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Abstract: To control the deviation of a long-span concrete-filled steel tube (CFST) arch bridge during
construction monitoring, a practical method for controlling tower deviation is studied and established.
The form of construction of this bridge is an intermediate double-arch bridge, which differs from
conventional bridges, thus requiring the urgent resolution of the issue of unbalanced middle piers.
Therefore, the mechanical characteristics and construction process of an intermediate long-span,
dual-coupled steel pipe arch bridge are meticulously examined by using a 1:10 scale model, with
particular focus on discussing the deflection of the buckle tower during the installation of the arch
rib segments. Construction control is implemented using a novel tower deflection control method
that addresses unilateral torsion problems and difficulties in controlling the deflection of the tower.
The model results are compared with the finite element analysis output, demonstrating that this new
approach can resolve unbalanced tower deviations by maintaining absolute values within 0.5 mm.
After correcting these deviations, the measured results from the model bridge tower align with the
calculated analytical results and even surpass the theoretical expectations for tower deviation. This
remarkable new method accurately resolves real-world bridge tower deviations.

Keywords: bridge engineering; arch bridge; tower deviation control; control method

1. Introduction

With the wide application of steel pipe concrete arch bridges, its forms of construction
are becoming more diversified [1]. The span of the bridge has developed from just over
100 m in the beginning to nearly 600 m at present [2,3]. The design of a concrete-filled steel
tube (CFST) arch bridge is usually guided via finite element simulation, and the use of a
scaled model test can not only verify the mechanical performance of the structure, but also
preview and evaluate the actual control of the construction. The control of the accuracy of
pylon deflection will affect the alignment of such long-span arch bridges [4], but there is
little research available into pylon control (especially as related to the middle pier during
cable-stayed suspension). At present, some Chinese researchers have studied the linear
control of CFST arch bridges in different forms. Gu, Y [5] described arch rib construction
technology to analyze arch rib installation control methods from the perspective of arch
processing and the splicing of the steel tube based on the arch bridge characteristics and
construction-control processes of CFST bridge types. Based on the grey prediction theory,
Zhuo Xiaoli [6] established a grey model for line-shape prediction, considering the residual
correction during the construction of main beams in the context of mid-span steel box arch
bridges, and predicted the construction pre-elevation value of main beam segments through
tower deviation. It can be seen that tower deflection and arch rib alignment in arch bridges
interact [7–9]. The suspension assembly method is a common construction method for
long-span arch bridges [10–12]. However, the studies on the suspension assembly method
mainly focus on improving the accuracy of the cable forces [13], while the studies on tower
deflection are few. At present, for a long-span steel truss arch bridge, suspension tower
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construction is the most difficult and risky part of the construction process. The steel truss
arch erection side span of the Jianghan Seventh Bridge is installed by using the support
method, and the middle span is installed via the cantilever method. The suspension tower
plays an important role in the cantilever erection construction of the steel truss arch. The
suspension tower is one of the key structures in the cantilever construction of the steel
truss arch bridge, and it connects the cantilever end of the main arch with the balance
end of the side beam using the suspension cable, so that the steel truss arch bridge can
maintain overall stability during the construction of the main girder [14]. The application
of monitoring technology to realize the construction-line monitoring of the suspension
tower can not only meet the installation accuracy requirements of the suspension tower
members, but also improve the safety and accuracy of subsequent main beam closure [15].
This issue has also been investigated by some foreign researchers in succession. In the
large-span concrete arch bridge constructed via the cantilever pouring method [16], path
control is key to ensuring construction quality, and the deflection of the buckle tower often
affects the arch elevation of each segment. The influence of the deflection of the buckle
tower on the elevation of each section during construction was analyzed via a geometric
analysis method, and the finite element model was established in Midas software to verify
the results. The results show that the deflection of the buckle tower has little effect on the
elevation of the arch foot, but it has a greater effect on the elevation of the section near the
arch top, and the section at the arch top is more sensitive to the change in the buckle-tower
height. According to Jiang Wei [17], the structural state of the main cable of the hoisting
system changes during the hoisting process. Based on the engineering background of a
large bridge, this paper obtained a high-precision calculation method of the main cable sag
and cable force during the hoisting process through theoretical deduction, and estimated
the influence of vehicle traffic on the main cable force by numerical simulation. The results
show that the proposed method for calculating the sag of the main cable has high accuracy
and can be applied in practice. The main cable force increases gradually as the vehicle
moves toward the mid-span and the main cable force at the pylon end reaches its maximum
when the vehicle is within the span. Some scholars have also shown how to prevent the
occurrence of tower deviations by monitoring via three-dimensional scanning, but they
have not avoided the occurrence of tower deviations from the root.

