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Abstract: Cross-sea cable-stayed bridges encounter challenges associated with cable corrosion and
cable-force relaxation during their service life, which significantly affects their structural performance
and seismic response. This study focuses on a cross-sea cable-stayed bridge located in Hainan
Province. Utilizing an LSTM deep learning model, this study aims to fill in the gaps in short-term
cable-monitoring data from the past year using the available cable-force-monitoring data from the
same period. The authors of this study interpolated the cable-force data in the absence of sensors
and employed a SARIMA machine learning time-series-prediction model to predict the future trends
of all cable forces. A finite-element model was constructed, and a dynamic time-history analysis of
the seismic response of the cross-sea cable-stayed bridge was conducted, considering the influence
of cable-force relaxation and cable corrosion in the future. The findings indicate that the LSTM-
SARIMA model predicted an average decrease of 11.81% in the cable force of the cable-stayed bridge
after 20 years. During the lifecycle of the cables, cable corrosion exerts a significant impact on the
variation in cable stress within the bridge structure during earthquakes, while cable-force relaxation
has a more pronounced effect on the vertical displacement of the main beam of the bridge structure
during seismic events. Compared to when using the traditional model that only considers cable
corrosion, the maximum negative vertical displacement of the main beam increases by 29.7% when
using the proposed model if the earthquake intensity is 0.35 g after 20 years, which indicates that the
proposed machine learning model can exactly determine the seismic behavior of the lifecycle cross-sea
cable-stayed bridge, considering the impacts of both cable-force relaxation and cable corrosion.

Keywords: cross-sea cable-stayed bridge; machine learning model; cable corrosion; finite-element
analysis; seismic response

1. Introduction

Cable-stayed bridges have emerged as the primary bridge type for long-span structures
due to their elegant design and remarkable load-bearing capacity. Currently, cable-stayed
bridges often face issues such as corrosion, cable tension relaxation, and seismic events,
which pose threats to their safety. In contemporary research, the combined effects of
cable corrosion and tension relaxation under seismic conditions throughout the lifecycle
of the cables are generally not considered. Given that many bridges are equipped with
sensors that have gathered extensive data on cable tensions, it is feasible to employ machine
learning models to predict cable tensions. In cable-stayed bridges, monitoring the cable
force is essential to ensure their safe operation and promptly detect any risks. However,
due to cost or technological constraints, many cable-stayed bridges do not implement
full cable monitoring, often equipping only a portion of the cables with force sensors [1].
Additionally, monitoring processes frequently encounter missing or abnormal values [2].
As a result, the cable-force-monitoring data on the entire bridge are typically incomplete,
necessitating the supplementation of corresponding cable forces.

Buildings 2024, 14, 1190. https://doi.org/10.3390/buildings14051190 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14051190
https://doi.org/10.3390/buildings14051190
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0009-0008-4800-3725
https://orcid.org/0009-0005-4792-3579
https://doi.org/10.3390/buildings14051190
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14051190?type=check_update&version=1


Buildings 2024, 14, 1190 2 of 21

Machine learning is a method that enables computer systems to automatically improve
and optimize performance by learning patterns and rules from data. It focuses on discover-
ing patterns, making predictions, or making decisions based on data by constructing and
training models. Driven by advancements in computer and artificial intelligence technolo-
gies, machine learning is increasingly applied in civil engineering. Zain et al. [3,4] proposed
a novel framework for assessing the vulnerability of tubular structures using machine
learning algorithms and investigated the effectiveness of using vulnerability information
for tubular buildings through machine learning. Xu et al. [5] assessed the seismic damage
to reinforced concrete structures using computer vision and machine learning. Asgarkhani
et al. [6] applied machine learning to the prediction of residual drift and seismic risk in
moment-resisting frames considering soil–structure interactions. Kazemi et al. [7] applied
machine learning to assess the seismic fragility and seismic vulnerability of reinforced con-
crete structures. Ye et al. [8] utilized machine learning to predict and issue early warnings
for wind-induced vibrations in cable-stayed bridge towers.

Deep learning, a special form of machine learning, mimics the structure and function
of the human neural system and employs artificial neural networks to learn and make
decisions. The long short-term memory (LSTM) network, introduced by Hochreiter [9], is a
unique type of recurrent neural network proficient at efficiently processing and retaining
long-term dependency information within sequence data. LSTM is extensively applied
in bridge-health monitoring. For instance, Xu et al. [10] utilized LSTM to predict the time
history of nonlinear structures under seismic excitation, with a confidence level within
the ±5% interval at 90.2%. Additionally, Liu et al. [11] employed the BP-LSTM hybrid
model to evaluate and predict the spatial temperature field and temperature effect of a
steel–concrete composite bridge deck system in real-time. Finally, Liu et al. [12] utilized
the LSTM model to predict missing data in the temperature monitoring of the Nanjing
Dashengguan Yangtze River bridge structure. At the highest prediction accuracy, the mean
squared error value was only 0.36.

The seasonal autoregressive integrated moving average (SARIMA) is a widely utilized
machine learning time-series-prediction model designed for handling data that exhibit
seasonal patterns. It serves as an extension of the ARIMA model, enabling the capture of
seasonal variations in data and providing more accurate predictions for time series data
with seasonal patterns. SARIMA is recognized as a powerful tool for processing time series
data. Cheng et al. [13] employed the SARIMA time-series-forecasting model to forecast the
price trends of Bitcoin. Agyemang et al. [14] utilized the SARIMA time-series forecasting
model to predict the occurrence of road traffic accidents. Cui et al. [15] applied the SARIMA
time-series-forecasting model to the prediction of carbon emissions. In the domain of
bridge-health monitoring, Chen et al. [2] employed the SARIMA model to forecast the
changes in acceleration values at certain monitoring points on a bridge, and the MAE value
was only 0.013. Ping [16] utilized the SARIMA model to forecast and impute missing values
for the internal temperature of the main beam in bridge-monitoring data, and the MAE
value was only 0.102. Thus, it is evident that the SARIMA model is highly precise in data
forecasting during the operation and maintenance of bridges.

