
Citation: Tzimas, M.; Barbero, E.J.

Imperfection Sensitivity Detection in

Pultruded Columns Using Machine

Learning and Synthetic Data.

Buildings 2024, 14, 1128. https://

doi.org/10.3390/buildings14041128

Academic Editors: Tadeh Zirakian

and David M. Boyajian

Received: 21 March 2024

Revised: 3 April 2024

Accepted: 16 April 2024

Published: 17 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Imperfection Sensitivity Detection in Pultruded Columns Using
Machine Learning and Synthetic Data
Michail Tzimas 1,† and Ever J. Barbero 2,*,†

1 Independent Researcher, Morgantown, WV 26505, USA; mtzimas92@gmail.com
2 Department of Mechanical, Materials and Aerospace Engineering, West Virginia University,

Morgantown, WV 26506, USA
* Correspondence: ejbarbero@mail.wvu.edu
† These authors contributed equally to this work.

Abstract: Experimental and theoretical solutions have shown that imperfections in wide-flanged
structural columns may reduce the failure load of the column by as much as 30% with respect
to that of a perfect column. Therefore, the early detection and prevention of such imperfections,
which would likely reduce the load capacity of a structure, are critical for avoiding catastrophic
failure. In the present article, we show how machine learning may be used to detect imperfection
sensitivity in pultruded columns using observable column deformations occurring at loads as low
as 30% of the design load. Abaqus simulations were used to capture the behavior of such columns
of various lengths under service load. The deformations found from the simulations were used
to train the machine learning algorithm. Similar deformations could be easily collected from in-
service columns using inexpensive instrumentation. With over 3000 test cases, 95% accuracy in the
correct detection of imperfection sensitivity was found. We anticipate that the proposed machine
learning pipeline will enhance structural health monitoring, providing timely warning for potentially
compromised structures.

Keywords: structural health monitoring; machine learning; buckling; imperfection sensitivity;
failure prevention

1. Introduction

In this work, we developed a method to detect imperfection sensitivity in columns
using inexpensive instrumentation, regardless of the source of deterioration. For example,
a column in a parking garage could sustain imperceptible damage from a vehicle impact or
experience polymer degradation due to aging. Since imperfection sensitivity can lead to
catastrophic compression failure without warning, our proposed work is relevant to civil
infrastructure, particularly in earthquake scenarios [1].

Regardless of the deterioration source, if we detect a deviation in deformation from
the expected service level, our machine learning (ML) algorithm can identify imperfection
sensitivity in the column, leading to a reduction in the failure load. This occurs without
needing to identify the specific material or geometric deterioration causing the deformation
anomaly. Although the ML algorithm includes the source of material or geometric deterio-
ration in its training, the damage detection instrumentation does not need to identify this
source. Instead, it detects the aggregate effect of damage using simple techniques, such as
measuring lateral deflection.

In this work, we did not need to physically test columns for failure because the
accuracy of the simulation software, i.e., ABAQUS 2020® [2], is widely trusted for elastic
analysis of composite materials and structures. Furthermore, Abaqus has demonstrated
good agreement with experimental data for materials and structures similar to those in our
study [3].

Buildings 2024, 14, 1128. https://doi.org/10.3390/buildings14041128 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14041128
https://doi.org/10.3390/buildings14041128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-9117-4465
https://orcid.org/0000-0001-9121-6277
https://doi.org/10.3390/buildings14041128
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14041128?type=check_update&version=1


Buildings 2024, 14, 1128 2 of 16

With the simulation software thus validated, we generated synthetic data by simulat-
ing thousands of cases covering a spectrum of loads, dimensions, and materials as well as
types, magnitudes, and localization of damage. Then, we used the synthetic data to train
an ML algorithm. Finally, we proved that the trained algorithm is accurate in predicting
the failure load of simulated cases that we did not use for training.

To keep the scope of work manageable with our time and resource limitations, in this
work, we only developed synthetic data including a spectrum of (a) loads, (b) magnitude
of pre-existing imperfection amplitude, and (c) column dimensions, while (d) material
properties, (e) other types of damage, and (f) localization of damage, were relegated to
further studies.

In practice, we envision inexpensive instrumentation, such as a laser deflectometer
continuously monitoring the deflection of a column that has been identified as critical to
the structure’s survivability in case of an earthquake. With that simple deflection input,
ML can predict the failure load deterioration in real time, before the earthquake occurs. If a
pre-established threshold of predicted failure load reduction is reached, a warning would
be triggered, prompting remedial actions to prevent structural overload.

We have not attempted to implement instrumentation to validate deflection measure-
ment techniques, as we have confidence in the accuracy and affordability of methods such
as laser deflectometry, digital image correlation, and photogrammetry [4].

Our proposed method requires only four lateral deflections to be monitored to extract
Fourier coefficients. However, increasing the number of measured deflections will enhance
the performance of the method. Thus, burdensome problems with large amounts of
data transmission and processing that might be encountered in classical structural health
monitoring (SHM) approaches are eliminated [4].

The proposed methodology requires the ML algorithm to be trained with synthetic
data generated by simulations that include a spectrum of all possible types of damage,
magnitudes of damage, and localization of damage. This spectrum of data is a surrogate
for the last three out of the four classical SHM concerns, namely (1) damage detection,
(2) qualification, (3) quantification, and (4) localization.

In our approach, we trained an ML algorithm to predict the effect of damage, rather
than detecting damage itself. If the effects of damage can be elucidated from in-service
deformations or any other response that can be easily measured, cumbersome damage
detection is avoided. By utilizing a discrete set of Euler and local mode lateral deflections,
we accurately predict imperfection sensitivity in columns, leading to an effective prediction
of failure load reduction. We discuss our methodology and data acquisition in Section 2,
present results in Section 3, and provide conclusions and future directions in Section 4.

