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Abstract: The accurate calculation of natural frequencies is important for vibration and earthquake
analyses of structural frames. For this purpose, it is necessary to discretize each beam or column of
the frame into one or more smaller elements. The required number of elements per member increases
when the frame’s modal shapes have wavelengths similar to the beam lengths. This paper presents
a method that reduces the number of elements needed for a precise calculation. This is achieved by
implementing a straightforward local correction to the kinetic and elastic energy of certain elements,
resulting in a substantial decrease in error. The validity of this method is demonstrated through
a range of examples, from simple canonical cases to more realistic ones. Additionally, the paper
discusses the unique features of this method and examines its relationship with other approaches.
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1. Introduction

Modal analysis and natural frequency calculation by the FEM are very valuable
tools to study the dynamic behavior of building structures [1]. For example, the Spanish
Structural Code [2], the Eurocode [3] and the American Code ASCE [4,5] accept their
validity for seismic analysis and wind load induced vibration analysis. Therefore, the most
popular structural analysis programs such as ETABS, Robot or Staad implement these
numerical techniques.

Frames are usually modelled using one element per member (beam or column), which
is accurate enough for linear structural analysis, but it falls short for vibration eigenvalue
problems [6,7] because of the inadequacy of polynomials to represent localized modal
shapes. Therefore, the need arises to develop methods to perform modal analysis in a more
accurate way with the least numerical cost and implementation effort. Consequently, sev-
eral approaches have been proposed in the scientific literature to estimate the incurred error
and possibly reduce it, including correction formulas, the superconvergent patch recovery
technique (SPR), the hierarchical FEM (HFEM), the smoothed FEM (SFEM), the mass-
redistributed FEM (MRFEM) and the use of various higher-order beam finite elements.

Correction formulas were applied by Xie and Steven [8] to improve the accuracy of
the FEM calculation of natural frequencies in beam/column elements. Their approach
stems from a previous study by Mackie [9] on the topic of numerical dispersion error
reduction. A similar technique [10] can be applied to linear structural buckling critical load
calculations. Their method can also be applied to structural frames by means of a weighted
average of single beam/column correction terms.

FEM error estimates [11,12] deal with the problem of numerical inaccuracy induced
by the discretization of the continuum of differential equations. They are more detailed
than convergence graphs and can be used to refine the mesh where necessary to achieve
a certain level of precision. Residual-based estimators measure the error on the exact
differential equations [11] while recovery-based estimators build a better approximation of
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the displacement or stress field [13–15] that can be used to obtain a more precise value of
the natural frequencies.

The superpatch recovery technique (SPR) [16] uses a patch of neighboring elements to
adjust a higher order polynomial to approximate the stress in a finite element using the
element values as well as those in the conveniently weighted patch. It originates [14,17]
from the idea of fitting an improved stress distribution field to a set of so-called super-
convergent points, when they exist, where stresses are calculated with a higher accuracy.
Wiberg et al. [18] fitted the polynomial to displacements instead of stresses (SPRD) in order
to improve the calculated value of natural frequencies, which depend not only on the
displacement derivatives, but also on the displacements themselves.

The smoothed finite element method (SFEM) [19] uses a gradient smoothing technique
to reduce the overstiffening of the FEM. This method is based on the G space theory [20] that
makes it possible to use discontinuous shape functions in the element formulation while
maintaining stability and convergence to the exact solution. The node-based smoothed
finite element method (NS-FEM) [21] improves accuracy and gives an upper bound of the
elastic energy, whereas the edge-based smoothed finite element method (ES-FEM) [22]
provides a lower bound.

The hierarchical FEM [23] employs nested polynomial shape functions of different
orders to increase the accuracy of the elements when necessary. Therefore, it can be used
for error estimation and adaptative mesh refinement. Early application of the method to
dynamic analysis focused on Bernoulli–Euler beams [24]. More recently, the method has
been applied to various types of beams such as Timoshenko beams [25], three-dimensional
sandwich beams [26], etc.

Modifying the element mass matrix is another strategy to improve natural frequency
calculations. Fried and Chavez [27] used a weighted average of the consistent matrix
and the lumped matrix to model strings and membranes. A more economical alternative
was developed by Fried and Leong [28] using the consistent matrix for the modal shape
calculation and a weighted mass matrix for a Rayleigh quotient correction. Li and He [29]
changed the location of the Gaussian points used to integrate the element mass matrix.
Their approach stems from previous work in acoustics by Gudatti [30].

Higher-order Euler–Bernoulli elements [31] and the Timoshenko element [32–34]
provide improved accuracy due to the better representation of displacements. This leads to
a reduction in the number of elements required to calculate natural frequencies. However,
their implementation is more complex, and the resulting equations have more unknown
variables and will be worse conditioned [35]. Thin-walled beams [36] also require enriched
sets of modelling variables because of their complex geometrical and deformation patterns.