For bridges lacking full cable monitoring of the stay cables, the absence of monitoring
data for unmonitored stay cables presents a challenge. Therefore, investigating the spatial
correlation of stay-cable-force data and predicting the force data on unmonitored stay
cables is necessary. Yin et al. [17] discovered in their research on the spatial correlation
among groups of stay cables that neighboring stay cables exhibited a high degree of spatial
correlation. Additionally, the stay cables with high spatial correlation demonstrated a high
level of consistency in terms of cable-force trends and fluctuation magnitudes. Zeng [18]
utilized an initialization method based on the improved grey relational analysis theory to
study the spatial correlation of stay cables. Correlation data were obtained through the
method of cable-break analysis.

Following the completion and opening of cable-stayed bridges, the bearing capacity
of stay cables diminishes due to the influence of roadway loads and various environmental
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factors [19–21]. Corrosion, in particular, poses a significant threat to stay cables, leading
to a decrease in their seismic resistance. The reduction in the strength of these wires,
primarily caused by corrosion, is the primary reason for the decrease in the strength of
stay cables [22]. Fuente [23] conducted experiments to investigate the corrosion rate of low-
carbon steel under different environmental conditions. Taking into account the influences
of environmental temperature, relative humidity, and chloride-ion-corrosion concentration,
Klinesmith et al. [24] developed a corrosion-rate-calculation model for stay-cable steel
wires. Building on the formula proposed by Klinesmith, Lu and He [25] considered the
impact of steel-wire stress on the corrosion of stay cables and proposed a calculation model
for the corrosion amount of stay-cable steel wires, taking stress into account.

The authors of this study employed the LSTM model, which can effectively capture
data patterns, to fill in the missing data of stay cables, and subsequently utilized the spatial
correlation of stay-cable forces to gather comprehensive data on the forces exerted by
all stay cables. The SARIMA model, which can better reflect the data periodicity and
trends, was then utilized to predict the trend of long-term cable-force data, enabling the
future state of cable force to be determined. Based on existing research findings and
experimental data, the corrosion condition of the stay cables was calculated to determine
their future corrosion status. Finally, considering the long-term variation in the cable force
and corrosion of stay cables, a long-term seismic-response analysis of a cable-stayed bridge
was conducted using the finite-element (FE) method. The application process is illustrated
in Figure 1. The innovative work presented in this paper is manifested in the following
aspects: (1) The introduction of an LSTM-SARIMA forecasting model for the long-term
trend of cable forces in cable-stayed bridges. Compared to conventional calculations, this
model incorporates the impacts of various external loads such as wind load and lane load
on cable tension. It allows for predictions to be directly made from existing cable-force-
monitoring data, thereby enhancing the accuracy of cable-force forecasts. (2) In current
seismic analyses of the lifecycles of cable-stayed bridges, traditional methods generally do
not consider the combined effects of cable relaxation and corrosion. This study considers
both factors simultaneously, making the seismic response more consistent with actual
working conditions.
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Figure 1. Application process.

2. Methods
2.1. FE Model of Cross-Sea Cable-Stayed Bridge

The main bridge of the cable-stayed bridge is a single-tower, double-plane, steel
box beam cable-stayed bridge, with the stay cables arranged in a fan pattern, utilizing
1670 MPa parallel steel wire stay cables; the stay-cable sheaths are made of PE, and the
wires are composed of galvanized steel wire with a 7 mm diameter. The main tower part
has an “A”-shaped structure, and the main beam is constructed using a steel box girder. A
schematic diagram of the cable-stayed bridge is shown in Figure 2a, and the sheathing of
the stay cable and the steel wires are as illustrated in Figure 2b. This cable-stayed bridge
is located in Haikou, Hainan Province, China, situated in a tropical marine and humid
environment, and is subjected to severe corrosion threats. Moreover, this cable-stayed
bridge is located in the Dongzhai Port-Qinglan Port fault zone, where the probability of
seismic activity is high. Therefore, this cable-stayed bridge has high research value. This
bridge is equipped with cable-force sensors on selected stays, providing a foundational
dataset for subsequent research.
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Figure 2. Schematic diagram of cable-stayed bridge. (a) Aerial photograph of the main bridge of a
cable-stayed bridge; (b) the schematic diagram of the stay-cable sheathing and steel wires.

The FE model of the cable-stayed bridge was created using ANSYS 2022R2 APDL [26]
software. To reduce the computational load of the model, the model’s solid elements were
simplified into beam elements, link elements, combined elements, etc., with the main bridge
employing a simplified modeling approach based on a spine-beam-calculation model. The
definition of a simplified element is as described in Table 1.

Table 1. Constraint methods for the cable-stayed bridge.

Types of Bridge Components Finite-Element Type Specific Type of Element

Main beam Beam element Beam188
Main tower Beam element Beam188

Auxiliary pier Beam element Beam188
Stayed cable Link element Link10
Rigid beam Beam element Beam188
Added mass Mass element Mass21

Fluid viscous damper Combined elements Combin14
Steel bearings Combined elements Combin40

The cross-section of the steel box beam is shown in Figure 3. Its cross-sectional area is
2.024 m2, and the moments of inertia are Iyy = 3.420 m4 and Izz = 231.624 m4.

Figure 3. Section diagram of steel box girder.

The bridge piers and the bottom of the main tower are fully constrained. The con-
straints of the main beam, main tower, and auxiliary pier are shown in Table 2.

Table 2. Constraint methods for the cable-stayed bridge.