2. Materials and Methods
2.1. Case Study of a Pultruded Column: Finite Element Simulation Data Acquisition

Pultruded structural shapes are thin-walled to take advantage of the high compressive
strength of the fiber-reinforced composite material and to remediate the relatively low
modulus of elasticity of the material. The flanges of the thin-walled section buckle first for
stubby columns, but as the slenderness λ increases, Euler buckling occurs [5]. The local
buckling load PL is relatively constant, but the Euler buckling load, PE, decreases sharply
with the slenderness of the column. At the critical slenderness λcr, local and Euler loads
coincide, i.e., Pcr = PE = PL [6].

The slenderness of the column can be used in parametric studies. For perfect columns,
there are two (isolated) observable modes, the local mode, for λ ≤ 1, Pmax = Pcr, and the
Euler mode, for λ ≥ 1, Pmax = (π2EI)/(KL)2, where E, I, are material properties, L is the
length, and K depends on the type of end-supports of the column.

Real columns are not perfect but rather have imperfections, which may be internal or
external to the column. External imperfections include uneven axial lengths and eccentrici-
ties or non-uniformity of the applied load. Internal imperfections can be caused by damage
or aging of the material. Therefore, for an imperfect column, the buckling load is less than



Buildings 2024, 14, 1128 3 of 16

the load predicted by either of the isolated modes described above, as shown in [3,6,7] and
multiple citations therein. Imperfection sensitivity can be reduced with a combination of
manufacturing processes and targeted modeling as shown in ref. [8].

In Figure 1, both local and Euler modes are shown; however, for slenderness λ between
0.7 and 1.2, multiple data points are observed to fall outside the isolated responses. Upon
closer examination, these data points reveal the interaction between local and Euler modes.
A design equation has been proposed that captures the behavior of the experimental
observations across the spectrum of λ [3,6].

Figure 1. Column experimental data and prediction by various equations used in design [9].

To simulate imperfection-sensitive columns, Finite Element Analysis (FEA) is em-
ployed. Abaqus software is utilized to model columns with specified dimensions and
material properties. Material properties are given in Tables 1 and 2. Additional information
regarding calculation and use of these material properties in Abaqus can be found in
refs. [10] and Ex. 3.11 and 4.4 in [11].

Table 1. Material properties. Transverse shear coefficients used in ABAQUS simulations. Units for
both flange and web: MPa mm.

Transverse Shear K11 K12 K22

Flange 15,788 0 15,338
Web 16,378 0 15,955

Table 3 shows information regarding the FEA parameters used for meshing and
boundary conditions. One end of the column has a symmetric boundary condition to reduce
the overall length of the model. The cross-section, on the other end, has displacement
constraints for rigid body motion, tied to a reference point. The load of the simulation is
applied on the same reference point as a compressive force.



Buildings 2024, 14, 1128 4 of 16

Table 2. Material properties. Upper symmetric coefficients of the General Shell Stiffness Matrix used
in Abaqus simulations. Units for both flange and web, rows 1–3: MPa mm, rows 4–6: MPa mm3.

Flange

163,370 31,996 0 0 0 0
0 87,165 0 0 0 0
0 0 25,649 0 0 0
0 0 0 489,226 116,521 0
0 0 0 0 308,006 0
0 0 0 0 0 91,080

Web

158,176 32,038 0 0 0 0
0 88,103 0 0 0 0
0 0 26,132 0 0 0
0 0 0 767,573 182,832 0
0 0 0 0 420,500 0
0 0 0 0 0 124,985

Table 3. ABAQUS properties for FEA model.

Number of Elements Length: 30 Width, Height: 4
Element Type Shell, Quadratic, 6 DOF S8R
Boundary Condition 1 Symmetry, ZSYMM On one end
Boundary Condition 2 Dispacement, U1, U2, UR3 On reference point
Load Concentrated Force, CF3 On reference point

The perfect column is defined as a fiber-reinforced plastic (FRP) beam with a wide
flange (WF) with dimensions 6”× 6”× 3/8” (WF 6×6). The width and height of the column
are 6”, while the flange and web thickness are 3/8” (9.525 mm). The length of the column
is variable. Figure 2 shows the relevant dimensions.

Figure 2. Column model in Abaqus.

In practice, these columns are typically produced by pultrusion. The material prop-
erties reported in the tables were obtained analytically using the properties of the ma-
trix (vinyl ester) and fibers (E-glass). Calculated material properties were validated
experimentally [12]. Furthermore, fiber density, architecture, and placement within the
cross-sections were used in the calculations. The relevant matrix and fiber properties are
widely available, while fiber architecture is proprietary to the manufacturer.

The critical length is found to be Lcr = 2280 mm, and the critical load is Pcr = 169.752 MPa.
In order to generate multiple test cases, the slenderness λ was varied from 0.5 to 1.5 (equivalent
lengths L = 1140 mm− L = 3420 mm) to cover most of the cases that fall within the region of
interest, as shown in Figure 1.

Moreover, the chosen range of λ allows for cases that are expected to produce mode
interaction [3], which is helpful in identifying whether columns are imperfection-sensitive



Buildings 2024, 14, 1128 5 of 16

(IS) or not. Imperfection sensitivity (IS) is identified by the presence of mode interaction,
characterized by both lateral Euler deflection and flange deformation. Columns exhibiting
only local, or only Euler modes are classified as non-imperfection-sensitive (NIS). Each
mode has some expected responses, with local mode showing deformation on the flanges
(wave patterns) and Euler mode showing lateral deflection of the whole column. Therefore,
to correctly identify IS columns, both lateral Euler deflection and flange deformation must
be observed.