The present paper shows a new method for improving the accuracy of the calculation
of the natural frequencies of structural frames when beams and columns are modelled with
a small number of elements (possibly one or two). Sway frames can often be analyzed
accurately with one element per member but non sway ones usually require a finer mesh
or a higher precision technique like ours. The algorithm proceeds in two stages. In the
first stage, a coarse solution is calculated whereas in the second one, local corrections are
added at a finer level. If necessary, some elements are subdivided if the local correction
excessively distorts the modal shape.

Concerning the novelty of this work, the authors recently wrote a closely related
paper [37] about calculating the critical buckling loads of structural frames using one
element per member. This latest work presents some fundamentally novel developments.
First, preventing structural buckling requires knowing just the lowest critical load, but in
order to model structural dynamics accurately, multiple natural frequencies are needed
and the algorithm has to be modified accordingly. Second, the interplay between multiple
frequencies coupled with the limited accuracy of individual elements leads to using two
subelements instead of four. Third, because of the same reasons, some members will have to
be modelled with more than one element per member according to a novel specific element
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distortion criterion that we will later introduce. Lastly, the derivation of the equations and
algorithms has been optimized for clarity, ease of implementation and performance.

The subsequent sections of this paper are outlined next. First, natural frequency
calculations are carried out for five fundamental cases of one-bar (beam/column) struc-
tural elements with the aim of assessing the error associated with coarse meshes and the
problems arising from multiple modal interplay. Second, the vibration modes of these
bars are modified by a local correction procedure and the elements are subdivided in two
according to a distortion criterion. Third, the method is extended to structural frames made
up of more than one bar. Next, the devised algorithms are validated using 2D and 3D
cases representative of realistic building structures taken from [10,37]. Finally, the results,
discussion and conclusions are presented.

2. Natural Frequency Analysis of Some Fundamental Cases Using One Element Per Bar

We have selected a set of fundamental cases [38] (see Figure 1) to test our method
against the standard FEM. Various support conditions such as clamped (C), pinned (P) and
free (F) are considered. We have added the case of the second mode of the pinned–pinned
beam (PP2) because it will help us better explain the algorithm.

Figure 1. Five fundamental beam vibration cases.

Natural frequencies of a structural frame can be calculated by the FEM as the solution
of the eigenvalue problem (

K − ω2M
)

ϕ = 0 (1)

where K and M are the stiffness and mass matrices, ω is any natural frequency and ϕ is its
corresponding modal shape.

Table 1 shows the accuracy of the FEM calculation with Nel cubic elements. The relative
errors using a single element are excessive in all cases except CF. Errors larger than 1% are
considered excessive from a structural engineering point of view [37].

Table 1. Relative error 1 in natural frequency computation for some fundamental cases.

Nel 2 CC CP PP CF PP2

1 - 32.92% 10.99% 0.48% 27.14%
2 1.62% 0.93% 0.39% 0.05% 10.98%
3 0.41% 0.20% 0.08% 0.01% 1.17%
4 0.13% 0.06% 0.03% 0.00% 0.38%

1 Relative error refers to “nearly exact” values calculated with Abaqus and Nel = 10. 2 Nel: number of elements in
the discretization.

Looking at Figure 1 and by analogy with the column buckling problem, we can
interpret that a single element is not accurate enough to model more than a quarter of
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a sinusoidal deformation wavelength. We will see how to reduce these errors in the
next section.

3. Corrected Calculation of Natural Frequencies in Some Fundamental Cases Using One
Element Per Bar

In this section, we will improve the quality of the displacements inside the structural
element in two ways: (1) we will use an auxiliary discretization of the bar elements (see
Figure 2) with two subelements and three nodes (1–3) to obtain a local correction of the
coarse mesh solution and (2) we will split some elements in half when necessary (adaptive
mesh refinement). This approximation results in acceptable errors near those obtained in
Table 1 with four elements.

Figure 2. Bar element “global” displacement ug (from 1–3 to 1′–3′).

In our previous work on buckling [37] we used an auxiliary discretization of four
subelements instead of two, but we will see that this approach is not possible when
calculating multiple eigenvalues (or multiple frequencies) because of the override problem
that is later explained.

We express the nodal displacements ur (r: 1–3) as the sum of a “global” term derived
from the coarse solution and a “local” correction term.

The global displacement ug (see Figure 2) results from a static analysis in which
we fix the external displacements ug

1 and ug
2 and obtain the value of the internal nodal

displacement ug
3 by condensation [7].

The nodal displacements of the element nodes in the local reference frame of the bar,
ul

1 and ul
2, can be expressed as

ul
1 = ϕ1η ul

2 = ϕ2η (2)

where ϕ1 and ϕ2 are the coarse modal shapes at nodes 1 and 2 expressed in the local
reference frame and η is a modal amplitude variable.