In terms of the method of the tower deflection theory, Lin T.M. [18] used the suspension
cable element method to derive a formula giving the deflection of the hinged tower of the
cable hoisting system where the pressure tower is set, so that the calculation of the cable
hoisting construction stage and the tower deflection calculation were unified. A feasibility
control system of intelligent tower deviation was verified by theoretical analysis, but it
has not been applied in engineering practice. Deng JiangMing [19] derived an analytical
formula of the influence of the tower deflection with an integrated button-back on the linear
arch rib by using a geometric analysis method. The feasibility of these proposed control
systems as applied to intelligent tower deviation was validated by theoretical analysis, but
the deformation of the tower is not considered.

In terms of calculation methods, Zhen-guo C et al. [20] considered the influence of the
deflection of the buckle tower during the calculation of the cable force, and ascertained the
that optimal buckle cable force matrix can be used to reduce the influence of buckle-tower
deflection on the alignment of the arch rib. Ke-Jian Y [21] studied the sensitivity of each
section of the buckle of the lower part of the buckle-tower to the vertical displacement of the
closing hole, and found that too small a horizontal inclination would weaken the influence
of the section buckle force on the vertical displacement of the closing hole, and they solved
the problem of the low adjustment efficiency of the long buckle cable by calculating an
optimal cable force via the formal installation iterative method. However, these two
methods tend to be those viewed as lacking in innovation: if the number of iterations is
excessive, the calculation will be slow. Xue-Tao D et al. [22] studied the influence of the
main cable slip on tower deflection in the design of the cable hoisting system, and found
that the main cable slip had a significant influence on the cable hoisting system, which
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could significantly change the deviation of the top of the tower and the stress thereon. Wei S
et al. [23] found that the displacement of the top of the tower in the integrated construction
of cables and buckle towers exerts a significant influence on the accuracy of the arch-rib
splicing, and the key to construction control is to reduce the deflection of the cable and
the buckle tower. Therefore, the initial tension of the wind rope of the top cable should be
adjusted while observing the deviation of the tower during the construction of the arch rib
assembly, thereby reducing the horizontal cable force difference and keeping the cable and
buckle tower in a vertical state as far as possible. The method is novel and unique in its
technical aspects, but this method lacks theoretical support.

The safety and construction accuracy of the tower has been studied widely; taking the
Changshou Yangtze River Bridge as the background, Gao Z [24] introduced the construction
technology of a 60 m high, single-story, suspension tower from the design, construction,
and to demolition. Taking the Nanjing Dashingguan Bridge as the background, Sheng
Zhiping [25] innovatively laid a suspension tower with three layers of cable stays on
the outside of the two-span steel beams, with a height of 68.5 m, and adopted flat cable
construction technology on the inside, which overcame the problems of the internal force
and alignment adjustment difficulty during the erection of steel beams. Zhi-Hu Z et al. [26],
taking the Jianghan Seventh Bridge as the background, conducted the stress analysis of
various working conditions of the 89.6-m high sling tower during the assembly process.
Renbo F et al. [27] studied the application of 39-m high suspension tower in flexible arch
of a continuous steel girder in the Guanhe Super-Bridge on the Lianyan Railway. This
long-span bridge has certain advantages and broad prospects for application. Due to its
wide range of application, especially in long-span bridges, cable hoisting construction has
become the main method of the erection of arch bridges [28–30]. When cables are used to lift
arch ribs, the processes of each span affect the deformation of the tower, induce deviations,
and have linking effects on the arch ribs suspended on the tower. When the linkage
effect gradually accumulates, assembly accuracy and tower deviation will be affected if
no adjustment is made [31,32]. In the present work, a set of new methods and theories are
used to control tower deviation, limiting the occurrence of unbalanced tower deviation
and the corresponding torsion at the root, which is different from the methods of other
scholars. The problem of tower deviations is solved, and the accuracy of tower deviations
is controlled to within the theoretical value, thereby achieving the ideal control effect.