Place Longitudinal Bridge Direction Transverse Bridge Direction Vertical Direction

Main tower Damping constraint Damping constraint Constraint
Auxiliary pier Release Damping constraint Constraint

The method for defining the initial strain of the cable Link10 element was used to
apply the cable force. The initial strain was calculated using the cable force, cross-sectional
area, elastic modulus, etc. For specific details regarding FE modeling, one may refer to
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reference [27]. The FE model of the main bridge of the constructed cable-stayed bridge is
depicted in Figure 4.

Figure 4. FE model of cable-stayed bridge.

The cable-force sensors of the cable-stayed bridge are arranged on the cables at S1, S5,
S9, S13, and S17, as shown in Figure 5. Angle markers L, R, A, and B are used to distinguish
the cables in different areas.

Figure 5. Layout of cable-force sensors for inclined cables.

2.2. LSTM Model for Short-Term Cable Monitoring
2.2.1. Data Preprocessing of LSTM Model

In LSTM networks, the propagation of gradients is expanded over time, and long-
sequence data may cause gradients to gradually disappear or explode in the process of
back propagation. By normalizing the input data to an appropriate range, these problems
can be alleviated, making the gradient propagation more stable and helping to improve
the training efficiency and performance of the model. At the same time, normalization
processing can reduce the complexity of the data and reduce the sensitivity of the model to
noise and outliers, to improve the generalization ability of the model to unknown data.

Common normalization methods include min–max normalization and standard score
normalization. Standard score normalization is a technique that scales data attributes to
have a zero mean and unit variance. This method is suitable for cases where the attributes
follow a normal distribution. Standard score normalization is conducted according to
Formula (1):

z =
(x − µ)

σ
(1)

where x = the original data point; µ = the average value of the data; and σ = the standard
deviation of the data.

The Shapiro–Wilk test is a statistical method used to test whether a sample comes
from a normal distribution. This test is predicated on the discrepancies between the
observed values of the sample and the expected values under normal distribution. The
null hypothesis of the Shapiro–Wilk test posits that the sample is derived from a normal
distribution. Should the p-value be less than the significance level (commonly set at 0.05),
sufficient evidence exists to reject the null hypothesis, thereby disputing the assumption
that the sample is from a normal distribution. The statistic is computed in accordance with
Formula (2).

W =

(
n
∑

i=1
aix(i)

)2

n
∑

i=1
(xi − x)2

(2)
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where x(i) = the ordered sample values; x= the sample mean; and ai = specific coefficients
based on the sample size and the normal distribution. The p-value represents the probability
of observing the test statistic W as being as extreme as, or more extreme than, the actual
observed values, under the assumption that the null hypothesis is true.

2.2.2. Application of LSTM Model in Short-Term Cable Monitoring

A short-term prediction model of stay-cable force based on the LSTM algorithm
was realized by compiling a Python program. After the data were tested for normal
distribution using the Shapiro–Wilk test, they were normalized and brought into the model
for learning and prediction. The output results were de-normalized and restored to the
order of magnitude of the original data.

One of the cable-force test datasets for a period of time was selected as the sample
data, taking the first 70% as the training set and the last 30% as the test set, and the accuracy
of the model prediction was evaluated. As shown in Figure 6, the predicted and actual
values fit well. The average error between the predicted values calculated by the LSTM
model and the original values measured by sensors is 0.16%.
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2.3. Grey Relation Analysis for Cable-Force Spatial Correlation
2.3.1. Grey Relation Analysis Theory

Grey relational analysis (GRA) is a multifactor statistical analysis method employed
to examine the relative intensity of influence exerted by various factors on a particular item
of interest within a grey system. It measures the magnitude of association among factors
by calculating the grey relational degree among them, which clarifies which factors have a
greater impact on the system and which have lesser. This method facilitates the ranking
and analysis of factors within complex systems, thereby enhancing their understanding
and optimization.

In grey relational analysis, commonly employed data-standardization methods in-
clude mean normalization, normalization, interval scaling, and initial-value processing,
among others. These techniques are integral for preparing the data for analysis, ensur-
ing comparability and consistency across different scales and dimensions. Formulas (3)
and (4) represent the calculation formulas for the mean normalization process; ξ = 0.5 is
typically assumed.

γ
(
χ0(k), χξ(k)

)
=

minξmink
∣∣χ0(k)− χξ(k)

∣∣+ ξ∗minξmink
∣∣χ0(k)− χξ(k)

∣∣∣∣χ0(k)− χξ(k)
∣∣+ ξ∗minξmink

∣∣χ0(k)− χξ(k)
∣∣ (3)

γ
(
X0, Xξ

)
=

1
n

n

∑
k=1

γ
[
χ0(k), χξ(k)

]
(4)
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2.3.2. The Application of Grey Relational Analysis in Determining the Cable-Force
Spatial Correlation

Based on the previous studies by Yin and Zeng et al. [17,18], considering the disconnec-
tion of each stay cable, the average change rate of other cable forces was calculated, which
is used as the critical index to discriminate the strength of spatial correlation. The change
rates of cable forces that exceed the critical index were brought into Formulas (3) and (4)
to obtain the weighting coefficients of the cable-force spatial correlation, and then the
calculation expressions of the unknown cable forces could be derived by these weighting
coefficients.

Using the FE model, the stay cables were broken in turn, and the changes in the cable
forces of the remaining stay cables were recorded. The stay cables on both sides of the
road of the cable-stayed bridge were symmetrically arranged. In the same section of the
main beam, using cable-breaking analysis, it was found that after disconnecting a single
stay cable, the change value of the cable force on the broken cable side was larger, and
the change rate of the stay cable on the other side of the road was smaller. Taking the
disconnection of the stay cable S5LA as an example, the change range of the cable force on
side A was large, while that on side B was small. Figure 7 shows the variation values of
different regions of the stay cable, where ⊗ represents the disconnected stay cable. The
change rates of cable forces in different areas after disconnecting the other stay cables are
consistent with this result. Based on this result, the correlation of cable forces on the same
side was mainly considered.
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Figure 7. Comparison of cable-force changes on the broken and opposite sides of the cable.