In order to find the inner nodal displacement ul
3 we will need the element stiffness ma-

trix. Assuming a uniform beam, each subelement (1-3 and 3-2) will have the same stiffness
and mass matrices, KS and MS, which we can express in terms of their nodal submatrices:

KS =

[
KAA KAB
KBA KBB

]
MS =

[
MAA MAB
MBA MBB

]
(3)
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Assembling these subelement matrices, we obtain the stiffness and mass matrices of
the refined element, Kr and Mr:

Kr =

KAA 0 KAB
0 KBB KBA

KBA KAB KAA + KBB

 Mr =

MAA 0 MAB
0 MBB MBA

MBA MAB MAA + MBB

 (4)

Therefore, the sought internal displacement results in

ul
3 = (KAA + KBB)

−1(K BAul
1 + KABul

2

)
= ϕ3η (5)

where we define ϕ3 as

ϕ3 = (KAA + KBB)
−1(K BAϕ1 + KABϕ2

)
(6)

The local displacement term ∆ul (see Figure 3), increases the internal node displace-
ment (∆ul

3) without modifying the external nodal displacements (for economy of notation,
we group nodal rotations and displacements in one term).

∆ul =


0
0

∆ul
3

 (7)

Figure 3. Element incremental local displacements ∆ul (from 1–3 to 1′–3′).

Figure 4 shows the total nodal displacement of the refined element ur resulting from
both the global and the local term.

Figure 4. Refined element total displacements ur (global from 1–3 to 1′3′ and local from 1’–3’ to 1”–3”).
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Now, we define the refined element nodal displacements ur as a function of the modal
coordinate η and the internal incremental displacement ∆ul

3 using a projection matrix P

ur =

ϕ1 0
ϕ2 0
ϕ3 I

{ η

∆ul
3

}
= P

{
η

∆ul
3

}
(8)

where I is the identity matrix. As a result, we can obtain a corrected natural frequency ωp
by solving the projected eigenvalue problem

PTKrPϕp = ω2
pPT MrPϕp (9)

We summarize the procedure to calculate the corrected natural frequency in Algorithm 1.

Algorithm 1. Correction of the natural frequency of a one-element bar

Evaluate Kr and Mr as 2-subelement refinements of Ke and Me using Equation (3)
Evaluate the projection matrix P with Equation (8)
Calculate ωp as the lowest natural frequency in Equation (9)

After the correction process the errors in natural frequencies change as shown in Table 2.

Table 2. Relative error in corrected natural frequency calculation (Nel = 1).

Nel CC CP PP CF PP2

1 1.61% 0.93% 0.39% 0.05% 42.42%

Looking at these results, we can see that correcting the one element per member
model in the CC and PP2 cases does not reduce the error up to a level that is acceptable in
engineering. We can understand what is happening if we study what we will designate
as the distortion factor: the maximum change in V or T after applying the correction (see
Table 3), where V and T are the stiffness and mass quadratic forms, respectively.

Table 3. Distortion factor (maximum percentage change in V or T) after correction (Nel = 1).

Nel CC CP PP CF PP2

1 -% 211.33% 49.66% 1.73% 1.4 × 1029%

What we can see here is that the local correction has largely distorted V and/or T in
both cases (most notably for PP2).

First, we will study the cause for the most troubling case, PP2. We can see a graphical
depiction of its distortion with altered scales in Figure 5. The softer CC mode (K = 22.4)
has almost completely overridden the stiffer PP2 mode (K = 39.5) thereby suppressing an
existing mode and replacing it with a rough duplicate of a previously calculated one (CC).

Second, we turn our attention to the origin of the slightly unacceptable error of the
CC case. We can attribute it to the fact that the correction process can never surpass the
accuracy of doubling the element at the coarse level.

In order to solve both problems, we propose splitting elements in half when the
distortion factor (from now on called γ) surpasses the 100% threshold. The PP2 spurious
modal override problem will be solved because the half element corrections cannot roughly
represent the CC mode in isolation. In turn, the CC slightly unacceptable error will be
reduced because of the superior quality of the refined coarse mesh.

It Is clear now that using a four subelement discretization for local element correction
is not acceptable because it will be plagued by the override problem in the same way as the
two-subelement one.
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Figure 5. Locally corrected PP2 modal shape using one element and two subelements.

Therefore, we will allow one or two elements per member at the coarse level and two
subelements at the local level, which allows for a total of four subelements per member,
roughly equivalent to what we did for buckling in [37].

In the next section, we extend this correction/refinement process to general structural
frames made up of multiple bars and one or two elements per bar.

4. Correction of Natural Frequencies for Multiple-Element Structures

Similarly to what we did in [37], we are going to generalize the procedure for single
elements based on four main ideas:

1. The local element corrections can be combined additively into an overall modal correction.
2. When calculating local corrections for an element, the rest of the structure can be

sufficiently represented by the frame modal shape ϕ and an amplitude variable η.
3. The corrected natural frequency for the whole frame can be calculated using Rayleigh’s

quotient with the corrected modal shape.
4. Local corrections for different natural frequencies can be calculated in isolation from

each other once the distortion factor has been introduced to solve the override problem.