2. Project Overview and Model Design
2.1. Project Overview

The Longtai Expressway is a section of China’s national expressway network planning,
which is one of the important links in the main skeleton expressway network planned
across the Yangtze River, and is also the main channel from the central region to the south-
east coast. The whole line adopts six-lane expressway standard construction. The Tianyun
Bridge is one of the controlled, landscape-type, projects of the overall project. Its structure
consists of two arch circles, three arch seats, middle piers and bridge panels. The main
bridge adopts the main span of 2 × 260 m of a CFST to design the overall subgrade width
of 16 m, the design load is Grade I (highway), and the structural safety grade is Grade
I. The design speed is 80 km/h, and the bridge structure design life is 100 years. In the
middle pier, there are buckle cables on both sides. Using the middle arch seat, sections are
constructed on both sides at the same time, and the buckle cables are pulled up to complete
its construction. The column on the arch adopts a row-type rectangular section structure,
and the column is connected by a cross-beam. The span of the two-span continuous CFST
intermediate truss arch is larger in the same type of bridge, the bridge continuously crosses
the river, the bridge location on both sides of the mountains makes for difficult access
to traffic, and its construction is difficult necessitating the present research into the key
technology of design and construction. The general layout of the Tianyun Bridge is shown
in (Figure 1).
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Figure 1. Layout of the Tianyun Bridge (unit: m).

2.2. Similarity Theory

For structural tests, it is most accurate to use the original actual structure for the
simulation, so a certain proportion of model tests are often used, and the force state of
the original structure is calculated through the use of the similarity ratio. To simulate the
construction process of the Tianyuan Bridge, it is necessary to study the method used to
control the tower deflection. To obtain more accurate test results and data, the geometric
scaling ratio of the main arch ring, arch base and junction pier is proposed to be 1:10 on
the basis of comprehensive consideration of the test content, model materials, production
accuracy, and component volume, as well as considering time, economic cost, and data
fidelity. The scale ratio of stress is 1:1, and the interface pier is designed in scale according
to the ratio of pushing stiffness of 1:10.

From the scale ratio of geometry and force, the similarity coefficients are obtained
according to the similarity theory as follows (Table 1):

Table 1. Model test similarity relationship.

Physical Quantity Prototype Model Model Similarity
Coefficient

Length Lp Lm = Lp (1/n) 1/10

Cross area Ap Am = Ap·(Ep/Em)
(1/n2) (1/m) 1/100

Bending moment of
inertia Ip Im = Ip·(Ep/Em)

(1/n4) (1/m) 1/10,000

Torque moment of
inertia Jp Jm = Jp·(Gp/Gm)

(1/n4) (1/m) 1/10,000

Modulus of elasticity Ep Em 1
stress σp σm = σp (Ep/Em) 1
strain εp εm = εp 1

Linear displacement δp δm = δp·(1/n) 1/10
Angular

displacement αp αm = αp 1

counterweight Wp Wm = Wp (1/n2)
(1/m) 1/100

Concentrated load Fp Fm = Fp (1/n2) 1/m) 1/100

Shearing force Qp Qm = Qp (1/n2)
(1/m) 1/100

reaction Rp Rm = Rp
(1/n2)·(1/m) 1/100

Bending moment Mbp Mbm = Mbp (1/n3)
(1/m) 1/1000

torque MTp MTm = MTp
(1/n3)·(1/m) 1/1000

Note: In the table, n is the geometric scaling ratio (set to 10), and m denotes the scaling ratio of stress (set to 1).
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2.3. Component Design
2.3.1. Arch Rib Design

According to the relevant design drawings of the Tianyun Bridge and the existing
conditions, the values of the geometric similarity ratio of the main structural dimension are
as per (Table 2).