Five typical locations of stay cables, S1, S5, S9, S13, and S17, were selected. The impact
of cables breaking on other stay cables is shown in Figure 8, where ⊗ is the disconnected
stay cable. It was found that the distribution trend of the cable-force change rate has an
obvious correlation with the spatial relationship of the cable. The closer the cable is to the
disconnected cable, the greater the cable-force change rate; that is, the closer the spatial
position is, the stronger the spatial correlation of the cable is.

By comparing several groups of disconnected cables, it was found that the spatial
correlation of stay cables at different locations to other stay cables is different. The closer
the cable is to the center of the cable-stayed bridge, the greater the spatial correlation of
the remaining cables. On the contrary, the spatial correlation between the outer stay cables
and the other stay cables is smaller. For example, when each stay cable is disconnected, the
impact on stay cable S17 is small, and when stay cable S17 is disconnected, the impact on
other stay cables is also small.

After disconnecting a single stay cable, the average value of the cable-force changes of
the remaining stay cables was used as the threshold to evaluate whether there was a corre-
lation. The relevant stay cables were weighted according to the change rate of cable force,
and the influence degree of the remaining stay cables on the cable force was calculated.
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Taking the S2 stay cable as an example, the variation in the tensile force can be
represented by Formula (5).

∆S2 = 0.333 × ∆S1 + 0.221 × ∆S3 + 0.189 × ∆S4 + 0.154 × ∆S5 + 0.103 × ∆S6 (5)

In Formula (5), the variations in the tensile forces of stay cables S1, S3, S4, S5, and S6
are related to that of S2, with only the tensile forces of S1 and S5 being monitored. The
unmonitored cable-force change value, such as the cable-force change value ∆S3 of the
stay cable, can be expressed by Formula (6). In the same way, the expressions of equations
∆S4 and ∆S6 can be substituted in turn. By compiling a Python program, after repeated
iterations, the weight of the unmonitored cable force can be reduced until the iteration
can be expressed only by the monitored stay cable. The coefficient of the unmonitored
cable force can be assigned to the monitored cable force according to a certain quantity
relationship, the expression of which is Formula (7) after multiple iterations.

∆S3 = 0.190 × ∆S1 + 0.154 × ∆S2 + 0.222 × ∆S4 + 0.193 × ∆S5
+0.139 × ∆S6 + 0.101 × ∆S7

(6)

∆S2 = 0.440 × ∆S1 + 0.349 × ∆S5 + 0.160 × ∆S9 + 0.045 × ∆S13 (7)

Following the same methodology, the formulae for calculating the variations in the
tensile forces of the remaining stay cables can be derived.
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Figure 8. Rate of change after cable breakage in inclined cables.

2.4. SARIMA Model for Long-Term Prediction of Cable Forces
2.4.1. Model Parameters of the SARIMA Model

The SARIMA model is developed from the ARIMA model by incorporating considera-
tions for seasonal factors. The fundamental principles of the SARIMA model include the
autoregressive (AR) component, the moving-average (MA) component, the differencing
(I) component, and the seasonal differencing (S) component. In the AR component, the
model employs a linear combination of historical time-series data to forecast the current
value, whereas the MA component constructs an error model based on historical white
noise and lagged error terms. The I component addresses non-stationary time series by
applying differencing operations to achieve stationarity, facilitating subsequent modeling.
For time series with pronounced seasonal patterns, the S component is utilized to capture
seasonal variations more effectively.

The parameter set of the SARIMA model comprises P, D, and Q, which correspond to
the orders of the autoregressive (AR), differencing (I), and moving-average (MA) compo-
nents in the ARIMA model, respectively. Additionally, p, d, and q represent the orders of
the autoregressive, differencing, and moving-average components in the seasonal ARIMA
model, reflecting the effects of autocorrelation, differencing, and moving average related to
seasonal variations.
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The methods for determining the model parameters mainly include the graphical
method and the grid-search method. The graphical method determines parameters by
observing the ACF and PACF plots, which is subjective and makes it difficult to determine
accurate parameters. Therefore, the authors of this paper adopted the grid-search method
to determine the parameters.

The basic principle of the grid-search method is to traverse all possible values through
a program, compare the merits and demerits of all values, and select the optimal parameter
values. The use of computers for calculation and comparison can avoid the subjective issues
inherent to the graphical method. In the grid-search approach, the Akaike information
criterion (AIC) is used as an evaluation metric to select the best parameters. Generally, the
AIC criterion is represented as Formula (8).

AIC = 2k − 2 ln(L) (8)

where k = the number of parameters, and L = the likelihood function.

2.4.2. Application of the SARIMA Model in Long-Term Prediction of Cable Forces

For data preprocessing, the isolation forest algorithm was used to filter and eliminate
outliers. Because SARIMA time-series prediction requires data to maintain the continuity
of time series, the moving-average method is used to replace outliers.

The isolation forest algorithm is a machine learning algorithm used for anomaly detec-
tion. It identifies outliers within a dataset by constructing randomized binary search trees.

The long-term trend prediction of cable forces is primarily accomplished through
the SARIMA machine learning prediction method. For addressing the issue of missing
cable-force-monitoring data encountered during the monitoring process of stay cables,
the LSTM deep learning algorithm was employed to fill in the missing segment data of
individual cable forces. The method of grey relational theory, combined with the FE model
of the bridge, was used to calculate the correlations among different stay-cable forces. These
correlations were utilized to estimate the forces of the unmonitored stay cables.