In FEA, the effects of imperfections can be modeled using perturbations in the geom-
etry. In Figure 3, we provide typical results of a column under buckling conditions. In
Figure 3a, we have flange deformation (wave undulations) for local mode, and in Figure 3c
we have lateral deflection, i.e., Euler mode. Based on the above discussion, Figure 3a,c
behave as NIS columns. On the other hand, Figure 3b depicts an IS column, since there is
an observable lateral deflection coupled with flange deformation.

Figure 3. Abaqus simulation results for an FRP beam with wide flange of varying lengths: (a) when
λ << 1, the deformation is limited to the flange; (b) deformation caused by the interaction of Euler
and local modes; (c) when λ >> 1, Euler mode causes lateral deflection without flange undulations.
The color scheme represents the magnitude of deformation as reported by Abaqus.

In this work, synthetic data generation involved two phases: simulating perfect
columns and introducing imperfections. ABAQUS performed buckling analysis to obtain
eigenvalues and eigenmodes, representing limit loads and deformation shapes, respectively.
Imperfections are introduced based on combinations of eigenmodes, simulating realistic
conditions. The process for producing the synthetic data was fully automated and involved
a single buckling analysis per length and multiple runs of each individual length when
modeling imperfections on a second pass.

For instance, in Figure 3c, depicting lateral deflection caused by the Euler mode,
Abaqus illustrates the first eigenmode of the column, where the displacement is repre-
sented by the color scheme. Eigenmode 2 for the same column shows undulations and no
lateral deflection. Thus, Abaqus essentially provides a Fourier transform of the leading
components that make up all possible deformations of the column, since deformation in
multiple axes and with different combinations of the Fourier modes is possible.

Imperfections were introduced based on combinations of two eigenmodes identified in
the initial buckling simulations conducted for each length. The first eigenmode was always
chosen to be the mode that produces lateral deflection (Euler). The second eigenmode was



Buildings 2024, 14, 1128 6 of 16

always chosen to be the mode that produces undulations on the flange, like Figure 3a, with
the smallest load. Imperfection values were set to geometric imperfections on the FEA
mesh. Non-linear geometric analysis (NGA) in Abaqus is used to plot the load-deflection
chart of the imperfect column.

Non-linear geometric analysis, utilizing the Riks method [13] in ABAQUS, is the
second step of the buckling analysis to simulate realistic conditions. After NGA is con-
cluded, results similar to Figure 3 can be found. Similar scenarios were observed in both
experimental setups [14] and in simulations [9]. In this article, we conducted multiple
Abaqus simulations, totaling N = 3750, aimed at detecting imperfection sensitivity through
machine learning methods.

In this section, we discussed the methodology for acquiring data through Finite Ele-
ment Analysis simulations of pultruded columns. The simulation setup includes modeling
perfect columns and introducing imperfections to simulate real-world conditions. The
parameters considered cover a range of scenarios, including mode interaction, to identify
imperfection sensitivity. These simulations serve as the basis for generating synthetic data
for subsequent analysis.

2.2. Machine Learning Model

Machine learning (ML) [15] is a branch of Artificial Intelligence (AI) and is a rapidly
growing field of study. ML involves algorithm development that allows computers to
learn from data without explicit programming. ML is widely used in a variety of fields
from everyday applications like image recognition [16] to engineering applications such
as microstructural characterization and prediction of mechanical response of crystalline
materials [17,18]. Furthermore, ML has been used for failure mode identification and
strength prediction in columns [19–22].

Applications of ML are generally separated into three types: supervised, unsuper-
vised, and reinforcement learning [23]. In this work, we focus on supervised learning,
where algorithms learn from labeled data to make predictions on unseen data. Neural
networks (NNs) [24], inspired by the human brain’s structure, are commonly used for su-
pervised learning tasks. Specifically, we employed deep neural networks [25], or multilayer
perceptrons (MLPs), which consist of input, hidden, and output layers.

Neural or deep neural networks are specific algorithms that are modeled after human
brain synapses, exploring possible linear permutations and connections between data
points in a set. In neural networks, there is an input layer for the features of the dataset,
followed by a layer of hidden units and a final output layer. Deep neural networks operate
on the same principle but with multiple hidden layers between input and output. The input
and hidden layers consist of multiple nodes, upon which mathematical operations are
performed. Based on the result of the operations and whether that result can be “activated”
via an activation function, or not, the nodes can be discarded, or the result can move to
the next layer. When the information only travels forward (i.e., from the input layer to
the hidden layers and then to the output layer), the networks are considered feedforward
neural networks. When there are at least three layers (including input and output) in a
feedforward NN, it is considered a multilayer perceptron (MLP).

As the process moves forward and multiple combinations are tested, the network
reaches the output layer, which normally consists of 2 nodes in binary format (0 or 1) with
a probabilistic outcome. For example, if in the final hidden layer the permutations and
activation function give a result of 0.1, the result is binarized as (0.9, 0.1) for the output layer,
meaning that there would be a 90% chance that the particular data point would belong to
group 0. Once multiple data points have gone through the network (known as a batch),
the next batch follows until all batches (or training data) have gone through (known as
an epoch).

During a forward pass of a batch, the neural nodes are trained to learn useful per-
mutations by applying biases and weights. At the end of the training of the batch, the



Buildings 2024, 14, 1128 7 of 16

predicted outcomes in the output layer are tested against the known outputs to define a
loss function [26].

