [9,10]:

EC
1 = E

(
tc
lc

)3 cos θc
( H

lc
+sin θc) sin2 θc

[
1− cot2 θc

(
tc
lc

)2
]

,

EC
2 = E

(
tc
lc

)3 H
lc
+sin θc

cos3 θc

[
1−

(
H
lc

sec2 θc + tan2 θc

)(
tc
lc

)2
]

,

ϑC
12 = cos2 θc

( H
lc
+sin θc) sin θc

[
1− csc2 θc

(
tc
lc

)2
]

,

ϑC
21 =

( H
lc
+sin θc) sin θc

cos2 θc

[
1−

(
1 + H

lc

)
sec2 θc

(
tc
lc

)2
]

,

GC
12 = G12

(
tc
lc

)3 ( H
lc
+sin θc)

( H
lc )

2
(2 H

lc
+1) cos θc

,

GC
23 = G23

tc
lc

1+2 sin2 θc
2 cos θc( H

lc
+sin θc)

,

GC
13 = G13

tc
lc

cos θc
( H

lc
+sin θc)

,

ρC = ρ tc
lc

1+ H
lc

( H
lc
+sin θc) cos θc

,

(12)

The Hamilton’s principle is applied to obtain the equilibrium equations of motion in
the form [70]: ∫ t

0
(δXs + δXf − δXK)dt = 0, (13)

where strain energy, the work done by external forces (the work applied by the incidence
sound wave), and the kinetic energy are denoted with Xs, Xf, and XK, respectively. The
variation of kinetic energy of the sandwich honeycomb FGP shell is expressed as

δXK =
∫

A

∫ − H
2

− H
2 −h

ρB(z)
( .
uδ

.
u +

.
vδ

.
v +

.
wδ

.
w
)
dzdA +

∫
A

∫ H
2
− H

2
ρC( .

uδ
.
u +

.
vδ

.
v +

.
wδ

.
w
)
dzdS

+
∫

A

∫ H
2 +h

H
2

ρT(z)
( .
uδ

.
u +

.
vδ

.
v +

.
wδ

.
w
)
dzdS =

∫
A

[
I0

( .
Uδ

.
U +

.
Vδ

.
V +

.
Wδ

.
W
)

+I1

( .
Uδ

.
φx +

.
Vδ

.
φθ +

.
φxδ

.
U + φθδ

.
V
)
+ I2

( .
φxδ

.
φx +

.
φθδ

.
φθ

)]
dA,

(14)

where A is the cross-sectional area, and:

I0 =
∫ − H

2
− H

2 −h
ρB(z)dz +

∫ H
2
− H

2
ρCdz +

∫ H
2 +h

H
2

ρT(z)dz,

I1 =
∫ − H

2
− H

2 −h
ρB(z)zdz +

∫ H
2
− H

2
ρCzdz +

∫ H
2 +h

h
2

ρT(z)zdz ,

I2 =
∫ − H

2
− H

2 −h
ρB(z)z2dz +

∫ H
2
− H

2
ρCz2dz +

∫ H
2 +h

H
2

ρT(z)z2dz

(15)

The variation of strain energy is presented as:

δXs =
∫

A

∫ − H
2

− H
2 −h

(
σB

xxδεxx + σB
θθδεθθ + τB

xθδγxθ + τB
xzδγxz + τB

θzδγθz
)
dzdA+∫

A

∫ H
2
− H

2

(
σC

xxδεxx + σC
θθδεθθ + τC

xθδγxθ + τC
xzδγxz + τC

θzδγθz
)
dzdA+∫

A

∫ H
2 +h

H
2

(
σT

xxδεxx + σT
θθδεθθ + τT

xθδγxθ + τT
xzδγxz + τT

θzδγθz
)
dzdA.

(16)

The forces are exerted to the cylinder stem from three sources: (1) the incident sound
wave, (2) the reflected external sound pressure, and (3) the transmitted acoustic pressure
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inside the cylindrical structure. In view of these three forces, one can calculate the work by
external loads as:

δXf =
∫

A
∆PδWdA , ∆P =

(
pI

1 + pR
1

)
−
(

pT
2

)
(17)

By substituting Equations (14), (16), and (17) into (13) and performing some manipula-
tions, the equations of motion for the sandwich honeycomb FGP shell can be derived as:

δU : ∂Nxx
∂x + 1

R
∂Nxθ

∂θ = I0
∂2U
∂t2 + I1

∂2φx
∂t2 ,

δV : ∂Nxθ
∂x + 1

R
∂Nθθ

∂θ + Qθz
R = I0

∂2V
∂t2 + I1

∂2φθ

∂t2 ,

δW : ∂Qxz
∂x + 1

R
∂Qθz

∂θ −
Nθθ
R = I01

∂2W
∂t2 − ∆P,

δφx : ∂Mxx
∂x + 1

R
∂Mxθ

∂θ −Qxz = I1
∂2U
∂t2 + I2

∂2φx
∂t2 ,

δφθ : 1
R

∂Mθθ
∂θ + ∂Mxθ

∂x −Qθz = I1
∂2V
∂t2 + I2

∂2φθ

∂t2 ,

(18)

in which

[Nxx, Mxx] =
∫ − H

2
− H

2 −h
σB

xx[1, z]dz +
∫ H

2
− H

2
σC

xx[1, z]dz +
∫ H

2 +h
H
2

σT
xx[1, z]dz ,

[Nxθ , Mxθ ] =
∫ − H

2
− H

2 −h
τB

xθ [1, z]dz +
∫ H

2
− H

2
τC

xθ [1, z]dz +
∫ H

2 +h
H
2

τT
xθ [1, z]dz ,

[Nθθ , Mθθ ] =
∫ − H

2
− H

2 −h
σB

θθ [1, z]dz +
∫ H

2
− H

2
σC

θθ [1, z]dz +
∫ H

2 +h
H
2

σT
θθ [1, z]dz ,

Qxz = ks

{∫ − H
2

− H
2 −h

τB
xzdz +

∫ H
2
− H

2
τC

xzdz +
∫ H

2 +h
H
2

τT
xzdz

}
,

Qθz = ks

{∫ − H
2

− H
2 −h

τB
θzdz +

∫ H
2
− H

2
τC

θzdz +
∫ H

2 +h
H
2

τT
θzdz

}
,

(19)

where ks is the shear correction coefficient, which depends on the material and geometric
properties, boundary conditions, and forces. This study uses a shear correction coefficient
of 5/6 as a reliable estimate, although it should be kept in mind that at small scales, this
value turns out to be inaccurate. Lastly, replacing Equation (19) (considering relations
(8) and (11)) into Equation (18), the equilibrium equations in terms of displacement and
rotations are obtained and provided in Appendix A.

2.3. Continuity Conditions of Fluid/Structure

There is no need to consider a boundary condition along the z axis due to the infinite
nature of the structure in this specific direction. The structural and acoustic domains are
coupled in the following manner in the r direction [63,67]:

∂
∂r
(

pI
1 + pR

1
)∣∣∣

r=R
= −ρ0

(
∂
∂t + V .∇

)2
W,

∂
∂r pT

2

∣∣∣
r=R

= −ρ0
∂2W
∂t2 ,

(20)

By replacing Equations (3) and (6) into Equations (A1)–(A5), and Equation (20), after
some manipulation, the equilibrium equations in a 7× 7 matrix format can be obtained as:



0 0 Y1,3 Y1,4 Y1,5 Y1,6 Y1,7
0 0 Y2,3 Y2,4 Y2,5 Y2,6 Y2,7

Y3,1 Y3,2 Y3,3 Y3,4 Y3,5 Y3,6 Y3,7
0 0 Y4,3 Y4,4 Y4,5 Y4,6 Y4,7
0 0 Y5,3 Y5,4 Y5,5 Y5,6 Y5,7

Y6,1 0 0 0 Y6,5 0 0
0 Y7,2 0 0 Y7,5 0 0





P̃R
1n

P̃T
2n

U
V
W
φx
φθ


=



0
0
f3
0
0
f6
0


. (21)
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where parameters Yi,j, f3, and f6 are expressed in Appendix B.

3. STL

Dividing the transmitted to the incident acoustic powers (i.e., Πtr/Πinc) yields the
transmission coefficient τ. The value of sound transmission loss is then obtained as

STL = 10 log 1
τ ,

τ = Πtr

Πinc ,

Πtr = ∑∞
n

πR
εn

Re
[

P̃T
2nH(1)

n (k2rR)
(
iωW

)∗],
Πinc = Rp0

2

ρc cos α

(22)

in which Re refers to the real part of the argument and the superscript “*” signifies the
complex conjugate.

4. Numerical Results and Discussion

Before presenting the chief findings, a series of simplified cases are considered to
demonstrate the validity of the developed procedure.