Initially, one year’s worth of cable-force-monitoring data was selected as the research
subject, employing the daily average of cable forces to represent the cable-force condition
for each day. The LSTM prediction model was utilized to fill in the gaps of the missing
cable forces.

In Section 2.3.2, the formula for calculating the change in the cable force of stay cables
is introduced. In practical applications, the baseline for the change in cable force is taken
as the average cable force, with the variation being the difference between the cable force
and its average value. The variation in cable force was calculated based on the monitored
values and the average cable force. Utilizing the formula for the change in cable force
of the stay cables presented in Section 2.3.2, and in conjunction with the initial force of
the unmonitored stay cables, calculations were performed to fit the time-series data of
the cable force over a year for the unmonitored stay cables. Based on these time-series
data, the SARIMA machine learning algorithm was employed to predict the trend of the
stay-cable force.

A program employing the SARIMA algorithm was developed in Python, considering
the variation in cable force due to the differing traffic volumes on weekdays and non-
workdays, with a seasonal cycle set to 7 days. According to the requirements of Article
5.1.3 of the “Specifications for Design of Highway Cable-stayed Bridge” [28], the design should
clearly specify the service life of the main structure as well as replaceable components such
as stay cables, damping devices, bearings, and expansion devices. Among these, the design
service life of stay cables is set at 20 years. The S1 stay cable was selected as an example
for forecasting the cable force over the next 20 years. In the process of forecasting this
dataset, the parameters (p, d, q, P, D, and Q) of the SARIMA model were set to 2, 1, 2, 1, 1,
and 1. The trend of cable-force reduction is illustrated in Figure 9, indicating a decrease of
approximately 300 kN over a 20-year period.
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Figure 9. Long-term trend prediction of cable force for stay cables.

Based on the forecast results, the future 20-year cable-force predictions for all the stay
cables were compiled annually. Table 3 lists the predicted values of cable force at five-year
intervals. In the 5th year, the average cable-force loss is 2.96%; in the 10th year, the average
cable-force loss is 5.91%; in the 15th year, the average cable-force loss is 8.86%; in the 20th
year, the average cable-force loss is 11.81%.

Table 3. Prediction of cable force of stay cables over the next 20 years.

Prediction Value (kN) 0 Year 5th Year 10th Year 15th Year 20th Year

S1 3158 3077 2995 2914 2833
S2 1443 1370 1298 1225 1153
S3 1591 1520 1449 1377 1306
S4 1792 1721 1649 1578 1506
S5 2164 2107 2050 1993 1936
S6 2208 2135 2063 1990 1917
S7 2430 2357 2284 2211 2138
S8 2623 2546 2469 2392 2315
S9 3460 3379 3299 3218 3137
S10 2877 2798 2719 2640 2560
S11 3000 2921 2842 2763 2684
S12 3099 3020 2941 2863 2784
S13 3762 3674 3585 3497 3409
S14 3117 3039 2962 2884 2806
S15 3089 3009 2929 2850 2770
S16 3800 3720 3640 3560 3480
S17 3841 3745 3648 3552 3456

For machine learning algorithms, there is a significant dependency on data quality; it is
essential to select data that are relatively complete and of high quality. Before applying data
to a SARIMA machine learning model, minor incomplete datasets can be complemented
using an LSTM model, while small quantities of lower-quality data can be cleaned using
methods such as the Isolation Forest algorithm. Data that are excessively deficient or
erroneous should be avoided.

2.5. Lifecycle-Corrosion Model of Stay Cables
2.5.1. Corrosion-Calculation Theory for Stay Cables

The stay cable is composed of a sheath and galvanized steel wires, which are arranged
in multiple layers, as shown in Figure 10a. The corrosion of stay cables is primarily
categorized into the corrosion of the stay-cable sheaths, the corrosion of the galvanized
protective layer of stay cables, and the corrosion of the wires. As depicted in Figure 10b,
the corrosion of the stay cable is classified into three stages, based on the different stages of
corrosion [29].
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Figure 10. Corrosion diagram of a stay cable. (a) The entire process curve of diagonal cable corrosion;
(b) schematic diagram of the multi-layer arrangement of diagonal cable steel wires.

The initial stage of corrosion involves the onset of corrosion on the protective sheathing
of the stay cable, progressing to visible damage on the sheathing and the commencement of
corrosion effects on the galvanized protective layer. This marks the first phase. The second
phase begins with the onset of corrosion on the galvanized protective layer, advancing
to the localized failure of the protective layer and the subsequent corrosion impact on
the internal steel wires. The third phase is initiated by the occurrence of corrosion on the
internal steel wires, extending until the wires reach a critical threshold of corrosion. At this
point, although the steel wire has not completely corroded, its bearing capacity is no longer
able to withstand the tension caused by the main beam and the bridge deck loads, resulting
in cable breakage. Typically, the stay cables are replaced once the steel wires corrode to
a point of posing risks, preventing progression to the latter stages of the third phase in
practical engineering applications.

The stay-cable sheath and the galvanized protective layer serve as protective elements
for the steel wires, acting as the non-load-bearing components of the stay cables. Conse-
quently, the corrosion of the sheath and galvanized protective layer does not affect the
load-bearing capacity of the stay cables. In the third stage, the primary focus is on the
reduction in the cross-sectional area of the stay-cable wires due to corrosion, utilizing the
effective load-bearing area of the stay-cable wire matrix, namely, the remaining area of the
wire matrix A(t), to reflect the condition of the stay cables. This serves as an evaluation
criterion for the degree of corrosion of the stay cables.

