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Abstract: In the architecture, engineering, and construction (AEC) industry, the positioning technol-
ogy for a mobile construction platform (MCP) is critical to achieve on-site, continuous, large-scale
construction. During construction, MCP movement and construction actions seldom occur simulta-
neously. Therefore, this paper categorizes the MCP into stationary and moving states for positioning
studies, respectively. When the platform is stationary, it is positioned using an improved ultra-
wideband (UWB) sensor. When the platform is in motion, a single UWB positioning technique cannot
meet the required accuracy for positioning, and fusion positioning using both UWB and an inertial
measurement unit (IMU) is considered. The experimental results show that compared with only
UWB positioning, the improved UWB positioning algorithm improves the positioning accuracy by
53% in the stationary state, and the fused UWB/IMU positioning improves the positioning accuracy
by 46% in the moving state. As a result, the positioning accuracy of the MCP is significantly improved
regardless of whether it is in a stationary or moving state. Furthermore, this paper integrates the
positioning technique with the robotic arm construction technique to successfully simulate an on-site
continuous construction of a wooden cabin, which provides the potential for large-scale continuous
construction in real-world scenarios in the future.

Keywords: mobile construction platform; UWB positioning; UWB/IMU fusion positioning; custom
grasshopper plug-in; mobile construction simulation

1. Introduction

Robotics is ushering in a golden age of rapid development, and mobile robotics in
particular is receiving much attention from the industry. Currently, most robotic arms
are fixed in a specific position to operate and their applications are limited to repetitive
work in industrial production [1,2]. With the expansion of the robot application field, the
environment faced by the robot is increasingly diversified, and the operation performed
has a variety of uncertainties, which requires the robot to have the ability to move while
also having specific operation abilities [3]. Therefore, the design of a mobile robotic arm can
meet this demand. The so-called mobile robotic arm is installed on the intelligent mobile
platform of the mobile robot, and the working space of the arm is expanded through the
movement of the mobile platform. This structure enables the mobile robotic arm to have a
larger operating room and a high degree of motion redundancy, combining the operability
of the robotic arm and the mobility of the mobile platform, which is more adaptable to the
changing environment and dramatically improves the robot’s operable space, which makes
it superior to the traditional robotic arm and has a broader application prospect [4].
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In the applied research of mobile robotic arms, the robot’s positioning technique is
crucial to enable the robot to perform tasks accurately. In today’s society, robots have
become a valuable tool in many fields, including industrial production, healthcare, military
applications, coordination, and service industries, and for robots to perform their tasks
effectively, accurate positioning is crucial. Robots need to know exactly where they are and
where they are headed in indoor or outdoor environments to navigate, avoid obstacles,
perform tasks, and more. In outdoor environments, GPS can provide highly accurate
navigation and positioning; however, in indoor environments, obstructions and reflections
from buildings make positioning difficult. Many applications require reliable and precise
positioning techniques in indoor environments, such as indoor pedestrian positioning and
navigation, indoor UAV inspection, and indoor autonomous mobile robot positioning and
navigation. Due to the complexity of indoor settings, indoor positioning systems need
to overcome multipath and latency problems and cope with many non-line-of-sight and
other wireless signal interference sources. Currently, the primary positioning techniques
for mobile robots include GPS, Vision, LiDAR, UWB, and inertial navigation systems [5–7].
Among them, UWB technology has become the preferred method of positioning technology
due to its advantages, such as its low cost, low power consumption, high transmission rate,
robust security, and anti-interference. However, a single sensor is prone to excessive errors
during mobile positioning, so multi-sensor fusion technology has become a new method
to solve the unreliable positioning of a single sensor [8,9]. Therefore, the development
and application of high-accuracy and reliable robot positioning technology is of great
significance to promote the development of robot technology, improve work efficiency,
reduce costs, and enhance safety and reliability.

In the AEC industry, many types of robotic automation construction are being used in
an increasingly wide range of applications. Increasingly, mobile construction equipment is
also being used to cope with the large-scale construction needs of buildings. In the mobile
construction process, the positioning technology of an MCP has a significant impact on
its construction effectiveness [10,11]. Most MCPs take construction actions when they are
stationary, and they are rarely moving and under construction at the same time. Therefore,
this paper analyzes the different states of the MCP and classifies them into stationary
and mobile states for further research. In the stationary state, only UWB sensors are
considered, and their positioning algorithms are improved to increase the positioning
accuracy. In the mobile state, a single positioning technique cannot meet the demand
of high accuracy positioning, so the multi-sensor fusion technique is used to improve
the positioning accuracy [12]. In this paper, the raw UWB data are first preprocessed to
suppress the effect of mutation values of UWB on fusion positioning, and the error-state
Kalman filter (ESKF) algorithm fuses the positioning information of UWB and IMU in a
tightly combined way, which takes advantage of the characteristics of no cumulative error
of UWB and high short-term accuracy of IMU to provide more accurate positioning results
when the UWB signals are weak or severely obscured, and suppresses the cumulative error
of IMU and improves the positioning accuracy of UWB at the same time, therefore realizing
the high-accuracy positioning of the MCP in the course of movement [13,14].

Based on this, this paper designs the positioning experiments of the MCP in stationary
and moving states, which are carried out in 2D plane and 3D space, respectively. By com-
paring the positioning effects of various algorithms through multiple sets of positioning
experiments, a reliable positioning algorithm applicable to both the stationary and moving
states of the platform is obtained. The effectiveness of the proposed method is verified by
transferring the above method to a KUKA-KR60 MCP equipped with a tracked chassis des-
ignated for the construction of wooden cabins. Considering that wood is the most common
and renewable resource, this paper takes the construct of a wooden cabin as an example for
the continuous construction simulation of MCP. The KUKA-KR60 used in this paper has
an arm span of 210 cm, and the size of the wooden building is 330 cm × 400 cm × 420 cm.
Therefore, it is necessary to combine the above positioning techniques with the specific
task points of the MCP to realize the continuous construction of the MCP. This further
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demonstrates that this study lays the foundation for realizing the continuous construction
of large-scale models’ on-site construction environments.