The loss function is propagated backwards through the layers to optimize the weights
in each node of each hidden layer. With the end of training of an ML model (i.e., after
all epochs have finished), the weights are supposed to be optimized and can be further
validated and tested. If the validation and testing phases give results with similar accuracy
to those of the training step, the ML model can be deployed (i.e., the optimized weights
can be applied to data with similar features). At this point, the ML algorithm would be
ready to be deployed in the field, where it would be capable of predicting, for example, the
failure load reduction for a given set of deformations measured in the field in real time.

In this work, we employed deep neural networks i.e., multilayer perceptrons (MLPs)
with four hidden layers which were trained on a set of 2625 columns with 151 identifying
features and then validated on a set of 1125 columns with the same number of features.

We employed the Tensorflow Python library [27]. The input layer includes the whole
training dataset, which is then passed through the hidden layers. Each hidden layer
progressively shortens the number of available neurons (nodes) until the binary output
unit is reached. Each layer, except the output, uses the Rectified Linear Unit activation
function [28] in each node to assess whether the neuron is important to the training, or
not. The output layer employs the softmax activation function in each of the two nodes to
convert the value to a probability distribution of the two possible outcomes. The training
lasted 100 epochs, with a batch size of 100 columns in training.

2.3. Finite Element Simulations and Feature Selection

In a supervised ML problem, both the inputs and outputs need to be known. There-
fore, prior to our ML training, we needed to determine which columns are considered
imperfection-sensitive based on our Abaqus simulations. To do so, the following assump-
tions were made:

Pmax < Pcr & Pf inal < 85%Pmax & U f inal > UPmax =⇒ IS (1)

This means that if the peak load (Pmax) found in NGA is less than the critical load (Pcr)
and the final load in the simulation (Pf inal) is at least 15% less than the peak load, and
furthermore the final load occurs at a higher displacement (U f inal) than that of the peak
load (Umax), then the column is imperfection-sensitive, as shown in Figure 4. Some columns
may satisfy some parts of the equation and, in particular, the first part. However, if there is
no observable load drop, the columns are not necessarily imperfection-sensitive but may
just be following the Euler or local modes.

Lateral deflection in Figure 4 is found from a reference point (RP) in the ABAQUS
discretization, and extracted with the following ABAQUS Script:

xyList = xyPlot.xyDataListFromField(
odb=odb, outputPosition=NODAL, variable=((
’CF’, NODAL), (’U’, NODAL), ), nodeSets=(’SET-RP’, ))
x0 = session.xyDataObjects[’CF:CF3 PI: ASSEMBLY N: 1’]
x1 = session.xyDataObjects[’U:U3 PI: ASSEMBLY N: 1’]

The script implements the Riks method, controlling both the load P and the U3
deflection of the RP. The RP is located at the point of load application. Figure 4 is made
from “force-stroke” curves for every 100th sample column.

Once IS samples are identified, the next step is to identify which inputs can be used to
train our algorithm. The inputs need to be experimentally tractable so that the proposed
method applies to field data as well. Moreover, it is preferred that instrumentation to
collect filed data is inexpensive; while ABAQUS gives us great latitude in choosing inputs
to train our algorithm, our options for experimental data are rather limited. Specifically,
we cannot use the peak load or any load close to the service load because we would need
to experimentally measure deformations when the column has failed or is close to failure.



Buildings 2024, 14, 1128 8 of 16

Thus, our goal is to train our ML algorithm with data collected for loads no larger than
30% of the service load for any given column. Furthermore, it must be noted that we
can use any observable deformations that occur for smaller loads, both for training and
for in situ monitoring of the deployed SHM system. The length of the column is also an
observable variable.

Figure 4. Normalized load vs. lateral deflection for every 100th column.

As imperfection sensitivity is the combination of local and Euler modes, and as local
modes manifest themselves with undulations on the flanges of columns, we can use the
undulations as our experimentally observable features. Undulations in local modes can be
visually observed in loads as low as 20–30% of service loads, as corroborated by simulation
presented herein and by experimental observations [14]; thus, they are prime candidates
for use as inputs in our ML pipeline. Specifically, we apply a Discrete Fourier transform
(DFT) using a Fast Fourier Transform algorithm (FFT) [29] on the undulations, since they
present a sinusoidal form (see Figure 5).

DFT was performed with the Python library NumPy [30]. The python algorithm
that performs DFT requires a one-dimensional signal (input) over a specified domain. We
chose the domain to be the length of the column, and our signal is the wave undulation.
We specified an arbitrary number (10) of sine frequency components that may comprise
our signal, and we determined which of these components contributes the most (leading
frequency component). Once the leading frequency component was found, an inverse
Fourier computation allowed us to transform the leading frequency component back to a
one-dimensional signal. In summary, we disassembled the signal into multiple contributing
signals of various frequencies then kept the largest contributor for our purposes. This
(largest) isolated mode is the leading factor of deformation on the flange.

We can extract the nodal displacements in two ways. For this study, we extracted them
from Abaqus simulation. However, in an experimental or field implementation setting,
we would extract them from a laser deflectometer or similar instrumentation that can be
used to monitor the flange displacements. In any case, extraction of nodal displacements is
always followed by a DFT to isolate the leading modes.



Buildings 2024, 14, 1128 9 of 16

Figure 5. Flange deformation along the length of a column with slenderness λ = 0.6 (top chart).
Discrete Fourier transform modes 1–9 of flange deformation when the local and Euler imperfections
are 0.1 and 0.5, respectively (bottom chart). For the specific case shown here, the leading frequency
corresponds to the 3rd DFT mode (with the largest amplitude), which was used in the ML algorithm.