The initial cross-sectional area of the stay cable is defined as A0, and the effective
load-bearing area of the stay-cable wire matrix can be expressed as

A(t) = A0 − ∆A(t) (9)

where ∆A(t) represents the corrosion amount of the base area of the stay-cable steel wire.
The core of the construction of the cable-corrosion-calculation model is to determine

the times of the first and second stages and the corrosion rate of the third stage, to determine
the effective stress area of the cable at different times.

In the first and second stages, statistical methods can be applied to estimate the
damage time of cable sheaths and the failure time of galvanized protective layers in marine
environments through random sampling statistics.

In the third stage, the corrosion-rate-calculation model can be applied to calculate the
corrosion rate of steel wires.
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Considering the effects of the environmental temperature, relative humidity, and the
concentration of chloride ion corrosion, Klinesmith et al. [24] established a corrosion-rate-
calculation model for the steel wires of cable-stayed bridges.

y = AtB(
TOW

C
)

D
(1 +

SO2

E
)

F
(1 +

Cl
G
)

H
eJ(T+T0) (10)

In this model, y = the corrosion of the steel wires, expressed in terms of the corrosion
depth and measured in units of µm/year; TOW = the exposure time in environmental
conditions where the relative humidity exceeds 80% and the temperature is above 0 ◦C; SO2
= the concentration of sulfur dioxide, measured in units of g/m3; Cl = the sedimentation
rate of chloride ions, measured in units of mg/m2/day; and A, B, C, D, E, F, G, H, J, and T0
represent the experience coefficients.

Building upon the formula proposed by Klinesmith, Lu and He [25] considered the
impact of wire stress on the corrosion of stay cables, proposing a model to quantify the
corrosion of stay-cable wires that takes stress effects into account.

D(t) =

{
[C1F(S, t)tβ]−

[
C1

∫ t

0
tβ ∂F(S, t)

∂t
dt

]}(
1 +

CL
G

)H
(11)

F(S, t) = Ft + FS + FS,t + F (12)

Ft = (0.3812t)− (0.01973t2) (13)

Fs = 0.00398S − 0.0000003778S2 (14)

Fs,t = 0.0001898St (15)

where D = the amount of corrosion of the wire, expressed in terms of corrosion depth,
which is a function of t and is measured in µm; t = time, measured in years; CL = the
concentration of chloride ions, measured in mg/m3; S = the average stress level of the wire,
measured in MPa; and C1, β, G, H, and F represent the experience coefficients.

Lu and He [25] summarized the previous experimental results and statistical outcomes,
adopting empirical coefficients of C1 = 66.26 µm, β = 0.516, G = 50 mg/m3, H = 0.34, and
F = 1.258.

As the galvanized steel wires are arranged in multiple layers, the corrosion progression
between different layers is different. Xu et al. [30] researched the corrosion levels between
different layers of stay-cable wires, defining the outermost layer as the first layer. They
introduced a corrosion ratio to represent the relationship between the degrees of corrosion
across adjacent layers:

Rc =
d0 − dmin,i+1

d0 − dmin,i
(16)

In the formula, Rc = the corrosion ratio of the cross-section of the stay-cable wires;
d0 = the diameter of the uncorroded wire; dmin,i+1 = the minimum diameter of the wire in
the i + first layer; and dmin,i is the minimum diameter of the wire in the ith layer.

After conducting corrosion tests [30] on the stay cables, it was concluded that Rc = 0.48.

2.5.2. Application of Corrosion Model in the Cross-Sea Cable-Stayed Bridge

In the case of the cable-stayed bridge in this study, the stay-cable sheaths are made of
PE, and the wires are composed of galvanized steel wire with a 7 mm diameter. The stress
level of the stay cable is determined by the steel-wire area and the cable force of the stay
cable in the current year, and the cable force is that predicted in the previous chapter.

The cable-stayed bridge is located in a tropical island environment, near the estuary.
According to the bridge-design-exploration document, the annual average temperature of
the environment is 23.7 ◦C, and the annual relative humidity is 85%. Based on data from
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the local meteorological monitoring station, the concentration of airborne chloride ions is
38.7 mg/m³.

Based on the results of random-sampling statistics [31], the protective sheath and
galvanized protection layer of stay cables generally fail at around 10 years; thus, the
authors of this paper assumed that the substrate part of the steel wire begins to corrode
in the 10th year, meaning the first and second stages span 10 years. In calculating the
corrosion of the steel-wire substrate during the third stage, the formula from the previous
section was utilized, considering the radial non-uniform corrosion of the stay-cable wires.
Since the cable force changes annually, it was calculated on a yearly basis starting with the
onset of substrate corrosion. The designed service life of stay cables is 20 years, with the
substrate-corrosion stage spanning 10 years. The final calculation results are expressed
using the effective stress-bearing-area reduction rate, as shown in Table 4.

Table 4. Reduction rate of the effective stress area during the corrosion stage of steel-wire substrate.

Time (Year) 1 2 3 4 5 6 7 8 9 10

S1 0.048 0.095 0.142 0.188 0.233 0.278 0.322 0.364 0.405 0.445
S2 0.039 0.078 0.115 0.153 0.190 0.226 0.261 0.296 0.330 0.363
S3 0.041 0.082 0.122 0.162 0.201 0.239 0.277 0.314 0.350 0.385
S4 0.032 0.063 0.094 0.125 0.155 0.184 0.213 0.241 0.269 0.296
S5 0.036 0.071 0.106 0.140 0.173 0.206 0.239 0.271 0.302 0.332
S6 0.039 0.077 0.115 0.152 0.188 0.224 0.259 0.294 0.327 0.360
S7 0.041 0.081 0.121 0.160 0.199 0.237 0.274 0.310 0.346 0.380
S8 0.028 0.055 0.082 0.109 0.135 0.160 0.186 0.210 0.234 0.258
S9 0.036 0.071 0.106 0.140 0.173 0.206 0.238 0.269 0.299 0.329
S10 0.032 0.063 0.094 0.125 0.155 0.184 0.213 0.241 0.268 0.295
S11 0.033 0.065 0.097 0.128 0.159 0.189 0.218 0.247 0.275 0.302
S12 0.037 0.073 0.109 0.145 0.179 0.213 0.247 0.279 0.311 0.341
S13 0.041 0.082 0.122 0.162 0.201 0.239 0.276 0.312 0.347 0.381
S14 0.037 0.074 0.110 0.145 0.180 0.214 0.247 0.280 0.312 0.343
S15 0.037 0.073 0.109 0.144 0.179 0.213 0.246 0.278 0.310 0.341
S16 0.031 0.062 0.093 0.123 0.152 0.181 0.209 0.236 0.263 0.289
S17 0.032 0.063 0.093 0.123 0.152 0.181 0.209 0.236 0.263 0.289