2. Literature Review
2.1. Mobile Intelligent Construction

As mobile robot technology continues to improve, increased researchers are working
on developing mobile robots suitable for different tasks. For example, the Fraunhofer
Institute developed a mobile robot [15], KUKA iisy, developed by KUKA, and the Spark
robot, developed by NXROBO [16]. Robots suitable for the construction industry have not
only demonstrated the potential to increase construction productivity but have also shown
the ability to address issues such as labor shortages and safety risks in the construction
sector [17,18]. Although robots have had enormous success in intelligent construction, this
has only been for small scale components. When the goal of construction is large-scale
components, robots can only build several small-sized components individually and then
assemble them into large-scale components. Since the fabrication of large architectural
structures exceeds the workspace of a stationary robot, this requires that the robot be
mobile during the construction process and be able to orientate itself according to the
workspace [19,20]. In order to solve this problem, professionals in the industry came up
with the idea of combining a robotic arm with a mobile platform and started to investigate
the coordination of the robotic arm and the mobile platform [21–24]. Yamamoto et al. [25]
compensated for the dynamic interactions between the robotic arm and the mobile platform
by using a nonlinear feedback control to give better co-ordination. The robot’s positioning
technique is particularly important in the mobile intelligent construction process. Therefore,
more people have started to investigate different positioning methods. Norman et al. [26]
used indoor GPS technology to achieve high-accuracy absolute positioning and motion of
collaborative robots. Jiang et al. [27] developed a visual positioning system which consists
of a camera and a video tracker. Susemihl et al. [28] proposed a new mobile robot system
in order to process large aircraft parts. A laser tracker and a stereo camera are used for
positioning, where the laser tracker is used to locate the position of the moving platform
and the stereo camera system tracks the position of the robot end-effector.

In order to better apply mobile robotics to on-site construction, the ETH Zurich
team has conducted a lot of attempts and experiments. Helm et al. [29] mounted an
ABB IRB 4600 robot on a mobile platform to create a “dimRob” robot, which combines
the constructability of the arm and the mobility of the mobile platform for 1:1 on-site
manufacturing. Sandy et al. [10] proposed a repositioning system in order to address
the limitations of robotics on construction sites, which uses only on-board sensors and
allows the mobile robot to maintain a high degree of accuracy at multiple position in the
construction task, demonstrating sub-centimeter repositioning accuracy by constructing
vertical stacks of bricks in four different directions. Kathrin et al. [30] proposed the concept
of an in situ fabricator (IF) based on the “dimRob” robot, where a 3D point cloud of
the surrounding environment is constructed by mounting a laser range finder on the
end-effector, which is accurately aligned with the initial point cloud to infer the relative
position of the robot. A 6.5 m long and 2 m high double-leaf brick wall was constructed
using the robot, and 14 repositionings were performed throughout the process. Due to
the extreme flexibility of the camera, Lussi et al. [31] moved on to a vision-sensor-based
solution, where the camera sensor was mounted on the robot’s moving platform, scanning
the AprilTag affixed to the floor for the robot’s repositioning, and ultimately achieving
millimeter-level positioning accuracy and replacing the laser scanner originally mounted
on the end tooling with the camera to provide real-time feedback on the build tolerances,
culminating in the fabrication of a lattice mold in the form of an S-shape that was 12 m
in length. Gawel et al. [32] proposed a fully integrated sensor and control system for
high-accuracy mobile robotic building construction, making it possible to enable robots
to perform construction tasks with millimeter-level accuracy using LIDAR, IMUs, wheel
encoders, and laser scanners. Hamner et al. [33] used a stereo camera as well as various
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sensors to accomplish autonomous navigation and operation, enabling it to move and
operate independently during assembly tasks. Chai et al. [34] used a depth camera to
identify AprilTags, place sticks, and apply glue at specific positions to enable the operation
of a mobile robot for on-site construction. If tags are used for positional recognition, it
takes a long time to apply the tags and the camera is susceptible to the influence of the
surrounding light environment, resulting in recognition errors. Wang et al. [35] verified
the potential of integrating parametric design and robotic construction into wood building
construction projects using the robotic construction of wood buildings as an orientation. In
their study, a stationary robot was used to construct each unit horizontally on the ground,
and then a crane was utilized to erect each unit and ultimately assemble them together for
the construction of the entire building. However, this approach is limited by the working
range of the robotic arm, as well as the inability to build directly on-site in the construction
environment. Therefore, this paper is oriented towards large-scale constructions, using
MCP to construct wooden cabins continuously in the vertical direction.

Dependable high-accuracy positioning is essential for mobile intelligent construction
scenarios. Available positioning methods in intelligent construction, such as QR code-
assisted positioning, are low-cost and easy to deploy. Still, the QR code on the ground is
easy to wear out, requires regular maintenance, and has high requirements for ground
flatness, so it is only suitable for use on factory floors. Laser scanning positioning technology
involves much computing, and the surrounding environment must remain unchanged.
Visual positioning uses a vision camera to capture images of the surrounding area, then
calculates the position and direction of the surrounding environment, builds a map of
the unknown territory, and then realizes the robot’s positioning. Cameras are widely
used because they are inexpensive and easy to operate. However, cameras are susceptible
to light effects and produce erroneous images; for example, it takes work to identify
the environment in dark environments. Therefore, to eliminate the above positioning
limitations, this paper investigates various other positioning techniques for mobile robots
to better apply them to mobile robot positioning.