In this work, Abaqus nodal displacements at 30% of service load were used to create
the undulations. DFT and subsequent inverse DFT were used to extract the leading
sinusoidal form of the nodal displacement. The displacement of each node (150 in total)
was used as an input feature in our ML pipeline, and the length of the column led to a
total of 151 experimentally observable features that were used to train our ML model to
recognize IS columns.

In total, our deep neural network comprises 2750 columns, which have 151 features to
describe whether they are IS or not. All features are used as an initial input and are fed
forward to our four hidden units of decreasing nodes for a total of 100 epochs to maximize
accuracy and efficiency. The output must be cast as a binary classification of 0 and 1, where
0 indicates a NIS column and 1 indicates an IS column. The model parameters at the final
epoch are used to evaluate the test data (1125 columns) which has the same number of input
features and is not used for training but set aside for testing the accuracy of the trained NN.
To reduce the model complexity and the overall number of training parameters, it may be
possible to use weight quantization or network pruning techniques [31].

3. Results

The results of an application of any ML algorithm to a dataset is typically presented
via metrics that describe how well the trained model captures the necessary behavior the
user expects to observe. One of the most common evaluation metrics is accuracy, which
measures the overall correctness of a model’s prediction. Accuracy is the ratio of correctly
predicted instances versus the total number of instances. When both training and test
sets achieve high accuracy, the results indicate a well-trained ML algorithm, which is
expected to generalize well on similar data. Otherwise, when there is a large difference
between training accuracy and testing accuracy, the algorithm may suffer from over- or
under-training.

In our case, accuracy is shown in Figure 6 for both the training set and the validation
set. Both datasets follow the same pattern and reach an agreement with 95% training
accuracy. The training set reaches high accuracy (about 90%) in a few epochs and continues
to improve with additional training. Since the weights are well-trained, when the validation



Buildings 2024, 14, 1128 10 of 16

set is passed through the ML algorithm, the validation accuracy immediately reaches values
similar to the training accuracy.

A second evaluation metric that is used for assessment of ML applications is the
response of the loss function. Generally, the loss function should be minimized in each
epoch, and it is desirable to achieve similar scores in both training and validation sets. The
combination of accuracy and loss evaluation metrics can indicate how well an algorithm
will generalize when new data are introduced.

Figure 6. Imperfection sensitivity accuracy of the proposed ML implementation. Accuracy and
epochs are both dimensionless.

The loss score for our training and validation phases can be seen in Figure 7. Similar
to the accuracy graph (Figure 6), the loss of training and validation sets follows the same
trend. The training set slowly plateaus around 10%, with the validation set achieving
almost the same value. Because of the matching values, the algorithm can be considered to
be well-trained.

The variations in the validation dataset loss are generally indicative of overfitting
in the training set, i.e., the algorithm would not generalize well in unknown test data.
Validation datasets are also used to fine-tune the training model by making sure the errors
are minimized during each epoch. There are numerous ways to reduce the variations,
which include L2 regularization, early stopping implementation, batch normalization, or
adjustment of the learning rate with a more dynamic implementation. Such results can be
found in the supplementary material. However, the accuracy value is in agreement with
training, which indicates avoidance of overfitting.

An in-depth look at the accuracy score is provided in Figures 8 and 9, showing the
confusion matrix of the training and validation datasets, respectively. A confusion matrix is
a matrix that summarizes the performance of an ML algorithm. It displays the percentage
of accurate (true positives and true negatives) and inaccurate (false positives and false
negatives) instances in the dataset.

In Figure 8, the accuracy of the training set is shown, measured as the percentage of
accurate predicted labels vs. true labels in our ML pipeline. The overall accuracy is 95.32%
in the training set, with 6% of imperfection-sensitive columns being misclassified. The
top-left corner shows a 96.1% accuracy in detection of NIS columns (NOT I.S.-NOT I.S. in



Buildings 2024, 14, 1128 11 of 16

the axes). The bottom-right corner shows a 93.6% accuracy in detecting IS columns (I.S.-I.S.
in the axes).

Figure 7. Imperfection sensitivity loss of the proposed ML implementation. Accuracy and epochs are
both dimensionless.

Figure 8. Training confusion matrix for prediction of imperfection sensitivity.



Buildings 2024, 14, 1128 12 of 16

Figure 9. Validation confusion matrix for prediction of imperfection sensitivity.

Similarly to the training dataset, the validation confusion matrix (Figure 9) shows
that the validation accuracy is 95.17%. This is encouraging based on the modest number
of samples that were used in this work for training and testing. Generally, the amount of
training data required for an ML algorithm to achieve high accuracy is very large. For a
complex problem such as imperfection sensitivity detection, accuracy scores that exceed
95% in both training and in validation suggest a strong likelihood of applicability of the
proposed ML model for field-testing and further development of the current project. This
shows the validity of the algorithm for this study and that it could likely be generalized for
similar applications.

Based on the high accuracy in training and validation datasets we observed, it can be
assumed that detection of imperfection-sensitive columns with inexpensive instrumentation
is possible and that it can be potentially extended to real-time applications provided the
necessary measurements can be provided. Once a column is identified as IS, it is almost
certain (95% certain) that the column is at risk, which should trigger a warning and/or
corrective measures.

All of the above results assume that training contains 70% of the dataset, and the
rest (30%) is used for validation as a form of early testing. A further step is to split the
validation dataset into 20% for validation and 10% for testing. This split aims to further
enhance our conclusions. The overall accuracy in training, validation, and testing datasets
when we used the 70–20–10 split described above, is shown in Table 4. The difference in
values can be explained from the required shuffling that happens when the datasets are
split, as well as the overall decreased amount of data that is used to validate the training
set. The accuracy value differences are negligible and can be further enhanced with various
optimization techniques that are not used in our model. The agreement between training,
validation, and testing datasets shows that there was no overfitting.