Let us examine how the whole procedure would work for our most problematic case,
PP2. Figure 6 shows the modal shape of the PP2 case beam discretized at the coarse level
with two elements per member. In order to improve the quality of the modal shape, we
will fix the end nodal displacements of each coarse element and subsequently correct its
inner displacements, and, as a result, we will obtain the corrected vibration shape in the
same figure.

Figure 6. PP2 modal shape using two elements after local correction.
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The local corrections for each element will be calculated separately (as shown in
Figure 7). For this purpose, we maintain all the elements in the frame mesh except the one
to be corrected, which is replaced with two subelements (see Figure 7).

Figure 7. Structural discretization used to correct the upper part of two-element PP2 modal shape.

The local modal shape correction is the solution of a projected eigenvalue problem
that is derived below.

The structure stiffness quadratic form calculated with the coarse mesh can be expressed as:

V = uTKu (10)

where u and K are the nodal displacement vector and stiffness matrix of the frame.
We can modify V by replacing element e contribution with its refined counterpart

V = uTKu − uT
e Keue + uT

r Krur (11)

where ue and Ke are the nodal displacement vector and stiffness matrix of element e, while
ur and Kr are their refined versions (using two subelements and three nodes) calculated in
the local reference frame of the element.

Next, the nodal displacements can be expressed as a function of the modal coordinate η
and the incremental inner nodal displacement of the element being corrected ∆ul

3, similarly
to what we did for a single-element bar in Equation (8).

u = ϕη (12)

ue = ϕeη (13)

ur =


ϕ1η
ϕ2η

ϕ3η + ∆ul
3

 (14)

and the same operations can be performed on the mass quadratic form:

T = uT Mu − uT
e Meue + uT

r Mrur (15)

As a result, we obtain a projected eigenvalue problem whose solution contains the
local modal shape correction:

Kpϕp = ω2
p Mpϕp (16)

where

Kp =

[
V − Ve + Vr 0

0 KAA + KBB

]
(17)
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Mp =

[
T − Te + Tr ϕT

1 MAB + ϕT
2 MBA + ϕT

3 (M AA + MBB
)

symmetric MAA + MBB

]
(18)

ϕr =


ϕ1
ϕ2
ϕ3

 (19)

Vr = ϕT
1 KAAϕ1 + ϕT

2 KBBϕ2 + ϕT
1 KABϕ3 + ϕT

3 KABϕ2 (20)

Tr = ϕT
1 MAAϕ1 + ϕT

2 MBBϕ2 + ϕT
3 (MAA + MBB)ϕ3 + 2ϕT

1 MABϕ3 + 2ϕT
3 MABϕ2 (21)

We can partition the projected mode in terms of its modal amplitude part ϕp0 and its
internal correction ϕp3

ϕpe =

{
ϕp0
ϕp3

}
(22)

and dividing the right-hand side by ϕp0, we generate a projected mode

ϕ∗
p =

{
1

ϕp3
ϕp0

}
(23)

which represents the sum of the overall modal shape ϕ plus the local internal correction
term ∆ϕc3

∆ϕc3 =
ϕp3

ϕp0
(24)

and this modal shape can be used to calculate the corrected mass and stiffness quadratic
forms of the element.

Vce = Vr + ∆ϕT
c3(K AA + KBB

)
∆ϕc3 (25)

Tce = Tr + 2∆ϕT
c3(M BAϕ1 + MABϕ2

)
+∆ϕT

c3(M AA + MBB

)
(2ϕ3 + ∆ϕc3) (26)

We show in Algorithm 2 the complete procedure for computing Vce and Tce.

Algorithm 2. Computation of the corrected quadratic forms of an element Vce and Tce

Overall frame inputs: ϕTKϕ, ϕT Mϕ

Frame element inputs: ϕT
e Keϕe, ϕT

e Meϕe, ϕe
Subelement inputs: KAA, KAB, KBB, MAA, MAB, MBB
Evaluate Kr and Mr as 2-subelement refinements of Ke and Me using Equation (3)
Convert ϕe to local element coordinates by the following operations:
ϕ1 = RT

e ϕe1 ϕ2 = RT
e ϕe2 (Re: element rotation matrix)

Calculate ϕ3, ϕr in Equations (6) and (19)
Calculate Kp, Mp in Equations (17) and (18)
Obtain ϕp as the first eigenvector of Equation (16)
Evaluate Vce, Tce by applying Equations (24)–(26)

The element-corrected quadratic forms of the whole structure can be collected in
Rayleigh’s quotient to obtain an improved value of the structure’s natural frequency ωc

ω2
c =

∑e Vce

∑e Tce
(27)