Table 2. List of arch ring components (unit: mm) 30 September 2023.

Position
Original
Bridge

Dimension

Prototype
Size Model Size

Compressive
Stiffness

Ratio

Resistance to
In-Plane
Stiffness

Ratio

Main chord 1 ϕ1600 × 35 ϕ80 × 1.7 ϕ36 × 4 1.02 1.04
Main chord 2 ϕ1600 × 32 ϕ80 × 1.6 ϕ35 × 4 1.2 1.11
Main chord 3 ϕ1200 × 26 ϕ70 × 1.3 ϕ35 × 3 1.1 1.12

Web rod 1 ϕ800 × 20 ϕ40 × 1 ϕ14 × 4 1.1 /
Web rod 2 ϕ600 × 16 ϕ30 × 0.8 ϕ15 × 3 1.2 /

Parallel
connection 1 ϕ800 × 20 ϕ40 × 1 ϕ14 × 4 1.13 /

Parallel
connection 2 ϕ800 × 22 ϕ40 × 1.1 ϕ12 × 3 1.15 /

Parallel
connection 3 ϕ800 × 16 ϕ40 × 0.8 ϕ12 × 3 1.16 /

Cross-brace 1 ϕ800 × 22 ϕ40 × 1.1 ϕ14 × 4 1.13 /
Cross-brace 2 ϕ800 × 16 ϕ35 × 1.1 ϕ14 × 4 1.30 /
Cross-brace 3 ϕ700 × 22 ϕ40 × 0.8 ϕ12 × 3 1.09 /
Cross-brace 4 ϕ700 × 16 ϕ35 × 0.8 ϕ12 × 3 1.4 /

Fork stay 500 × 16 / ϕ12 × 2.6 1.6 /

2.3.2. Arch Design

Due to this scaling model study, there are almost half spans on both sides. To make
the scale model simulate the internal force and deformation of the real bridge, the arch
design is strictly scaled down to ensure that the model undergoes no displacement in the
construction and test process, which is aligned with reality. The arch seat diagram is shown
in Figure 2.
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2.3.3. Pier Design

The height of the pier proposed in this design is 4.5 m + 1.5 m. The model test uses a
steel tower pier (Figure 3).
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3. Finite Element Analysis
3.1. Finite Element Model

The Midas finite element model is established based on the 1:10 scale model test. There
are 2035 nodes and 3776 units in the whole bridge, among which the cable is a tension-only
truss unit, and the main arch and tower are beam units. The simulation is conducted
according to the hoisting sequence of the actual bridge during the construction stage.

For the convenience of description, the following is the partition diagram (Figure 4),
for example: A2 is the second section of Side A.
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3.2. Tower Deviation Calculation

The focus of the present research is the deviation of the middle pier tower. The
deviation of the tower during normal construction is calculated: there are eight sections
of the arch bridge, and some key sections are listed here, such as Section 2, Section 6, and
Section 8. The outputs from the finite element analysis model are as follows:

Working condition 1: Hoisting arch rib A side of Section 2.
Working condition 2: Hoisting arch rib B side of Section 2.
In condition A2 (Figure 5), the unbalanced horizontal thrust is generated by unilateral

lifting, with a 0.1 mm displacement at the bottom of the pier, a 0.88 mm displacement at
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the mid-point of the pier, and a 1.6 mm displacement at the top of the pier. In condition B2
(Figure 6), due to the balanced horizontal thrust generated by lifting on both sides, there is
almost no displacement at the top of the pier. The maximum stress on the bottom of the
tower is 52 MPa.
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Working condition 3: Lifting Section 6 on side D of the arch rib.
Working condition 4: Lifting Section 6 on side C of the arch rib.
In condition D6 (Figure 7), the unbalanced horizontal thrust is generated by unilateral