Buildings 2024, 14, 1128 13 of 16

Table 4. Training, validation, and testing dataset accuracy.

Accuracy Training Validation Testing

% 94.60 94.86 93.71

Further models were briefly explored with the accuracies of training and validation
summarized in Table 5. The models were chosen for their applicability in binary clas-
sification problems. We see that Logistic Regression [32] and Support Vector Machines
(SVMs) [33] have very low accuracy compared to our MLP implementation. A Random
Forest implementation [34] shows exemplary accuracy in training, but there is a difference
in validation accuracy (5%). In terms of the training time needed for each implementation,
it is expected that neural networks will take the most time due to the complexity of the
model. The rest of the models show extremely fast solutions (less than a second). Therefore,
the only model that is arguably better than our MLP implementation is the Random Forest
implementation.

Table 5. Training and validation accuracy for various ML models.

MLP Logistic Regression Random Forest SVM

Train. Accuracy 95.32% 70.07% 100% 75.15%
Val. Accuracy 95.17% 69.04% 94.33% 75.13%

Time 27.99 s 0.093 s 0.66 s 0.27 s

4. Discussion

Thin-walled structures may become imperfection-sensitive during their service life
due to a variety of events such as aging, unanticipated damage, and fatigue. Detection of
strength reduction is an extremely important aspect in SHM. Further, a non-destructive
and inexpensive method of recognizing such reduction is equally important. We explored
the applicability of ML algorithms in SHM with the goal of identifying imperfection-
sensitive columns that are prone to experiencing a significant reduction in strength. The
ML algorithm is trained with synthetic data. Then, it is proposed that it be used along
with simple and inexpensive SHM data collection from in-service columns. As reported in
Table 5, ML is able to provide fast prediction of imperfection sensitivity, which can be used
to provide an instantaneous alert about the imperfection sensitivity of the in-service column.
Generalization to other buckling-prone structures, such as shells, should be immediate.

The scope of this study was focused on the prediction of imperfection sensitivity in
fiber-reinforced composite columns of various lengths. Localized damage and different
material properties were beyond the scope of this work; while our scope was limited, the
cases considered cover a wide spectrum of internal and external imperfections that may be
found in an experimental setting.

Theoretical solutions for loaded columns reveal two possible states: Euler mode
and local mode. For slender columns, an isolated Euler mode exists with overall lateral
deflection, and there is an analytical solution that predicts the maximum load based on
the column geometry, length, and material properties. For stubby columns, the flanges of
the column deform to an isolated local mode, and the maximum load is predicted to be
independent of column length. Experimental observations have shown that the theoretical
solution does not hold true for the intermediate column length where the Euler and local
modes combine to produce a significant reduction in strength.

Local and Euler modes depend on the critical length of the column. If L < Lcr, then the
theoretical solution dictates that Pmax = Pcr. If L > Lcr, then the maximum load follows the
Euler solution. Experimental findings [9] have shown that this is not the case when L/Lcr
is close to 1.0. Instead, the column experiences the interaction of local and Euler modes
with simultaneous lateral and flange deformations. For such columns, the experimentally
reported failure load is significantly less than the theoretical load. This is a serious issue,



Buildings 2024, 14, 1128 14 of 16

since the maximum load a column can withstand is significantly reduced when compared
to the service load.

Aging structures that have accumulated internal and external imperfections may be-
come imperfection-sensitive and thus experience a significant reduction in strength with
respect to that of the perfect column. Current research on SHM is focused on real-time iden-
tification [35–37]. However, the proposed instrumentation is either expensive, or the data
collection and data transmission requirements are burdensome for real-time applications.

In this work, we propose a laser deflectometer, or similar, to monitor a few deflections,
as few as four deflections. Fourier Transform was used to capture the leading modes. Then,
an inverse DFT was used on the leading frequencies of deformation. To apply the ML
algorithm, the length of the column is also needed, but the length is always readily available.
With these easily captured features, the proposed ML algorithm is able to accurately predict
whether, in service, the column has become imperfection-sensitive or not. Imperfection-
sensitive columns exhibit behaviors such that, due to internal or external factors, the
as-damaged failure load does not match the expected failure load of the perfect column.

In the proposed methodology, as long as a damaged column produces deformations,
the algorithm can reliably predict with 95% accuracy whether imperfection sensitivity
is present or not. The nature of the damage will remain unknown until field-testing
and inspection of the column takes place. Therefore, the objective of this research is the
development of a tool that can reliably, inexpensively, and in real time provide a warning
for further inspection.

In Figures 6–9, we observe the overall efficiency of the ML algorithm. Specifically,
training on synthetic data for 2625 columns, we achieved an overall accuracy of 95%, which
also extends to the testing data. The loss function, as shown in Figure 7, further validates
the results. Similar values of accuracy and loss function in both training and testing datasets
indicate a well-trained ML algorithm which can be used on data that have similar features.
The confusion matrices shown in Figures 8 and 9 further expand and support the accuracy
evaluation metric for identifying imperfection-sensitive columns.

Moreover, the incorrect prediction of imperfection-sensitive columns (false positives,
3.9%) is a good indicator. This means that only 3.9% of columns were reported as damaged
when they actually were not. This is a small incurred cost compared to the overall structural
safety enhancement provided by 95% accuracy prediction of at-risk columns. Of course,
accuracy can always be further improved with additional training data points.