The complete procedure to calculate N natural frequencies is given in Algorithm 3.
It should be pointed out that the denominators of the distortion factor γe have been

modified to cope with the possibility of elements with very small Ve or Te, which would
lead to near division by zero. Therefore, one hundredth of the frame V or T is distributed
equally among all elements when measuring relative change, while the other 99% comes
from the element itself.
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Algorithm 3. Computation of N corrected natural frequencies of whole frame

Receive as inputs frame magnitudes K, M, ϕj, ωj, j = 1..N
For all elements, receive as inputs one-element magnitudes Ke, Me, ϕe
For j = 1..N

V = ϕT
j Kϕj, T = ϕT

j Mϕj, ω = ωj
For e = 1.. number of elements

Ve = ϕT
e Keϕe, Te = ϕT

e Meϕe
Calculate Vce, Tce with Algorithm 2

End
Calculate ω2

c with Equation (27)
Calculate element distortion factor:

γe = 100·max(|V ce − Ve|/(0.01V/Nel + 0.99Ve), |T ce − Te|/(0.01T/Nel + 0.99Te))
End
If γe > 100% in an element, split it in half and repeat

Now we can preliminarily assess the merits of these algorithms by recalculating the
natural frequencies of the fundamental cases discussed before. The associated relative
errors and distortion factors are given in Tables 4 and 5 respectively.

Table 4. Relative error in corrected natural frequency calculation with one and two elements per member.

Nel CC CP PP CF PP2

1 1.61% 0.93% 0.39% 0.05% 42.42%
2 0.13% 0.06% 0.03% 0.00% 0.47%

Table 5. Maximum percentage change in Ve or Te with one and two elements per member after
applying the proposed correction.

Nel CC CP PP CF PP2

1 -% 211.33% 49.66% 1.73% 1.4 × 1029%
2 6.28% 2.57% 1.49% 0.09% 55.81%

We can observe that after doubling the number of elements, the error becomes accept-
able for all cases and the distortion factor falls to an acceptable value of 56%.

The algorithm admits further tweaks to reduce calculation time as follows:

• Axial displacements can be eliminated from the correction procedure on account of
their higher stiffness [37].

• In most cases Vr − Ve = 0 exactly or approximately and needs not be calculated.
• ϕ3(ϕ1, ϕ2) can often be calculated explicitly as a linear expression, and consequently,

Equation (6) is unnecessary.
• Equations (17), (18), (25) and (26) can be easily programmed with scalar operations in

terms of their constituent parts thereby avoiding matrix/vector operations.
• Using all of the above, the main component of the computational cost is the solution

of the local eigenvalue problem which can be obtained with a few iterations of the
power method.

5. Results

Our proposed novel algorithm has been coded into a custom MATLAB R2021b 2D and
3D vibration program. The program has been validated against Abaqus for some of the
2D and 3D cases presented below. Errors in natural frequency computations are measured
against “near exact” values obtained when discretizing each structural member with ten
elements. As shown below, the standard FEM with one or two elements per member
calculated with Abaqus (or our code validated with Abaqus) gives errors that are 10 times
larger or more.
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5.1. 2D Building Portal Frame

This test case taken from [37] is shown in Figure 8. The first modal shape ϕ1 (red
dashed lines) is superimposed on the undeformed geometry (continuous black lines).
The second and third modal shapes (ϕ2 and ϕ3) are shown on the right in smaller sizes.

Figure 8. 2D sway portal: first three modal shapes with one element per member.

Numerical results are shown in Table 6 with one element per structural member for
the first four natural frequencies. The relative error of the corrected calculation is more
than five times smaller than the non-corrected one. The one-element calculation without
correction gives a low error as happens with sway structures because modal wavelengths
are distributed over several elements. Distortion factors lie below 7% and therefore do not
surpass our 100% threshold value that would require splitting highly distorted elements
in half.

Table 6. Corrected calculation statistics (2D sway portal frame with 1 element/member).

Mode # Exact 1

ω (rad/s)
1-Elem. 2

ω (rad/s)
Relative 3

Error (%)
Corrected
ω (rad/s) 4

Relative 5

Error (%)
Distortion

Factor γ (%)
Distorted

Elements #

1 34.88 34.89 0.02 34.88 0.00 1.14 0
2 110.12 110.28 0.14 110.13 0.01 6.11 0
3 195.67 196.28 0.31 195.73 0.03 4.27 0
4 277.60 278.38 0.28 277.75 0.05 6.46 0

1 “Exact” value of ω calculated with Abaqus and Nel = 10. 2 Value of ω calculated with Abaqus and Nel = 1.
3 Relative error of the 1-element calculation 4 Value of ω after applying our correction to the 1-element value.
5 Relative error of the corrected value.

Next, the calculation is repeated with diagonal bracing added to each floor, restricting
horizontal displacement and minimizing the side-sway frame effect as shown in Figure 9.
The statistics of the corrected calculation are shown in Table 7, modelling bars with one
element. The relative error is reduced significantly in all modes except the third. Our
distortion criterion detects the problem since all distortion factors lie above 100% by
a very wide margin. As expected, the one-element discretization leads to large errors for
a non-sway structure with highly localized vibration shapes from the second mode on.
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Figure 9. 2D framed portal frame: first three modal shapes with one element per member.