The stay cables evenly distributed at the five locations of stay cables, S1, S5, S9, S13,
and S17, were selected, and a reduction-rate image of the effective stressed area of the
stay cables was constructed (Figure 11) for research. It was found that the reduction of the
effective stressed area of the stay cables due to corrosion is approximately linear.

Figure 11. Reduction rate of equivalent-force area of stay cables.
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3. Lifecycle Seismic Analysis for Cross-Sea Cable-Stayed Bridge
3.1. Analysis Cases

Based on the results of the changes in the cable force and corrosion extent, the seismic
response of the cable-stayed bridge was analyzed, with four different combinations of
working conditions being set up, as shown in Table 5, considering the variation in cable
force and the corrosive damage to the stay cables.

Table 5. Working conditions of seismic-response analysis.

Case Considering Changes in Cable Force Considering Corrosion of Stay Cables

Case 1 × ×
Case 2 ×

√

Case 3
√

×
Case 4

√ √

Considering the variation in cable force and corrosion extent over the service life
of a cable-stayed bridge, seismic waves were applied to the Case 2, Case 3, and Case 4
conditions, considering different cable-force values and corrosion states at the 0th, 5th, 10th,
15th, and 20th years of operation.

The most widely used El Centro seismic wave was selected, and the seismic wave
intensity is expressed using the maximum ground acceleration. In this study, the seismic
response of the cable-stayed bridge was observed by applying seismic waves with different
strengths of 0.1 g, 0.2 g, 0.3 g, and 0.35 g.

3.2. Seismic-Response Results for Stay Cables

The seismic response caused by the cable stress and corrosion of the stay cable is
mainly reflected in the stress change of the stay cable and the displacement change of the
main beam. This chapter analyzes and compares the seismic response under different
conditions in different years around the cable stress of the stay cable and the displacement
of the main beam.

Seismic waves were applied along the transverse and longitudinal directions of the
bridge. Due to the different modes in the two directions, there was a large difference in
seismic response, so they needed to be considered separately. When considering the seismic
damage, the worst case of the two loading methods was selected.

Taking the S1 stay cable as an example, the maximum stress values under different
working conditions in various years are illustrated in Figure 12.

Comparing the other stay cables in turn, it was found that the following applied for a
single stay cable:

(1) Corrosion has a great adverse effect on the cable stress of stay cables;
(2) In most cases, the relaxation of the cable force is beneficial to reducing the seismic

stress of the cable. However, considering the influence of change in the cable force on the
overall deformation of the cable-stayed bridge during earthquakes, as shown in Figure 13,
and taking the maximum value of the cable tensile stress under the 0.35 g earthquake
intensity in the 20th year as an example, in the middle of a single span, the attenuation
of the cable force is not all beneficial to the tensile stress, and there are some adverse
changes in the cable tensile stress, such as in cable S5, so it is necessary to prevent possible
damage risks.

The tensile strength of each stay cable is 1670 Mpa. According to the design specifica-
tions, under the action of the most adverse standard value load combination, the tensile
stress of the stay cable is less than 40% of its ultimate strength [28]. When the tensile stress
of the cable exceeds 668 Mpa, it is considered that the stay cable has a risk of damage.

According to the statistics of the number of stay cables with damage risk, it was
found that under the Case 1 condition, the number of stay cables with damage risk under
different seismic intensities is zero, without considering the corrosion of the stay cables
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and the change in cable force. Under the condition of Case 3, only the gradual attenuation
of cable force is considered, and the number of cables with damage risks is zero. Under
the condition of Case 2, which only considers the corrosion of stay cables, the reduction
in the effective area of stay cables greatly increases the risk of damage to the stay cables.
Compared to the Case 2 condition, Case 4 additionally considers the change in the cable
force of the stay cables, and the damage risk to the stay cables is relatively reduced. The
numbers of stay cables with damage risk under the conditions of Cases 2 and 4 are shown
in Table 6.
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Figure 12. Tensile stress of stay cables under different working conditions. (a) In the 5th year; (b) in
the 10th year; (c) in the 15th year; and (d) in the 20th year.

Figure 13. Comparison of stress of stay cables across the entire bridge.
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Table 6. Case 1: Number of inclined cables at risk of damage under different earthquake intensities.

Service Time Case
Earthquake Intensity

0.1 g 0.2 g 0.3 g 0.35 g

0~10th year Case 2 0 0 0 0
Case 4 0 0 0 0

15th year Case 2 4 4 8 12
Case 4 4 8 8 8

20th year Case 2 20 28 40 48
Case 4 12 28 32 44

3.3. Seismic-Response Results for Main-Beam Displacement

Based on the seismic time-history analysis under various working conditions, it was
discovered that the cable force and the degree of corrosion of the stay cables have a certain
impact on the displacement of the main beam.