2.2. Mobile Robot Positioning

Positioning techniques for mobile robots are crucial in performing tasks [36]. They
ensure that the robot knows exactly where it is in the environment for task execution
and navigation. Accurate positioning helps the robot to avoid obstacles, find the shortest
path, and navigate in complex environments. In addition, positioning also motivates the
robot to perceive objects and structures in the environment, identify and locate target
objects, and interact with them. Overall, positioning technology for mobile robots is crucial
for navigation, task execution, environment awareness, collaboration, and safety [37]. It
improves the efficiency, reliability, and safety of robots, and enables them to better adapt
to various environments. Therefore, more researchers are working on robot positioning
techniques to improve positioning accuracy. On the one hand, the positioning accuracy
of a single sensor is improved by improving the positioning algorithm to meet one’s task
requirements; on the other hand, the data from two or more sensors are fused to improve
the robot’s positioning accuracy.

Gentner et al. [38] used WIFI-round-trip-time for distance estimation of a target robot
to achieve precise positioning. Xu et al. [39] achieved stable indoor positioning by extracting
ceiling features with a camera mounted on an end tool. Jung et al. [40] proposed a SLAM
approach where, by using a ceiling feature map, the A robot fitted with a monocular camera
searches upwards for ceiling features and estimates the robot position using a Monte Carlo
positioning method. Among the positioning techniques, UWB ranging systems stand
out for their strong anti-jamming performance, high transmission rate, good multipath
resistance, and high security [41], and they can achieve centimeter-level accuracy under line-
of-sight conditions. Also, because UWB is deployed to achieve the positioning of the target
node through the deployment of the base station, it is suitable for both indoor and outdoor
applications, and thus has been favored by a large number of researchers. Richardson
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et al. [42] analyzed the ranging accuracy of UWB and concluded that the ranging accuracy
can reach up to 3 cm in the open outdoor environment. Li et al. [43] proposed a method
to enhance UWB positioning using neural networks, and the experimental results show
that neural networks can make UWB maintain stable positioning in both line-of-sight and
non-line-of-sight scenarios. Takahara et al. [44] applied UWB positioning technology to
the management of prison inmates, which can determine the position of the inmates in
real time, and can improve the supervisory efficiency to a large extent. Ershadh et al. [45]
proposed a design scheme to improve the antenna of UWB sensor, which enhances the
comprehensive performance of UWB positioning under the unchanged spatial environment,
but its high cost makes it unsuitable for large-scale popular application. Since single sensor
positioning results may not be accurate enough in scenarios with extremely high accuracy
requirements, increased research is focusing on multi-sensor fusion positioning techniques.
Yang et al. [46] proposed a GA-BP neural network fusion UWB/IMU-based positioning
method to address the problem of large error of a single positioning technique in complex
indoor environments. The experimental results show that the GA-BP neural network fusion
positioning method has a significant improvement in positioning accuracy over the single
positioning method.

In multi-sensor fusion methods, Kalman filter (KF) is a commonly used tool for fusing
data from different sensors. Since the KF algorithm was proposed in 1960 [47], researchers
have proposed various improved algorithms based on KF [48], such as Extended KF
(EKF) [49], Unscented KF (UKF) [50], Cubature KF (CKF) [51], etc. Woosik et al. [52]
proposed a positioning method for data fusion of multiple low-cost GPS positioning
systems using the EKF, thus improving the positioning accuracy of the system. Navarro
et al. [53] used a tracking method based on EKF fusion of time-of-arrival and direction-
of-arrival measurements of position. Liu et al. [54] proposed a method of fusion of UWB
and IMU measurements using a CKF that corrects position, velocity, and orientation
errors to improve orientation estimation and enhance the positioning accuracy of UWB.
Agrawal et al. [55] proposed a low-cost positioning system consisting of stereo vision, IMU,
and GPS, which achieved outdoor dm-level positioning accuracy by fusing information
from these sensors through a KF. When the visual odometer fails, the IMU populates the
motion estimation.

In summary, dependable high-accuracy positioning technology in mobile robotics is
crucial for robot motion and navigation. When a single sensor cannot meet the requirements
of a specific application scenario, multi-sensor data fusion positioning can be used to
improve the robot’s positioning accuracy. For different application scenarios, selecting
appropriate sensors and positioning algorithms is crucial to ensure that the robot can
achieve accurate positioning in various complex environments.

3. Methodology
3.1. System Workflow of MCP

In order to achieve the subsequent continuous mobile construction, this paper com-
bines a mobile platform positioning system with a robotic arm construction system, and
the proposed mobile construction system design is shown in Figure 1. The host computer
controls the control cabinet of the robotic arm online in real time through the mxAutoma-
tion plug-in to control the operation of the robotic arm, collects the raw data of positioning
in the stationary and mobile states through the control of the mobile platform (which are
then processed using the host computer to transmit the final positioning data to the mobile
platform), and finally realizes the construction task of the MCP at a specific task point. In
this case, the mxAutomation plug-in realizes the online control of the robotic arm by the
host computer through UDP communication.
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Figure 1. Mobile construction system.

The MCP is divided into two states, mobile and stationary, throughout the construction
process. When the robotic arm reaches the initial task point, the robotic arm starts to carry
out the construction operation. After completing the task at that task point, the arm starts
moving to the next task point. Finally, the cycle repeats until the preset task is completed
and the robotic arm stops working. Therefore, in this paper, it will be in accordance with
the different states of the mobile platform in the construction process, with the robotic arm
to build a large-scale model as an orientation and design the positioning experiments of
the target nodes in the stationary and mobile states.