Table 7. Corrected calculation statistics (2D braced portal frame with 1 element/member).

Mode # Exact
ω (rad/s)

1-Elem.
Ω (rad/s)

Relative
Error (%)

Corrected
ω (rad/s)

Relative
Error (%)

Distortion
Factor γ (%)

Distorted
Elements #

1 161.75 162.68 0.57 161.81 0.04 125 1
2 438.18 551.89 25.95 471.27 7.55 2854 7
3 447.47 579.72 29.56 575.00 28.50 1.3 × 108 4
4 473.87 631.82 33.33 516.46 8.99 14,137 5

According to our distortion criterion, we should subdivide the 7 distorted elements
from mode 3 onwards. However, for easiness of implementation we only split the four
diagonals and that was enough to reduce the error to very low values (see Table 8). We
inspect the second and third mode with subdivided diagonals in Figure 10 and we can
see that those modes are highly localized in the diagonal bars. We can interpret that the
one-element correction does not decrease error well in Table 7 because it replaces the
second and third mode with local vibrations inside the bars, which is easily detected by
our distortion factor.

Table 8. Corrected calculation statistics (2D braced portal frame with 2 elems./member diagonals).

Mode # Exact
ω (rad/s)

1/2-Elem.
ω (rad/s)

Relative
Error

Corrected
ω (rad/s)

Relat.
Error

Distortion
Factor γ

Distorted
Elements #

1 161.75 162.25 0.31% 161.78 0.02% 122% 1
2 438.18 446.60 1.92% 438.83 0.15% 145% 2
3 447.47 456.15 1.94% 448.13 0.15% 63% 0
4 473.87 482.68 1.86% 474.53 0.14% 364% 1

Therefore, whenever the local correction can produce an inner vibration softer than
the coarse mesh mode, it will distort all the modes from that frequency onwards. That is
one of the reasons why we chose a two element submodel instead of a four element one
like in our previous buckling study [37] because this problem does not appear when only
the lowest eigenvalue is required.
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Figure 10. 2D braced portal frame: 2nd and 3rd modal shapes with one element per member except
diagonals (two).

5.2. 3D Stand Structure

This test case taken from [8] and fully defined in [37] is shown in Figure 11. This is not
a typical portal frame structure, which confirms the validity of our approach for generic
structural types.

Figure 11. 3D stand frame modal shapes 1, 3 and 4.

The first modal shape ϕ1 (red dashed lines) is superimposed on the undeformed
geometry (continuous black lines). The second shape is very similar to the first one (also
a translation of the roof but in a perpendicular direction). The third and fourth shapes (ϕ3
and ϕ4) are shown on the right in smaller sizes.

Numerical results are shown in Table 9 with one element per member. A relative
error decrease exceeding a factor of 11 is obtained in all cases. The single-element-per-
member discretization is quite accurate except for the 4th mode, which shows a distortion
factor slightly larger than 100% and should therefore be split in half. Modes 1 to 3 can
be considered sway modes (two translations and one rotation of the roof), whereas mode
4 almost keeps the beam ends in their original positions.

Table 9. Corrected calculation statistics (3D stand with 1 elem./member).

Mode # Exact 1

ω (rad/s)
1-Elem.
ω (rad/s)

Relative
Error (%)

Corrected
ω (rad/s)

Relative
Error (%)

Distortion
Factor γ (%)

Distorted
Elements #

1 97.41 97.59 0.19 97.42 0.01 3.48 0
2 97.41 97.59 0.19 97.42 0.01 3.52 0
3 140.11 140.45 0.24 140.14 0.02 6.40 0
4 580.82 672.56 15.79 583.93 1.38 101.45 4

1 “Exact” value calculated with Abaqus and Nel = 10.
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5.3. 3D Building Structure

This test case taken from [37] is shown in Figure 12. The 1st and 12th modal shapes,
(red dashed lines) are superimposed on the undeformed geometry (continuous black lines).

Figure 12. 3D sway 160-bar building structure 1st (left) and 12th (right) modal shapes.

Numerical results are shown in Table 10 for the first 12 modes (the number of floor
translational and rotational movements). Although the frame is unbraced and thus does not
localize vibration shapes, leading to quite accurate results with a one-element calculation,
the relative error is still reduced by a factor greater than 10.

Table 10. Corrected calculation statistics (3D sway building structure with 1 elem./member).