4.1. Mode Convergence

To show the effect of the number of modes on the convergence of results, a special case
for the incoming wave angle of α = π/4 is considered. According to Figure 2, satisfactory
convergence at higher excitation frequencies necessitates a greater mode number. Different
assumptions used for this investigation are presented in Table 1. Furthermore, hexagonal
cells are assumed to be metal.
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Table 1. Material properties of the honeycomb sandwich cylindrical shell with FGP layers.

Properties Alumina (Ceramic) Steel
(Metal)

Elastic (GPa) Ec = 390 Em = 200

Poisson’s Ratio ϑc = 0.24 ϑm = 0.3

Mass density (kg m−3) ρc = 3960 ρm = 7800

Properties (Acoustic Medium) Air

Sound Speed (m s−1) c0 = 343

Mass density (kg m−3) ρ0 = 1.21
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4.2. Comparison Study

A series of comparisons are made here to show whether the developed procedure is
accurate enough. As a first verification study, acoustic effects and honeycomb core layer
were assumed to be nonexistent, then the natural frequencies (Hz) of the FGM cylindrical
shell were calculated for different values of material gradient index based on the present
formulation. The results alongside other numerical findings in Ref. [34] are provided in
Table 2, demonstrating the acceptable accuracy of the present formulations.

Table 2. A comparative study of the natural frequencies of an FG cylindrical shell.

Power Law Index (p) Mode Number (n) Present Ref. [24]

0
1 12.905 12.917
2 31.578 31.603
3 88.002 88.267

1
1 13.189 13.234
2 32.267 32.418
3 90.345 90.569

2
1 13.317 13.344
2 32.549 32.683
3 91.066 91.309

As a further verification targeting the structural part of the developed procedure,
acoustic and FGP effects were neglected, and the natural frequencies (Hz) of the honeycomb
sandwich cylindrical shell structure were extracted for different values of core-to-thickness
ratios. As shown in Figure 3, the developed formulation almost matches the previous
numerical findings in another study by Li et al. [10] (Flügge shell theory).
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Also, as shown in Figure 4a,b, for an elastic cylindrical shell, STL from an incident
acoustic wave at α = π/4 was found from the derived formulation, then compared with
the results of 3D elasticity theory in Ref. [55] and those of an FSDT approach in Ref. [71] in
the frequency domain for the properties mentioned in those studies. As another validation,
for a simplified case of aluminum shell, a comparison with the present results based on
the FSDT the classical shell theory was performed. STL was found for an incident wave
angle at α = π/4. As observed in Figure 4c, there is practically no difference between the
findings of this study and those of a numerical method by Ref. [63] (classical shell theory).



Buildings 2022, 12, 151 11 of 20

Buildings 2022, 12, x FOR PEER REVIEW 12 of 21 
 

 
Figure 4. (a) Comparison study of STL curves for single elastic cylindrical shell, red solid line: pre-
sent, black dotted line: Ref [55]. (b) Comparison study of STL for single elastic cylindrical shell, red 
solid line: present, black dotted line: Ref [71]. (c)  Comparison study of STL for single elastic cylin-
drical shell under an external flow, red solid line: present (𝑀 = 0), black dotted line: Ref [63] (𝑀 =0), purple dashed line: present (𝑀 = 0.5), green dashed-dotted line: Ref [63] (𝑀 = 0.5). 

4.3. Parametric Study 
Figure 5 shows the effect of incidence angles on the STL of a honeycomb sandwich 

cylindrical shell with FGP layers over a wide frequency range (1 < f < 10ସ Hz) when 𝑅 =1.5m , ℎ = 1mm, 𝐻 = 5mm, 𝜃ୡ = 𝜋/6, 𝑙ୡ = 5mm, 𝑡ୡ = 0.5mm, 𝑝 = 1, 𝑝଴ = 1Pa, 𝑀 = 0, 𝜉 = 0 . 
STL plots are generally characterized by a set of frequencies that allow us to differentiate 
different behaviors observed in related acoustic problems. These frequencies, from the 
order of occurrence, are named ring, critical, and coincidence frequency (respectively de-
noted by 𝑓୰, 𝑓ୡ୰, 𝑓ୡ୭). The reason behind the occurrence of such frequencies is described 
in detail in other studies [71,72]. However, it should be kept in mind that each interval 
formed by them gives rise to distinct phenomena. The frequencies lower than 𝑓୰ form the 
stiffness-controlled region where the structural stiffness plays the most significant role in 
STL. In contrast, the mass-controlled region that starts from 𝑓୰ and ends at 𝑓ୡ୰ is mostly 
affected by the structure’s mass. Finally, the coincidence-controlled region lies above 𝑓ୡ୭. 
The value of 𝑓ୡ୭ primarily depends on the incidence angle of sound waves. STL values 
and incidence angle are inversely proportional to each other. It is noteworthy that the STL 
valleys before the ring frequency are the shell resonances. 