Wood, as a sustainable and renewable resource, is produced with low environmental
impact and has excellent thermal insulation and humidity regulation properties to provide
a comfortable environment for the occupants [56,57]. Research by Wang et al. [35] has
successfully demonstrated the effectiveness of robots in erecting wood-frame constructions.
Therefore, this paper has chosen to use the example of a wooden cabin to demonstrate
the potential of MCPs in the continuous on-site construction of large-scale components.
Figure 2 shows the specific dimensions of the large-scale target construction set in this paper.
Based on this, the working range for positioning of MCP is set to be 400 cm × 600 cm.

Figure 3 shows the workflow diagram of the positioning system. Firstly, in the sta-
tionary state of the mobile platform, only UWB data are collected and pre-processed. The
processed data are then fed into the positioning algorithm, and the positioning results are
transferred in real time within Rhinoceros and transformed into a coordinate system via
a customized Grasshopper (GH) plug-in, in order to obtain the positional information of
the mobile platform in the world coordinate system. Secondly, during the travelling of the
mobile platform to the next mission point, the UWB and IMU data are collected simultane-
ously, and data preprocessing is performed on them, respectively. Then, the processed data
are transferred to the positioning algorithm to finally obtain the position information of the
fused MCP. Finally, the positioning algorithm of the MCP in the stationary state is conjoined
with the target building model to achieve continuous simulation of mobile construction.
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The results of the above positioning algorithm are based on the UWB coordinate
system, while the robotic arm is based on the world coordinate system to build operations;
however, when the robotic arm moves, it is not possible to accurately know the position of
the robotic arm at this time under the world coordinate system, so it is necessary to convert
the positioning results to coordinates. In this paper, the above improved UWB positioning
results are written in C# language as a plug-in block recognizable by the KUKA robotic
arm to obtain the position information of the robotic arm in the world coordinate system.

3.2. Positioning Coordinate Conversion

In the above description process, the position transformation technique is involved.
Since the position description of any point in space is different in different coordinate
systems, to convert the obtained positioning results to the position information of the
robotic arm, it is necessary to transform the UWB coordinate system to the world coordinate
system by the coordinate system. Through the translation and rotation of the coordinate
axes, the position information about the robotic arm in the world coordinate system is finally
obtained to correspond to the position information of the robotic arm in space and the
actual position information. The detailed coordinate system transformation relationship is
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shown in Figure 4, which contains three transformation relationships: translation, rotation,
and translation and rotation.
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When the coordinate axes involve only translation transformations, such as the po-
sitional relationship between the coordinate system {A} and the coordinate system {B}

in Figure 4, in order to transform the
−→
PB in the coordinate system {B} to the coordinate

system {A}, that is, to describe this vector in the coordinate system {A}, the transformation

relationship between the specific coordinate axes is Equation (1), where
−→
PB is the projection

of this vector on each axis.
−→
PA =

−→
PAB +

−→
PB (1)

where the
−→
PB specific value is expressed as the projection

−→
PB =

[
pxb,, pyb, pzb,

]T
of this

vector on each axis,
−→
PAB denotes the position vector of the origin of the coordinate system

{B} in the coordinate system {A} and
−→
PA denotes the position vector of this point in the

coordinate system {A}.
When the coordinate axes involve only rotational transformations, such as the po-

sitional relationship between the coordinate system {B} and the coordinate system {C}

in Figure 4, in order to convert the
−→
PC in the coordinate system {C} to the vector

−→
PB in

the coordinate system {B}, it is necessary to rotate the original coordinate axes, using the
projection of each principal axis of this vector on each principal axis in the reference system
{B} to represent it, and using the inner product of the s to find out the value of the projec-
tion of this vector in the coordinate system {B}. B

CR denotes the rotational transformation
from the coordinate system {C} to coordinate system {B}, and the detailed transformation
relationship is shown in Equation (2).

B
CR =

[BXC
BYC

BZC
]
=

XC · XB YC · XB ZC · XB
XC ·YB YC ·YB ZC ·YB
XC · ZB YC · ZB ZC · ZB

 (2)

From this, it follows that
−→
PB = B

CR ∗
−→
PC (3)

When the coordinate axes involve both translational and rotational transformations,
such as the positional relationship between the coordinate system {C} and the coordinate
system {A} in Figure 4, it is necessary to transform the coordinate system {C} to the transition
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coordinate system {B} first, and then finally in the transformation to the coordinate system
{A}, the transformation relationship between the coordinate systems is

−→
PA = B

CR ∗
−→
PC +

−→
PAB (4)

3.3. MCP Positioning Data Collection and Processing

For the above-mentioned UWB and IMU positioning sensors, if the basic positioning
algorithms are used, the positioning results are more dispersed and less accurate; therefore,
this paper classifies the MCP into a stationary state and mobile state according to the state
that exists during the construction process to be investigated separately.

3.3.1. Data Preprocessing

In practice, the UWB sensor has a specific time error, and the electromagnetic wave
will be affected by the surrounding environment in the transmission process, resulting
in ranging errors. These ranging errors are the key reasons for the excessive positioning
errors. Therefore, ranging calibration is needed before the experiment starts, to reduce
the positioning error. The scenario is carried out under complete line-of-sight, where the
UWB tags and the base station are placed at a fixed distance, as shown in Figure 5, and are
divided into 20 groups based on 0~100 cm, moving the tags at 50 cm intervals, and 200 data
are collected at each position. The average value is taken as the current measurement value.
The specific distance measurement data of each class are shown in Figure 5. Linear fitting
was performed on the above objective and measured distances, and the fitting results are
shown in Figure 6.

As a result, a linear fitting relationship between the measured and actual values is
obtained, and the ranging information of the UWB sensor is calibrated in conjunction with
the x = (y− a)/b formula to obtain more accurate positioning information.