Mode # Exact
ω (rad/s)

1-Elem.
ω (rad/s)

Relative
Error (%)

Corrected
ω (rad/s)

Relative
Error (%)

Distortion
Factor γ (%)

Distorted
Elements #

1 28.51 28.51 0.01 28.51 0.00 8.20 0
2 28.51 28.51 0.01 28.51 0.00 8.20 0
3 31.81 31.82 0.02 31.81 0.00 2.01 0
4 89.08 89.20 0.14 89.09 0.01 67.43 0
5 89.08 89.20 0.14 89.09 0.01 64.86 0
6 91.72 91.85 0.14 91.73 0.01 50.67 0
7 98.90 99.05 0.15 98.91 0.01 4.79 0
8 129.38 129.72 0.26 129.41 0.02 11.55 0
9 137.88 138.27 0.29 137.91 0.02 56.25 0
10 137.88 138.27 0.29 137.91 0.02 55.71 0
11 155.42 156.00 0.38 155.46 0.03 189.21 4
12 155.42 156.00 0.38 155.46 0.03 99.61 0

Figure 13 displays the same calculation after adding diagonal bracing bars. These bars
help keep the structure from swaying side to side horizontally.
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Figure 13. 3D braced building structure 1st and 12th modal shapes with one element per member.

Numerical results are shown in Table 11 with one element per member. The relative
error is largely decreased by the correction except for the last four modes, when distortion
factors reach high values. Errors are higher in this case because of the bracing preventing
large amplitude sway modes.

Table 11. Corrected calculation statistics (3D braced building structure with 1 elem./member).

Mode # Exact
ω (rad/s)

1-Elem.
ω (rad/s)

Relative
Error (%)

Corrected
ω (rad/s)

Relative
Error (%)

Distortion
Factor γ (%)

Distorted
Elements #

1 124.49 125.17 0.54 124.54 0.04 47.18 0
2 126.75 127.42 0.53 126.79 0.04 59.22 0
3 146.27 147.08 0.55 146.33 0.04 80.42 0
4 151.65 152.58 0.61 151.71 0.04 76.67 0
5 184.03 185.26 0.67 184.13 0.06 182.87 1
6 212.50 214.77 1.07 212.67 0.08 185.24 6
7 245.42 248.36 1.20 245.69 0.11 273.57 13
8 276.69 281.67 1.80 277.20 0.18 729.64 18
9 366.95 402.78 9.77 372.53 1.52 1907.05 41
10 384.71 434.85 13.03 396.66 3.11 2970.10 51
11 392.67 454.37 15.72 423.86 7.94 1200.18 35
12 403.95 467.65 15.77 433.75 7.38 2018.34 42

Numerical results are shown in Table 12 with two elements per member, even though
according to our criterion only 42 out of the 160 bars would need two elements. By applying
the correction, we reduce the relative error to a very good level of just 0.06%. It is worth
noting that a two-element model of the structure with our correction could be an interesting
alternative because of the low errors and distortion factors of the elements, which would
make further subdivision unnecessary.
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Table 12. Corrected calculation statistics (3D braced building structure with 2 elems./member).

Mode # Exact
ω (rad/s)

2-Elem.
ω (rad/s)

Relative
Error (%)

Corrected
ω (rad/s)

Relative
Error (%)

Distortion
Factor γ (%)

Distorted
Elements #

1 124.49 124.54 0.03 124.50 0.00 2.35 0
2 126.75 126.79 0.03 126.75 0.00 4.65 0
3 146.27 146.33 0.04 146.28 0.00 3.94 0
4 151.65 151.71 0.04 151.66 0.00 4.33 0
5 184.03 184.13 0.05 184.04 0.00 6.87 0
6 212.50 212.66 0.08 212.52 0.01 4.66 0
7 245.42 245.67 0.10 245.44 0.01 7.20 0
8 276.69 277.13 0.16 276.73 0.01 17.03 0
9 366.95 368.89 0.53 367.08 0.04 9.62 0
10 384.71 387.27 0.67 384.89 0.05 16.12 0
11 392.67 395.59 0.74 392.87 0.05 3.82 0
12 403.95 407.28 0.82 404.18 0.06 4.83 0

After examining the results, we can conclude that our models achieve the same level of
accuracy as Abaqus standard FEM models with twice as many bars (on the condition that
distortion factors lie below 100%), therefore they can work with stiffness and mass matrices
twice smaller. In addition, we have attained calculation times 15% smaller measuring the
main components of required processing power, i.e., the whole frame eigenvalue problem
and the local beam eigenvalue problems.

6. Discussion

The method by Xie and Steven [10] provides local natural frequency updates for
single bars rather than local modal shape corrections, which leads to using a weighted
criterion with a weaker physical foundation than Rayleigh’s quotient. In addition, structural
members are discretized with four or five elements while in our case one or two (in a few
bars) elements are needed.

The SPRD technique by Wiberg et al. [18] bears some similarities with our approach.
It relies on a polynomial fitting to the existing mode at some superconvergent points while
our procedure completely updates the mode at inner points without being constrained by
the coarse calculation on the inside. Plus, the whole structure rather than a single element
and its neighboring patch participates in the adjustment by means of the coarse modal
amplitude η. It can also be noted that SPR techniques use an external patch of elements
while our method relies on an inner set of refined elements.