Figure 4. (a) Comparison study of STL curves for single elastic cylindrical shell, red solid line: present,
black dotted line: Ref [55]. (b) Comparison study of STL for single elastic cylindrical shell, red solid
line: present, black dotted line: Ref [71]. (c) Comparison study of STL for single elastic cylindrical
shell under an external flow, red solid line: present (M = 0), black dotted line: Ref [63] (M = 0),
purple dashed line: present (M = 0.5), green dashed-dotted line: Ref [63] (M = 0.5).

4.3. Parametric Study

Figure 5 shows the effect of incidence angles on the STL of a honeycomb sandwich
cylindrical shell with FGP layers over a wide frequency range (1 < f < 104 Hz) when
R = 1.5m , h = 1mm, H = 5mm, θc = π/6, lc = 5mm, tc = 0.5mm, p = 1,
p0 = 1 Pa, M = 0, ξ = 0. STL plots are generally characterized by a set of frequen-
cies that allow us to differentiate different behaviors observed in related acoustic problems.
These frequencies, from the order of occurrence, are named ring, critical, and coincidence
frequency (respectively denoted by fr, fcr, fco). The reason behind the occurrence of such
frequencies is described in detail in other studies [71,72]. However, it should be kept in
mind that each interval formed by them gives rise to distinct phenomena. The frequencies
lower than fr form the stiffness-controlled region where the structural stiffness plays the
most significant role in STL. In contrast, the mass-controlled region that starts from fr and
ends at fcr is mostly affected by the structure’s mass. Finally, the coincidence-controlled
region lies above fco. The value of fco primarily depends on the incidence angle of sound
waves. STL values and incidence angle are inversely proportional to each other. It is
noteworthy that the STL valleys before the ring frequency are the shell resonances.
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Figure 5. STL curves for different elevation angles.

As shown in Figure 6, the influence of material gradient index on the STL plots
was investigated when R = 1.5 m , h = 1 mm, H = 5 mm, θc = π

6 , lc = 5 mm,
tc = 0.5 mm, α = π

6 , p0 = 1Pa, M = 0, ξ = 0. Figure 6 offers a good understand-
ing of how to achieve higher levels of STL in different frequency regions. For example,
reducing the FG index, i.e., attaining a stronger ceramic behavior instead of metallic behav-
ior, is one way to increase STL in the stiffness-controlled region. The exact opposite is true
for the mass-controlled region where reducing the FG index decreases STL. What is more,
the characteristic frequencies can be shifted by changing the parameters of power law.
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Figure 6. Variation of STL through the honeycomb FGP sandwich cylindrical shell with material
gradient index.

To analyze the effect of the external flow Mach on the variations of STL curves,
Figure 7 is presented, where R = 1.5 m , h = 1 mm, H = 5 mm, θc = π

6 , lc = 5 mm,
tc = 0.5 mm, α = π

6 , p0 = 1 Pa, p = 1, ξ = 0. Another noteworthy finding is that the
radiation damping after the ring frequency has the capability of increasing STL with a
growing Mach number. In other words, a new value of Mach number results in different
values of fcr and fco.
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Figure 7. Effect of the external flow Mach number on the changes of STL.

Figure 8 depicts the effect of the average radius on the variations of STL curves when
M = 0 , h = 1 mm, H = 5 mm, θc = π

6 , lc = 5 mm, tc = 0.5 mm, α = π
6 , p0 = 1 Pa,

p = 1, ξ = 0. It was expected to attain a lower STL for a larger radius before the ring
frequency. In a stark contrast, changing the radius has virtually no effect on STL in
the coincidence control region. This is due to the fact that at the high frequencies the
wavelengths become shorter and therefore radius would incorporate no effect on STL in
the coincidence control region. It should be noted that only the ring frequency is shifted as
a result of a new radius.

Buildings 2022, 12, x FOR PEER REVIEW 14 of 21 
 

 
Figure 7. Effect of the external flow Mach number on the changes of STL. 