In terms of the longitudinal displacement of the main beam, variations in the cable
force have virtually no impact, and the corrosion of the stay cables has a more significant
effect. Since it is assumed that the stay cables do not corrode in the first 10 years, the
longitudinal displacement of the main beam under different conditions remains almost
identical during this period. Therefore, differences in the longitudinal displacement of
the main beam under various conditions can be observed in the 15th and 20th years.
Figure 14 illustrates the longitudinal displacement of the main beam in the 15th and 20th
years under different conditions. The main tower location is denoted as Place 1, and the
auxiliary pier location is denoted as Place 2. In the 15th year, the impact of corrosion on
the longitudinal displacement of the main beam remained inconspicuous. However, as the
extent of corrosion deepened, by the 20th year, it became evident that the corrosion of the
stay cables had a significant influence on the longitudinal displacement of the main beam.
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The results also found that the corrosion of the stay cables and the changes in cable
force in Place 1 and Place 2 have little effects on the transverse displacement of the main
beam under different working conditions.

Both changes in the cable force and corrosion have an impact on the vertical displace-
ment of the main beam. Due to the fact that the cable body did not undergo corrosion in
the first 10 years of the task, and that the degree of change in the cable force of the stay
cable was relatively small, according to the results of the FE simulation, the difference in
the vertical displacement of the main beam is small under different working conditions,
and the change is more significant in the 15th and 20th years. The maximum displacement
change in the positive vertical direction is shown in Figure 15a,b, while the maximum dis-
placement change in the negative vertical direction is shown in Figure 15c,d. The corrosion
of the stay cables has a relatively small impact on displacement, which is not beneficial
for positive vertical displacement and is beneficial for negative vertical displacement. The
influence of the variations in the force of the stay cables on displacement is significant.
Owing to the effect of gravity, changes in the force of the stay cables are advantageous for
displacement in the positive vertical direction and disadvantageous for displacement in the
negative vertical direction. Compared to traditional analytical methods that consider only
the corrosion conditions of stay cables, it is observable that, when both the cable corrosion
and variation in cable force are considered, under an earthquake intensity of 0.1 g, the
negative vertical displacement of the main beam increases by 164.9%. Under an earthquake
intensity of 0.35 g, the displacement increases by 29.7%. To prevent the bending failure of
the main beam, it is necessary to consider the combined effects of changes in cable force,
stay-cable corrosion, and their impact on the negative vertical displacement of the main
beam during an earthquake.

Figure 15. Vertical negative displacement of the main beam under different working conditions.
(a) Positive displacement in the 15th year; (b) positive displacement in the 20th year; (c) negative
displacement in the 15th year; and (d) negative displacement in the 20th year.
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In summary, the variation in the force of stay cables has a minimal impact on the
seismic displacement of the main beam in both the longitudinal and transverse directions
of the bridge. The corrosion of the stay cables hardly affects the transverse seismic dis-
placement of the main beam but has a certain degree of impact on the longitudinal seismic
displacement. Therefore, it is necessary to be vigilant against the potential increase in the
longitudinal displacement of the main beam caused by the corrosion of the stay cables, as
well as against the potential risk of the beam falling. The corrosion and force variation in
the stay cables significantly affect the vertical displacement of the main beam. Specifically,
the corrosion of the stay cables is more detrimental to the positive vertical displacement,
while the variation in cable force is more detrimental to the negative vertical displacement.
Compared to the effects of corrosion, the impact of cable-force variation is more significant.
Hence, it is essential to consider the effects of force variation, cable corrosion, and their
combined effects on the vertical displacement of the main beam during seismic events,
with caution toward the risk of the bending failure of the main beam.

4. Conclusions

This study introduces an LSTM-SARIMA combined model for predicting the future
trends of cable forces in stay cables based on monitoring data. An FE model was developed
to examine the changes in cable stress and main-beam displacement during earthquakes in
a cross-sea cable-stayed bridge. The key findings of this research work are summarized
as follows:

(1) The results suggest that the LSTM model proficiently addresses missing data during
the monitoring of stay cables, ensuring comprehensive data coverage. Furthermore,
the SARIMA model accurately predicted the long-term trend of stay-cable-force-
detection data, revealing a discernible decline in the force exerted on stay cables over
time. The findings indicate that the LSTM-SARIMA model predicted an average
decrease of 11.81% in the cable force of the cable-stayed bridge after 20 years;

(2) The corrosion of stay cables has a significant adverse effect on the maximum stress in
the stay cables during seismic events. Considering the corrosion of stay cables, the
risk of damage to them and the main beam during earthquakes increases. Under an
earthquake intensity of 0.35 g in the 20th year, 70.59% of the stay cables’ maximum
stress values exceeded the maximum stress values stipulated by the design specifi-
cations. Compared to Case 1, where there is no risk of damage, the number of stay
cables at risk of damage has substantially increased;

(3) The relaxation of cable forces in cable-stayed bridges predominantly exerts an adverse
impact on the negative vertical displacement of the main girder during seismic events.
Under a seismic intensity of 0.35 g in the 20th year, the negative vertical displacement
increases by 19.6% compared to in Case 1. The cable-force relaxation of stay cables
has a minor impact on the displacement of the main beam in both the transverse and
longitudinal directions of the bridge;

(4) The detrimental effects of seismic activity on cable-stayed bridges, caused by varia-
tions in cable forces and corrosion, are partly mitigated by each other. However, when
comparing the seismic response that accounts for both cable corrosion and force varia-
tions with traditional analysis methods that only consider corrosion, there remains
a significant discrepancy. Particularly notable is the negative vertical displacement
of the main beam, which exhibits a variation of 29.7% under a seismic intensity of
0.35 g in the 20th year. Therefore, it is essential to consider both cable corrosion and
force variations simultaneously, as the seismic response under these conditions more
closely approximates real operational circumstances.

In future studies, the accuracy of the predictive models can be further assessed and
validated based on monitoring data collected over the next few years.
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