To ensure the stability of the positioning data, an additional 3–5 s of data are taken
before and after the movement of the robotic arm, respectively. In the process of multi-
sensor fusion, the processing of the time delay between data is essential. To make the
state fusion of UWB and IMU sensor measurements more robust, the UWB and IMU data
need to be time-aligned before fusion, i.e., the asynchronous measurement information of
each sensor about the same target is synchronized to the exact moment. Since the sensors
measure the target independently and often have different sampling periods, they often
report to the data processing center at other moments. In addition, the time required to
transfer information between the sensors and the fusion processing center varies due to
further delays in the communication network. Since there may be a time difference in
the sending time of the data on each sensor, the unsynchronized information needs to be
aligned to the exact moment before the fusion processing to ensure that both UWB and
IMU data are available at a particular moment. Too low a sampling frequency for the IMU
leads to a side-long sampling period, which results in too large an error in the acceleration
data through integration, so, in this paper, we set up the synchronization of data from
both the UWB sensor and the IMU. The sampling frequency of the UWB sensor used in
the experiment is 60 Hz, and the sampling frequency of the IMU sensor is 100 Hz. To
synchronize the sampling frequency of the UWB sensor to that of the IMU, the first step is
to process the ranging data of the UWB sensor, which includes setting a threshold value to
exclude the abnormal data, arbitrarily selecting the data of 50 Hz from the original data,
and equaling the data of the next moment to the data of the previous moment, to expand
the data into 100 Hz data; the second step is to set up the data of the UWB and IMU sensors,
which is the most suitable for the UWB 100 Hz data; secondly, the IMU acceleration and
gyroscope data are processed, including rejecting abnormal data and filling in missing data.
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3.3.2. Improved LS Algorithm

In mobile intelligent construction scenarios, the robotic arm only starts the correspond-
ing construction operation when the mobile robot is stationary. Hence, a stable positioning
algorithm in the static state is fundamental. Since the positioning error of IMU grows
infinitely with time, it is only suitable for fusing with other sensors for positioning within
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a brief period or during motion. Therefore, in this paper, only UWB sensors are used for
positioning when the mobile platform is stationary.

|d| = c*Tprop , c = 3× 108m/s. (5)

UWB positioning usually calculates the distance based on the signal transmission time
between the base station and the tag. Then, it uses the trilateral positioning algorithm to
determine the target position. The traditional algorithms consist of the Chan algorithm
based on TDOA, the least squares (LS) algorithm based on TOA, and the Taylor algorithm.
The Chan algorithm has higher accuracy when the number of base stations is more signif-
icant, the least squares algorithm is simple in operation but has lower accuracy, and the
Taylor algorithm has high accuracy, but its iteration time is longer and may not converge.
Therefore, the least squares method is used in this paper for target position solving. In
practical applications, due to the influence of the surrounding environment, relying on only
three base stations for target positioning is likely to make the intersecting positioning area
larger. Therefore, this paper uses four UWB base stations for the least squares positioning
solution to reduce the positioning error. Figure 7 shows the schematic diagram of the
multilateral positioning used in this paper.
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UWB can obtain the distance from the tag to the fixed base station di (1 ≤ i < 4), where
i is the serial number of the reference base station. The coordinates of the base station
are (xi, yi), and the coordinates of the target node are noted as T0 (x0, y0). According to
the distance calculation formula, a system of equations on the principle of ranging and
positioning can be obtained as shown in Equation (6), and the position coordinates of the
mobile tag can be obtained by solving this system of equations:

di
2 = (xi − x0)

2 + (yi − y0)
2, (i = 1, 2, 3, 4) (6)

The solution is obtained from the following system of equations:
d2

2 − d2
1 = x2

2 − x2
1 − 2(x2 − x1)x0 + y2

2 − y2
1 − 2(y2 − y1)y0

d2
3 − d2

1 = x2
3 − x2

1 − 2(x3 − x1)x0 + y2
3 − y2

1 − 2(y3 − y1)y0
d2

4 − d2
1 = x2

4 − x2
1 − 2(x4 − x1)x0 + y2

4 − y2
1 − 2(y4 − y1)y0

(7)
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Solve the above system of equations to solve for the position of the target node.

2

x2 − x1 y2 − x1
x3 − x1 y3 − y1
x4 − x1 y4 − y1

[x0
y0

]
=

(x2
2 + y2

2 − d2
2)− (x2

1 + y2
1 − d2

1)
(x2

3 + y2
3 − d2

3)− (x2
1 + y2

1 − d2
1)

(x2
4 + y2

4 − d2
4)− (x2

1 + y2
1 − d2

1)

 (8)

And convert to
AX = b (9)

A = 2

x2 − x1 y2 − y1
x3 − x1 y3 − y1
x4 − x1 y4 − y1

, X =

[
x0
y0

]
, b =

(x2
2 + y2

2 − d2
2)− (x2

1 + y2
1 − d2

1)
(x2

3 + y2
3 − d2

3)− (x2
1 + y2

1 − d2
1)

(x2
4 + y2

4 − d2
4)− (x2

1 + y2
1 − d2

1)

.

Therefore, the solution results in

X = (AT A)
−1

ATb (10)

However, in the actual ranging process, the ranging error is unavoidable, and position
solving only through the LS method is likely to lead to a positioning error that is too large
for construction. The closer the distance to the tag after UWB ranging optimization, the
smaller the error, and vice versa. Therefore, it is necessary to assign different weights to
different base station tag distances. Based on this, this paper proposes to optimize the
results solved by the original LS algorithm using the improved weighted LS (WLS) method.