Figure 8 depicts the effect of the average radius on the variations of STL curves when 𝑀 = 0 , ℎ = 1 mm, 𝐻 = 5 mm, 𝜃ୡ = గ଺ , 𝑙ୡ = 5 mm, 𝑡ୡ = 0.5 mm, 𝛼 = గ଺ , 𝑝଴ = 1Pa, 𝑝 = 1, 𝜉 = 0 . 
It was expected to attain a lower STL for a larger radius before the ring frequency. In a 
stark contrast, changing the radius has virtually no effect on STL in the coincidence control 
region. This is due to the fact that at the high frequencies the wavelengths become shorter 
and therefore radius would incorporate no effect on STL in the coincidence control region. 
It should be noted that only the ring frequency is shifted as a result of a new radius. 

 
Figure 8. STL plots for different values of the average radius. 

The variations of STL under different porosity distributions and porosity coefficient 
are indicated in Figure 9 when 𝑀 = 0 , ℎ = 1 mm, 𝐻 = 5 mm, 𝜃ୡ = గ଺ , 𝑙ୡ = 5 mm, 𝑡ୡ =0.5 mm, 𝛼 = గ଺ , 𝑝଴ = 1 Pa, 𝑝 = 1, 𝑅 = 1.5. Turning our attention to the porosity coefficient, 
one observes a degraded STL performance with growing porosity coefficient irrespective 
of porosity pattern. To justify this behavior, one must pay attention to the decrease in the 
structural stiffness with growing porosity coefficient. This also explains the higher levels 
of STL for the case of logarithmic-uneven distribution as it possesses a higher stiffness 

Figure 8. STL plots for different values of the average radius.

The variations of STL under different porosity distributions and porosity coefficient
are indicated in Figure 9 when M = 0 , h = 1 mm, H = 5 mm, θc = π

6 , lc = 5 mm,
tc = 0.5 mm, α = π

6 , p0 = 1 Pa, p = 1, R = 1.5. Turning our attention to the porosity
coefficient, one observes a degraded STL performance with growing porosity coefficient
irrespective of porosity pattern. To justify this behavior, one must pay attention to the
decrease in the structural stiffness with growing porosity coefficient. This also explains
the higher levels of STL for the case of logarithmic-uneven distribution as it possesses a
higher stiffness than even porosity distribution. Nonetheless, for both porosity patterns, a
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larger porosity coefficient shifts the critical and coincidence frequencies to the right of the
frequency spectrum.
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Figure 10 displays the effect of the wall thickness of honeycomb cell on the variations
of STL over frequency range when M = 0 , h = 1 mm, H = 5 mm, θc = π

6 , lc = 5 mm,
ξ = 0, α = π

6 , p0 = 1 Pa, p = 1, R = 1.5. The increase in the wall thickness of each
honeycomb cell increases the core stiffness, so that STL grows. Furthermore, improvements
in STL in the mass-controlled regions is observable.

Figure 11 demonstrates the variations of STL curves under different values of hexag-
onal cell length when M = 0 , h = 1 mm, H = 5 mm, θc = π

6 , tc = 0.5 mm, ξ = 0,
α = π

6 , p0 = 1 Pa, p = 1, R = 1.5. Decreasing the value of lc concurrently increases
the elastic modulus, total bending stiffness, and structure’s density. In addition, the total
bending stiffness of the whole structure is decreased as a result of regulation impact, which
increases STL in the stiffness-controlled and mass-controlled regions.
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5. Conclusions

Using the FSDT as a capable means of investigating vibration problems, this article de-
velops a formulation to determine the acousto-structural behavior of a sandwich structure
incorporating a hexagonal honeycomb core and face layers made from FGP. A homogenous
orthotropic model was used for the honeycomb core while its corresponding material
features were found from the modified Gibson’s equation. The distribution pattern of FGP
parts is either even or logarithmic-uneven, and a special rule-of-mixture relation govern
their properties. Then, fluid-structure compatibility relations were implemented followed
by the use of Hamilton’s principle, leading to the final form of governing equations. A
series of simulations and comparisons with previous studies demonstrate the accuracy
of the presented method. STL was then calculated over different frequency regions. The
results are presented as follows:

• The increase in the wall thickness of each honeycomb cell increases the core stiffness,
so that STL grows.
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• Decreasing the value of lc concurrently increases the elastic modulus, total bending
stiffness, and structure’s density, which increases STL in the stiffness-controlled and
mass-controlled regions.

• STL reduces with growing porosity coefficient irrespective of porosity pattern.
• Higher levels of STL were obtained for the case of logarithmic-uneven distribution as

it possesses a higher stiffness than even porosity distribution.
• Reducing the FG index, i.e., attaining a stronger ceramic behavior instead of metallic

behavior, is one way to increase STL in the stiffness-controlled region.
• The radiation damping after fr has the capability of increasing STL with a growing

Mach number.
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