Comparison with other ML methods (Table 5) shows that only MLP and Random
Forests (RFs) can reliably predict imperfection sensitivity, and they can be trained faster.
However, it is known that the RF method has limited scalability for more complex systems.
It is also possible that training of the RF method was easier because our features were
specific, and our training set contained a large amount of data. For the case with only
four deflections being field-measured, the RF method may have lower accuracy than MLP
because, when compared to neural networks, the RF method does not consider complex
connections.

As further work, we propose comparing the findings of this study with lab experi-
ments. For example, Abdeljaber et al. [38] collected vibration data from loosened bolts in a
frame and used such data to predict which bolts were actually loosened. Experiments in a
controlled setting can provide a more concrete view of the applicability of our proposed
method, prior to on-field testing.

Author Contributions: Conceptualization, E.J.B.; Methodology, E.J.B.; Software, M.T.; Validation,
M.T.; Writing – original draft, M.T.; Writing – review & editing, E.J.B.; Supervision, E.J.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available in a publicly accessible repository at https://github.
com/mtzimas92/Imperfection-Sensitivity-Detection/tree/main (accessed on 20 March 2024).

https://github.com/mtzimas92/Imperfection-Sensitivity-Detection/tree/main
https://github.com/mtzimas92/Imperfection-Sensitivity-Detection/tree/main


Buildings 2024, 14, 1128 15 of 16

Acknowledgments: The second author gratefully acknowledges the support of Universidad Carlos
III de Madrid (UC3M) in the framework of the “cátedras de excelencia” program and further wishes
to dedicate this work to the memory of the late José Fernández-Sáez, UC3M.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript, in order of appearance in the text:
ML Machine learning
SHM Structural health monitoring
FEA Finite Element Analysis
FRP Fiber-reinforced plastic
WF Wide flange
IS Imperfection-sensitive
NIS Non-imperfection-sensitive
NGA Non-linear geometric analysis
AI Artificial Intelligence
NN Neural network
MLP Multilayer perceptron
RP Reference point
DFT Discrete Fourier transform
FFT Fast Fourier Transform
SVM Support Vector Machine
Symbols
λ Slenderness of a column, ratio of column length over critical length
PL Local buckling load
PE Euler buckling load
L Column length
Lcr Column critical length
E Young’s modulus
I Second moment of inertia for the cross-section
K Parameter that changes based on end-supports of a column
Pcr Column critical load
N Total number of samples
Pmax Column peak load
Pf inal Column final load
u f inal Column final displacement
umax Column displacement at peak load

References
1. Bonopera, M.; Chang, K.C.; Chen, C.C.; Lin, T.K.; Tullini, N. Compressive column load identification in steel space frames using

second-order deflection-based methods. Int. J. Struct. Stab. Dyn. 2018, 18, 1850092. [CrossRef]
2. Dassault Systèmes. Abaqus 2020 Documentation. 2020. Available online: https://www.3ds.com/ (accessed on 1 April 2024).
3. Barbero, E.J. Buckling Mode Interaction in Pultruded Composite Columns. YouTube. 2019. Available online: https://youtu.be/

Nl8YRFQMcfg (accessed on 1 April 2024).
4. Eidukynas, D.; Adumitroaie, A.; Griškevičius, P.; Grigaliunas, V.; Vaitkūnas, T. Finite Element Model Updating Approach for

Structural Health Monitoring of Lightweight Structures Using Response Surface Optimization. In Proceedings of the IOP Conference
Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; Volume 1239, p. 012002.

5. Budiansky, B. Theory of buckling and post-buckling behavior of elastic structures. Adv. Appl. Mech. 1974, 14, 1–65.
6. Barbero, E.; Tomblin, J. A phenomenological design equation for FRP columns with interaction between local and global buckling.

Thin-Walled Struct. 1994, 18, 117–131. [CrossRef]
7. Ascione, F.; Feo, L.; Lamberti, M.; Minghini, F.; Tullini, N. A closed-form equation for the local buckling moment of pultruded

FRP I-beams in major-axis bending. Compos. Part B Eng. 2016, 97, 292–299. [CrossRef]
8. Dos Santos, R.R.; Castro, S.G. Lightweight design of variable-stiffness cylinders with reduced imperfection sensitivity enabled by

continuous tow shearing and machine learning. Materials 2022, 15, 4117. [CrossRef] [PubMed]
9. Barbero, E.J. Prediction of buckling-mode interaction in composite columns. Mech. Compos. Mater. Struct. 2000, 7, 269–284.

[CrossRef]

http://doi.org/10.1142/S021945541850092X
https://www.3ds.com/
https://youtu.be/Nl8YRFQMcfg
https://youtu.be/Nl8YRFQMcfg
http://dx.doi.org/10.1016/0263-8231(94)90013-2
http://dx.doi.org/10.1016/j.compositesb.2016.04.069
http://dx.doi.org/10.3390/ma15124117
http://www.ncbi.nlm.nih.gov/pubmed/35744172
http://dx.doi.org/10.1080/10759410050031130


Buildings 2024, 14, 1128 16 of 16

10. Sonti, S.S.; Barbero, E.J. Material characterization of pultruded laminates and shapes. J. Reinf. Plast. Compos. 1996, 15, 701–717.
[CrossRef]

11. Barbero, E.J. Finite Element Analysis of Composite Materials Using Abaqus, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2023.
12. Barbero, E.; Sonti, S. Micromechanical models for pultruded composite beams. In Proceedings of the 32nd Structures, Structural

Dynamics, and Materials Conference, Baltimore, MD, USA, 8–10 April 1991; p. 1045.
13. Vasios, N. Nonlinear Analysis of Structures. The Arc Length Method: Formulation, Implementation and Applications/Nikolaos

Vasios. Available online: https://scholar.harvard.edu/sites/scholar.harvard.edu/files/vasios/files/ArcLength.pdf (accessed on
1 April 2024).