lifting. The displacement at the bottom of the pier is 0.1 mm, the displacement at the middle
of the pier is about 0.9 mm, and the displacement at the top of the pier is 2.51 mm. In
condition C6 (Figure 8), due to the balanced horizontal thrust generated by lifting on both
sides, there is almost no displacement at the top of the pier. The maximum stress on the
bottom of the tower is 82 MPa.
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Working condition 5: Lifting Section 8 on side A of the arch rib.
Working condition 6: Lifting Section 8 on side B of the arch rib.
In condition A8 (Figure 9), the unbalanced horizontal thrust is generated by unilateral

lifting. The displacement at the bottom of the pier is 0.1 mm, the displacement at the middle
of the pier is about 0.78 mm, and the displacement at the top of the pier is 2.85 mm. In
condition B|8 (Figure 10), due to the balanced horizontal thrust generated by lifting on
both sides, there is almost no displacement at the top of the pier. The maximum stress on
the bottom of the tower is 118 MPa.
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The column deviation data under a normal construction sequence are listed below;
these lay a foundation for the comparison of the data of new construction methods.

4. New Methods of Control Theory
4.1. Control Method

In this method, the single-side segment and the arch rib segment on the symmetrical
side are hoisted first, the cable is not initially tensioned, the unbalanced bending moment
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is borne via the existing cable-stayed cable system, and the rear tensioned cable is used
as a protective device. The aforementioned steps are repeated, and the two rear ends
are symmetrically tensioned at the same time, which can ensure the reduction in tower
deviation and the torsion caused by the single-side asymmetric hoisting problem (Figure 11)
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4.2. Tower Deviation Analysis

The following experimental results can be obtained: the first seven sections of the
experiment are constructed in the form of the unilateral installation and tightening of
segment buckle cables, and the other side is the same. Section 8 adopts the construction
method of lifting on both sides first, not tightening the cable, and pulling the cable on
both sides at the same time after the symmetrical segment is installed. The following table
shows the deviation data for the traditional hoisting of segments 2 and 6, and the deviation
data for segment 8 using the new method. T1 is the measurement point at the bottom of
the tower, T2 is the measurement point in the middle of the tower, and T3–T6 are the four
measurement points at the top of the tower (Figure 12).
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In Tables 3 and 4, ∆x is the longitudinal deviation of the bridge from the tower, ∆y is the
transverse deviation of the bridge from the tower, and ∆z is the elevation change, indicating
the change in the tower deviation on the hoisting side of the segment. ∆x′ is the longitudinal
deflection of the bridge towards the tower, ∆y′ is the transverse deflection of the bridge
towards the tower, and ∆z′ is the elevation change, and the change in deflection of the
mounting buckle tower on the other side of the symmetric segment. Measurements are
made via total station. Tables 3 and 4 list the traditional tensioning column deviation data.

Table 3. Section 2 tower deviation (unit: mm).

∆x ∆y ∆z ∆x′ ∆y′ ∆z′

T1 0.0006 0.0002 0.0004 0.0017 0.0003 −0.0002
T2 0.0018 0.0006 0.0014 0.0010 −0.0003 0.0002
T3 0.0048 0.0005 0.0021 0.0009 −0.0005 0.0008
T4 0.0031 0.0008 0.0005 0.0000 0.0002 −0.0002
T5 0.0021 0.0004 0.0005 −0.0010 −0.0001 −0.0011
T6 0.0009 0.0002 0.0001 −0.0026 −0.0003 −0.0004

Table 4. Section 6 tower deviation (unit: mm).

∆x ∆y ∆z ∆x′ ∆y′ ∆z′

T1 −0.0001 0.0003 −0.0004 0.0003 0.0002 −0.0002
T2 −0.0005 −0.0003 −0.0003 0.0005 0.0006 0.0002
T3 −0.0020 −0.0005 0.0006 0.0009 0.0005 0.0008
T4 −0.0025 0.0002 −0.0001 0.0010 0.0008 −0.0002
T5 −0.0027 −0.0001 −0.0012 0.0014 0.0004 −0.0011
T6 −0.0047 −0.0003 −0.0007 0.0016 0.0002 −0.0004

Tables 5 and 6 list the column deviation data of the eighth stage after adopting the
new tensioning method.

Table 5. Section 8 tower deviation (unit: mm).