A diagonal matrix W is added to the LS method, where the elements on the diagonal
indicate different weight values assigned to each set of data.

W =


w11 0 0 0

0 w22 0 0
0 0 w33 0
0 0 0 w44

 (11)

This results in a UWB solution of

X = (ATWA)
−1

ATWb (12)

In order to further improve the positioning accuracy, this paper adds the Taylor series
expansion method on this basis to further reduce the positioning error. The Taylor series
is a method based on the principle of Taylor expansion, which continuously corrects the
initial position of the target node through recursion so as to gradually approximate the
real position of the target node. Therefore, in this paper, under the stationary state of the
mobile platform, a method of collaborative positioning using the WLS and the Taylor series
(WLS-T) is proposed. In this method, the coordinates of the target node are calculated by
the WLS method, then it is used as the initial value of the Taylor series algorithm, and
finally, the coordinates of the target node are calculated again by the Taylor series algorithm,
which gradually and iteratively converges to the real position coordinates.

Where the true position of the target node is (x, y), the position coordinates calculated
by the least squares method are used as the initial value η = (x0, y0), and then{

x = x0 + ∆x
y = y0 + ∆y

(13)

In the case of 2D positioning, there are

di
2 = (xi − x0)

2 + (yi − y0)
2 = Ki + x2

0 + y2
0 − 2x0xi − 2y0yi (14)



Buildings 2024, 14, 1196 13 of 31

where ∆x and ∆y denotes the errors in the two directions, respectively. The Taylor series
expansion of Equation (15) is conducted at (x0, y0) and the expansion terms of the second
order and above are ignored, i.e.:

di = di|(x0,y0)
+

∂di
∂x

∣∣∣∣
(x0,y0)

∆x +
∂di
∂y

∣∣∣∣
(x0,y0)

∆y + δi (15)

where di|(x0,y0)
=

√
(x0 − xi)

2 + (y0 − yi)
2 . In the iterative process, ∆η = [∆x, ∆y]T the es-

timated value of the moving target is the iteration value. In the Taylor convergence process,

make η = η +△η. Continuously iterating to
√

∆2
x + ∆2

y until the accuracy requirements
are met, an estimate of the final moving target η can be obtained.

3.3.3. Fusion Positioning Algorithm

Multi-sensor fusion can compensate for the shortcomings of a single positioning
system, so multi-sensor fusion positioning is better than single sensor positioning in
terms of positioning accuracy and stability. Because IMU is not affected by the external
environment, it can achieve positioning only by itself, which can effectively overcome the
random error in the process of UWB positioning, and the UWB positioning system can
make up for the long-term drift error generated in the process of IMU positioning [58]. In
the process of multi-sensor fusion positioning, KF, a specific implementation of Bayesian
filtering, is widely used in the state estimation problem. However, KF can only be applied
to linear systems, and most of the systems in the actual application scenarios are nonlinear,
so the EKF was generated. When the EKF is in a particular state near the linearization of the
system, the system is linearized. The direct method is used in EKF to linearize the system
near a state, which can cause many problems. Therefore, based on the complementary
characteristics of UWB and IMU positioning results in this paper, an ESKF [59] is proposed
to fuse the positioning information from UWB and IMU sensors to improve the accuracy
and stability of the positioning system.

The IMU is based on inertial sensor measurement and integration to achieve position-
ing. When the carrier is in motion, the accelerometer constantly outputs the acceleration
of three axes, and the gyroscope constantly outputs the angular velocity of three axes. the
angular velocity value is used to solve the direction angle of the accelerometer relative
to the navigation coordinate system to obtain the rotation matrix, and then acquire the
carrier’s motion attitude and heading angle and other information. Then, the attitude
matrix is used to convert the acceleration information to the navigation coordinate system
and remove the gravitational acceleration. Finally, the primary integration is used to obtain
the carrier’s motion speed, and the secondary integration is used to contact the carrier’s
motion distance. In this paper, the Jetlink inertial navigation system is used. The gyroscope
and accelerometer are solidly connected to the airline, and the principle of its navigation
solution is shown in Figure 8.

In the process of coordinate transformation, the use of Euler angles is prone to the
problem of gimbal deadlock, the use of rotation matrix needs to predefine the order of
the rotation axis, and the use of quaternion only needs to calculate four elements, which
is less computationally intensive and has less storage capacity, so, in this paper, we will
use quaternion in the form of a quaternion to represent the transformation of the carrier
coordinate system to the navigation coordinate system. Where the quaternion is defined as

q = q0 + q1i + q2 j + q3k (16)
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where q0, q1, q2 and q3 are real numbers and i, j, and k are imaginary units and orthogonal
to each other, it follows that the quaternion represents the rotation matrix from the carrier
coordinate system, system b, to the navigation coordinate system, system n, as:

Cn
b =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (17)

Then, the gravitational acceleration is removed by rotational transformation, and the
acceleration value is obtained in the navigation coordinate system.

an =

 an
x

an
y

an
z

−
 0

0
g

 = Cn
b

 ab
x

ab
y

ab
z

−
 0

0
g

 (18)

Finally, its primary integration yields the moving velocity of the platform, and its
secondary integration delivers the displacement transformation, which is speculated to
calculate the position coordinates at the next moment.

Buildings 2024, 14, x FOR PEER REVIEW 14 of 32 
 

positioning accuracy and stability. Because IMU is not affected by the external environ-

ment, it can achieve positioning only by itself, which can effectively overcome the random 

error in the process of UWB positioning, and the UWB positioning system can make up 

for the long-term drift error generated in the process of IMU positioning [58]. In the pro-

cess of multi-sensor fusion positioning, KF, a specific implementation of Bayesian filter-

ing, is widely used in the state estimation problem. However, KF can only be applied to 

linear systems, and most of the systems in the actual application scenarios are nonlinear, 

so the EKF was generated. When the EKF is in a particular state near the linearization of 

the system, the system is linearized. The direct method is used in EKF to linearize the 

system near a state, which can cause many problems. Therefore, based on the complemen-

tary characteristics of UWB and IMU positioning results in this paper, an ESKF [59] is 

proposed to fuse the positioning information from UWB and IMU sensors to improve the 

accuracy and stability of the positioning system. 