14. Barbero, E.J.; Raftoyiannis, I.G. Local buckling of FRP beams and columns. J. Mater. Civ. Eng. 1993, 5, 339–355. [CrossRef]
15. Alpaydin, E. Machine Learning; MIT Press: Cambridge, MA, USA, 2021.
16. Pak, M.; Kim, S. A review of deep learning in image recognition. In Proceedings of the 2017 4th International Conference on

Computer Applications and Information Processing Technology (CAIPT), Kuta Bali, Indonesia, 8–10 August 2017; pp. 1–3.
17. Papanikolaou, S.; Tzimas, M.; Reid, A.C.; Langer, S.A. Spatial strain correlations, machine learning, and deformation history in

crystal plasticity. Phys. Rev. E 2019, 99, 053003. [CrossRef]
18. Papanikolaou, S.; Tzimas, M. Effects of rate, size, and prior deformation in microcrystal plasticity. In Mechanics and Physics of

Solids at Micro-and Nano-Scales; Wiley Online Library: Mew York, NY, USA, 2019; pp. 25–54.
19. Megalooikonomou, K.G.; Beligiannis, G.N. Random Forests Machine Learning Applied to PEER Structural Performance

Experimental Columns Database. Appl. Sci. 2023, 13, 12821. [CrossRef]
20. Tran, V.L.; Lee, T.H.; Nguyen, D.D.; Nguyen, T.H.; Vu, Q.V.; Phan, H.T. Failure Mode Identification and Shear Strength Prediction

of Rectangular Hollow RC Columns Using Novel Hybrid Machine Learning Models. Buildings 2023, 13, 2914. [CrossRef]
21. Phan, V.T.; Tran, V.L.; Nguyen, V.Q.; Nguyen, D.D. Machine learning models for predicting shear strength and identifying failure

modes of rectangular RC columns. Buildings 2022, 12, 1493. [CrossRef]
22. Cakiroglu, C.; Islam, K.; Bekdaş, G.; Kim, S.; Geem, Z.W. Interpretable machine learning algorithms to predict the axial capacity

of FRP-reinforced concrete columns. Materials 2022, 15, 2742. [CrossRef] [PubMed]
23. Alpaydin, E. Introduction to Machine Learning, Ed.; Massachusetts Institutes of Technology: Cambridge, MA, USA, 2010.
24. Anderson, J.A. An Introduction to Neural Networks; MIT Press: Cambridge, MA, USA, 1995.
25. Cichy, R.M.; Kaiser, D. Deep neural networks as scientific models. Trends Cogn. Sci. 2019, 23, 305–317. [CrossRef] [PubMed]
26. Janocha, K.; Czarnecki, W.M. On loss functions for deep neural networks in classification. arXiv 2017, arXiv:1702.05659.
27. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on
1 April 2024).

28. Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Towards Data Sci. 2017, 6, 310–316. [CrossRef]
29. Nussbaumer, H.J.; Nussbaumer, H.J. The Fast Fourier Transform; Springer: New York, NY, USA, 1982.
30. Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.;

et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef] [PubMed]
31. Tang, Z.; Luo, L.; Xie, B.; Zhu, Y.; Zhao, R.; Bi, L.; Lu, C. Automatic sparse connectivity learning for neural networks. IEEE Trans.

Neural Netw. Learn. Syst. 2022, 34, 7350–7364. [CrossRef] [PubMed]
32. Kleinbaum, D.G.; Dietz, K.; Gail, M.; Klein, M.; Klein, M. In Logistic Regression; Springer: New York, NY, USA, 2002.
33. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998,

13, 18–28. [CrossRef]
34. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
35. Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of

things: A review. J. Build. Eng. 2022, 48, 103954. [CrossRef]
36. Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine learning algorithms in civil structural health monitoring: A

systematic review. Arch. Comput. Methods Eng. 2021, 28, 2621–2643. [CrossRef]
37. Tibaduiza, D.; Torres-Arredondo, M.Á.; Vitola, J.; Anaya, M.; Pozo, F. A damage classification approach for structural health

monitoring using machine learning. Complexity 2018, 2018, 1–14. [CrossRef]
38. Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using

one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/073168449601500705
https://scholar.harvard.edu/sites/scholar.harvard.edu/files/vasios/files/ArcLength.pdf
http://dx.doi.org/10.1061/(ASCE)0899-1561(1993)5:3(339)
http://dx.doi.org/10.1103/PhysRevE.99.053003
http://dx.doi.org/10.3390/app132312821
http://dx.doi.org/10.3390/buildings13122914
http://dx.doi.org/10.3390/buildings12101493
http://dx.doi.org/10.3390/ma15082742
http://www.ncbi.nlm.nih.gov/pubmed/35454439
http://dx.doi.org/10.1016/j.tics.2019.01.009
http://www.ncbi.nlm.nih.gov/pubmed/30795896
https://www.tensorflow.org/
http://dx.doi.org/10.33564/IJEAST.2020.v04i12.054
http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://dx.doi.org/10.1109/TNNLS.2022.3141665
http://www.ncbi.nlm.nih.gov/pubmed/35073273
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.jobe.2021.103954
http://dx.doi.org/10.1007/s11831-020-09471-9
http://dx.doi.org/10.1155/2018/5081283
http://dx.doi.org/10.1016/j.jsv.2016.10.043

	Introduction
	Materials and Methods
	Case Study of a Pultruded Column: Finite Element Simulation Data Acquisition
	Machine Learning Model
	Finite Element Simulations and Feature Selection

	Results
	Discussion
	References