Gradient smoothing methods such as [19] also rely on neighboring elements to im-
prove the quality of the solution but they do it before solving the system of equations
of the whole structure, thereby increasing connectivity and the enhanced element matrix
computation time. In addition, there is no straightforward way of applying the smoothing
concept to beam elements of different sections and orientations sharing a node.

Modified stiffness and mass matrices [29], while improving the accuracy of dynamic
analysis, are limited by the fact that they do not depend on the natural frequency being
studied (like in the case of dynamic stiffness methods) or on the actual modal shape, as
happens in our method.

Higher-order finite elements [31–34] provide better accuracy but are more complex
to implement, have to solve larger systems of equations and lead to worse conditioned
matrices. In contrast, our method works well with the standard finite element method and
could work with higher-order finite elements as well to improve their accuracy. As for
thin-walled beams [36], they require higher-order models in order to represent complex
deformation patterns, but they are fully compatible with our correction algorithm.

The hierarchical FEM [23–25] relies on error estimators to refine the structural mesh
and improve accuracy. In contrast, our correction does not need a full reanalysis to in-
crease precision but an array of concurrent element-centered corrections. If necessary,
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the distortion factor indicates what bars require two elements instead of one. Like the
higher-order elements discussed above, hierarchical elements of higher order can be used
for the corrections instead of our two-subelement set.

As mentioned in the introduction, the authors recently wrote a closely related paper [37]
about calculating the critical buckling loads of structural frames using one element per
member. For this purpose, a local correction procedure was applied using four subelements.
This latest work presents some fundamental differences. First, preventing structural buckling
requires knowing just the lowest critical load, but in order to model structural dynamics
accurately, multiple natural frequencies are needed. Second, the interplay between multiple
frequencies coupled with the limited accuracy of individual elements makes it necessary to
use two subelements instead of four. Third, because of the smaller number of subelements
involved in the local corrections, some members have to be split into half beams according to
a novel element distortion criterion which measures the relative change in kinetic and elastic
energy caused by the correction of modal shapes.

As far as the efficiency of our method is concerned, most of what was stated in [37]
remains applicable: the algorithm’s greatest source of efficiency comes from its fully
parallelizable nature and the local eigenvalue problems can be solved with minimal com-
putational resources by the power method. In addition, after shrinking the submodel to
two elements, all the matrices that appear in the local eigenvalue problem can be easily
programmed with scalar operators and functions, thereby reducing the cost to solving the
eigenvalue problem.

Our technique can be applied to enhance the standard FEM analysis of any structure
made up of beam/column elements. The structure could also contain shell, plate or lumped
elements but the gain in accuracy would only occur for the bar elements. Our approach
can be used to calculate natural frequencies with errors acceptable in engineering (below
1%) using one or two elements per member or to increase the accuracy of a calculation
with any number of elements per member. Therefore, our approach offers the potential
for a reduction in memory requirements and calculation speed when compared with the
standard FEM at the cost of some additional coding. In order to fully exploit the advantages
of the algorithm, it is advisable to distribute the correction calculations to the GPU.

Concerning future research developments based on the present work, we have selected
a few areas of interest. First, there is always a significant discrepancy between numerical
vibrational properties and experimental measurements [39,40] because of approximate mod-
elling, nonlinearities, temperature effects, etc., which could be addressed advantageously
with the proposed numerical technique or an enhanced version of it. Likewise, in the field
of health structural monitoring, there is also the need to deal with discrepancies caused
by structural failure or deterioration, and to diagnose their nature and location [41,42].
However, the present study is only concerned with numerical efficiency and has no direct
application in these areas in its present form.

7. Conclusions

A new method for improving the accuracy of the standard FEM natural frequency
calculation of structural frames made up of beam/column elements has been presented.
The algorithms are based on previous work by the authors on structural frame buckling,
but significant novel modifications have been made to improve efficiency and ease imple-
mentation, and to account for the challenges of calculating several eigenvalues instead
of the lowest one. The fully parallel nature of the method makes it very convenient to
take advantage of the current trend towards GPU-based architectures. For this purpose,
the main calculation cost driver is a small individual nodal centered eigenvalue problem
solvable with a few power iterations.

Structural members are modelled with one or two elements following a novel subdi-
vision criterion based on the degree of distortion caused by the correction of the original
modal shape. As a result, enough accuracy for engineering applications is achieved with
a modest increase in computation time and storage requirements. The approach is very
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flexible and can accommodate different beam types, higher-order models and finer meshes
and target precision levels, even though it has been demonstrated with simple cubic el-
ements. Algorithm inputs are readily available data on FEM codes such as frame and
element stiffness and mass matrices, rotations and modal shapes that can be processed
with scalar functions and operators before the local eigensolver correction step.
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