The IMU is based on inertial sensor measurement and integration to achieve posi-

tioning. When the carrier is in motion, the accelerometer constantly outputs the accelera-

tion of three axes, and the gyroscope constantly outputs the angular velocity of three axes. 

the angular velocity value is used to solve the direction angle of the accelerometer relative 

to the navigation coordinate system to obtain the rotation matrix, and then acquire the 

carrier’s motion a�itude and heading angle and other information. Then, the a�itude ma-

trix is used to convert the acceleration information to the navigation coordinate system 

and remove the gravitational acceleration. Finally, the primary integration is used to ob-

tain the carrier’s motion speed, and the secondary integration is used to contact the car-

rier’s motion distance. In this paper, the Jetlink inertial navigation system is used. The 

gyroscope and accelerometer are solidly connected to the airline, and the principle of its 

navigation solution is shown in Figure 8. 

 

Figure 8. Block diagram of inertial navigation system. 

In the process of coordinate transformation, the use of Euler angles is prone to the 

problem of gimbal deadlock, the use of rotation matrix needs to predefine the order of the 

rotation axis, and the use of quaternion only needs to calculate four elements, which is 

less computationally intensive and has less storage capacity, so, in this paper, we will use 

quaternion in the form of a quaternion to represent the transformation of the carrier coor-

dinate system to the navigation coordinate system. Where the quaternion is defined as 

   
0 1 2 3

i j kq q q q q  (16)

Figure 8. Block diagram of inertial navigation system.

When processing of UWB measurements is complete, the ESKF fusion process uses
the IMU measurements as predictions for the filter and the UWB measurements as mea-
surement updates for the filter. The algorithm integrates the IMU measurements when they
arrive and puts them into the nominal state variable; at this time, the results do not consider
various errors, so there is an error with the actual results. Thus, the error is estimated in
real-time with the KF and put into the ESKF as an error variable. In this paper, UWB sensors
are used for observation, and the error is calculated with the data from IMU. In the actual
calculation process, the system state is divided into two parts, as shown in Equation (19):

Xt = X⊕ δX (19)

where Xt is the system state truth value, X is Nominal state, δX is Error state. The first-order
derivation of Xt is performed and the dynamics of X and δX are modelled separately as

·
X = f (X, um)

δ
·

X = fδ(X, δX, um, i)
(20)
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where um, i are the measured value of the IMU and the noise, respectively. Integrating the
above equations and collapsing gives the error state and covariance matrix of the system as{

δX = Fδ(X, um)δX
P = FδPFT

δ + FiQiFT
i

(21)

When the IMU prediction is complete, the UWB data need to be fused at this point,
setting the basic form of the UWB measurement equation as

y = h(Xt) + v, v ∼ N{0, V} (22)

where y = [d1, d2, d3, d4]T is the measured range between the four UWB base stations
used in this paper and the target node. h(Xt) denotes the nonlinear functional relationship
between the base stations and the target nodes, and v is the Gaussian white noise.

At this point, the KF is estimating the error state, and then the ESKF’s measure update
process is 

K = PH⊤
(

HPH⊤ + V
)−1

δX = K(y− h(Xt))
P = (I − KH)P

(23)

where the Jacobi matrix H is derived for the error state, i.e.:

H ≜
∂h

∂δX

∣∣∣∣
X
=

∂h
∂Xt

∣∣∣∣
X

∂xt

∂δX

∣∣∣∣
X
= HXXδX (24)

When the update of the error state is completed, the coordinates of the real position
can be obtained, i.e., the values of the nominal state and the error state are merged.

X ← X⊕ δX (25)

This results in a final ESKF calculated position and velocity of{
p← p + δp
v← v + δv

(26)

Finally, the error state is reset, and the covariance matrix P is updated, completing the
cycle until the end.

δX ← 0 (27)

P← GPGT (28)

where G is the Jacobi matrix, G = I.

4. Positioning Experiment and Results

This paper used four base stations, one tag, and one IMU sensor to conduct positioning
tests under stationary and moving states of the mobile platform. The repetitive positioning
accuracy of the robotic arm can reach the mm level, which can avoid the jittery situation
of the measurement data. Therefore, a KUKA-KR120 robotic arm sited on a 6 m track is
selected to represent the mobile platform for this experiment. The UWB tags and IMU
modules are fixed on specific robotic arm positions to perform measurements on different
trajectories. Different trajectories were set at different heights for the experiments to
explore the effect of the height on the positioning results. Subsequently, the corresponding
spatial models were built within the Rhinoceros 7 modeling software to obtain the absolute
coordinates of each position point on the accurate trajectories. Finally, the experimental
results were compared and analyzed with the positional information, and the positioning
results were converted into world coordinates recognizable by the robotic arm to apply to
mobile intelligent construction scenarios.
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4.1. Static Positioning

The robotic arm starts the set operation only when the moving platform is stationary,
so stable, high-accuracy positioning is essential when the platform is fixed. At this time,
the surrounding environment does not change. Based on this, this paper only analyses the
positioning of a single UWB sensor when the mobile platform is stationary.