∆x ∆y ∆z ∆x′ ∆y′ ∆z′

T1 −0.0002 0.0003 −0.0004 0.0003 0.0002 0.0002
T2 −0.0010 −0.0009 −0.0003 0.0005 −0.0003 0.0004
T3 −0.0042 −0.0006 0.0006 0.0009 0.0008 0.0006
T4 −0.0037 −0.0005 −0.0001 0.0010 −0.0002 −0.0002
T5 −0.0030 0.0002 −0.0012 0.0010 0.0009 −0.0009
T6 −0.0025 −0.0008 −0.0007 0.0011 0.0008 −0.0004

Table 6. Section 8 tower deviation (unit: mm).

∆x ∆y ∆z ∆x′ ∆y′ ∆z′

T1 0.0003 0.0002 0.0002 −0.0002 −0.0002 −0.0002
T2 0.0006 0.0005 0.0005 −0.0004 0.0003 0.0002
T3 0.0011 0.0004 0.0016 −0.0007 −0.0004 0.0008
T4 0.0009 0.0005 0.0006 −0.0006 −0.0002 −0.0002
T5 0.0007 0.0006 0.0001 −0.0007 0.0002 −0.0011
T6 0.0005 0.0003 0.0000 −0.0006 0.0005 −0.0004

5. New Methods of Optimization Data Analysis

Using data comparison, it can be found that the transverse deviation of the tower is
insignificant, and most of the deviation is within 0.5 mm, so there is little scope for the
description and calculation of the transverse deviation therein. The working conditions of
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A2, B2, and Section 6 are given in Figure 13, and the data pertaining to both the simulation
and experiment are compared. To improve practicability, the maximum stress of the arch
foot of the two methods corresponding to the section is listed (Figure 13).
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It can be seen above that the method of the back cable can reduce the stress on some
arch feet, and that on the eighth section, it can be reduced by about 25%. The following is a
comparison of the actual and theoretical data of each section, and the last two charts allow
the comparison of the data of the post-cable and traditional methods (Figures 14–19).
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Figure 18. Section 6 tower bias comparison.

It can be seen that the traditional method induces asymmetric column deviation
control and torsion problems. The actual data indicate that T3–T6 is the control point at
the top of the buckle tower, and the actual data differ greatly, so the effect of lifting the
unilateral rear cable is poor.

The following new method is applied to Section 8: after hoisting two symmetrical
segments, both sides are tensioned at the same time, and the data are compared with that
collected when hoisting one side segment at a time(Figures 20 and 21).
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The comparison of the pictures shows that this method can actively and timeously
correct the displacement deviation of the tower top and the torsion on the symmetric
segment during the cable hoisting process, reducing the deviation. The maximum deviation
of the tower pier can be controlled, in real time, to within the range of ± 0.5 mm.

6. Conclusions

To study the effect and operation of the new method of tower deflection control on the
deflection of the buckle tower, and to apply it to the universality of similar bridge projects,
the following conclusions can be drawn by establishing a 1:10 scale model:
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(1) The deflection of the buckle tower increases with the increase in the number of arch-
rib lifting segments and the increase in pier elevation, from the bottom to the top of
the tower;

(2) The traditional way of controlling the deviation of the tower body is to pull a lot of
steel wire and jack manually, which wastes a lot of materials and manpower. The new
proposed method relies on the simultaneous tensioning technique, thereby greatly
reducing the time cost, and obviating the need to adjust the offset;

(3) After adopting the new method, the influence of adjusting the tower deviation on
the structure members is rendered insignificant. This means that the adjustment has
a significant controlling effect on the longitudinal displacement of the tower, and
can reduce the stress on the arch foot; each section analyzed benefitted from a stress
reduction of about 30 MPa compared with the previous method;

(4) This method can actively and timeously correct the displacement deviation of the top
of the tower and the torsion in the symmetric segment in the process of cable hoisting,
reducing the deviation. The maximum deviation of the tower pier can be controlled,
in real time, within the range of ±0.5 mm. Compared with the traditional methods
and techniques, the results can provide a reference for the deviation control of the
middle pier tower of similar types of bridge.
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