4.1.1. 2D Positioning Experiment

The experiment was conducted in the Intelligent Construction Laboratory on the
ground floor of the Binhai Research Centre of Qingdao University of Technology, in which
the UWB base station placement range was set to be a 2D plane of 660 cm × 700 cm. The
uniform height of the base station was 220 cm; the specific placement is shown in Figure 9a.
The corresponding base station placement in Rhinoceros is shown in Figure 9b.
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To study the positioning effect of the mobile platform on the target node in the
stationary state, this paper selects eight different fixed position points in the spatial range
of UWB erection to conduct 30 positioning tests, respectively, and record the actual position
and the estimated position, and the positioning results are shown in Table 1.

Table 1. 2D true position vs. estimated position.

Test Point True Position (cm) LS Result (cm) WLS-T Result (cm)

1 (160, 196) (168.3, 202.1) (162.0, 196.4)
2 (160, 346) (166.7, 353.1) (164.2, 348.9)
3 (160, 496) (169.4, 503.0) (162.2, 500.1)
4 (235, 196) (221.7, 204.3) (237.2, 198.2)
5 (235, 496) (244.3, 503.6) (237.7, 498.4)
6 (310, 196) (296.8, 202.8) (304.9, 199.5)
7 (310, 346) (302.6, 334.5) (305.1, 343.8)
8 (310, 496) (300.9, 500.7) (304.2, 498.3)

Average Error - 9.6/7.5 3.9/2.7

As can be seen from Table 1, the WLS-T with improved LS algorithm is significantly
closer to the actual position compared to the LS algorithm, and the mean value of the
positioning accuracy in the x and y directions is improved by 59% and 64%, respectively,
compared to the LS algorithm, which improves the target node positioning accuracy.

4.1.2. 3D Positioning Experiment

In order to study the 3D positioning effect of the mobile platform on the target node
when it is at rest, in this chapter, the original four base stations are elevated based on the
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A4 base station to form a 3D space set to 480 cm × 600 cm ×220 cm. The base station
placement position is A1 (0, 0, 100), A2 (480, 0, 100), A3 (480, 600, 100), and A4 (0, 600, 320);
the actual scene is the same as Figure 9a. According to the working range of the robotic
arm, this paper selects six test points with unusual positions in this space to record the
actual situation and estimated position, respectively, and the positioning results are shown
in Table 2.

Table 2. 3D true position vs. estimated position.

Test Point Ture Position (cm) LS Result (cm) WLS-T Result (cm)

1 (185, 170, 200) (174.6, 161.0, 166.5) (179.8, 167.1, 187.1)
2 (185, 320, 200) (175.2, 309.7, 175.3) (191.1, 312.4, 190.1)
3 (75, 380, 220) (64.8, 395.3, 199.6) (66.3, 387.0, 208.4)
4 (225, 380, 220) (212.1, 364.7, 199.9) (216.1, 383.2, 207.0)
5 (185, 170, 240) (171.7, 159.3, 223.6) (181.3, 165.6, 230.9)
6 (185, 320, 240) (169.2, 332.7, 216.3) (176.9, 324.1, 226.2)

Average Error - 12.1/12.2/23.1 6.7/4.9/11.7

From Table 2, it can be seen that the WLS-T with improved LS algorithm improves
in X, Y, and Z direction compared to the LS algorithm, and the mean value of positioning
accuracy is improved by 45%, 60%, and 49%, respectively, which improves the positioning
effect of the mobile platform as a whole.

4.2. Mobile Positioning

Since the positioning accuracy of a single sensor cannot meet the high-accuracy posi-
tioning requirements in mobile scenes, the above IMU sensor is not affected by the outside
world. It can only rely on itself to achieve positioning, so this paper adopts the UWB and
IMU fusion positioning.

4.2.1. 2D Positioning Experiment

The base station placement position and the preset trajectory are shown in Figure 9.
To explore whether the target node under the 2D plane with different heights of base
station placement will affect the positioning effect, this paper first designed the positioning
experiment of rectangular trajectory under different heights, to judge whether its different
heights will affect the positioning results. LS, WLS-T, and ESKF positioning algorithms are
also used to determine the positioning effect of the trajectory. The rectangular circuit set for
this experiment is 150 cm × 300 cm, and the positioning experiment is conducted at the
height of 210 cm, 220 cm, and 230 cm from the ground, respectively. Figure 10 shows the
2D positioning results of this experiment.
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(c) H = 230 cm.
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In Figure 10, the blue dots indicate the absolute paths, the orange dots indicate the
predicted trajectories obtained from the positioning experiments using the LS algorithm
with UWB alone, the green dots show the predicted trajectories obtained from the results
obtained by the LS algorithm and the positioning implementations after Taylor convergence,
and the red dots indicate the predicted trajectories obtained from the fusion positioning
experiments using UWB and IMU. From the positioning results in Figure 10, it can be seen
that the LS algorithm’s positioning results are dispersive. In contrast, the WLS-T algorithm,
after Taylor’s optimization, converges the dispersive data of its UWB sensor. Finally, after
the fusion of IMU, the ESKF algorithm makes the predicted trajectory closest to the absolute
path. When the target node and the base station are at the same height, its ESKF algorithm’s
prediction result fluctuates less, ensuring positioning accuracy. The error results of the
above rectangular positioning can be analyzed in Table 3.

Table 3. 2D positioning errors of rectangle at different heights.

H = 210 cm H = 220 cm H = 230 cm

LS WLS-T ESKF LS WLS-T ESKF LS WLS-T ESKF

X 7.8 6.3 4.9 9.5 6.8 4.0 7.2 6.2 4.8
Y 9.5 8.5 6.8 12 7.8 5.8 9.4 7.1 5.1

From the positioning error data in Table 3, it can be seen that the height of the target
node of the mobile platform is not affected by the height of the UWB base station placement
when the mobile platform performs 2D positioning. There is no significant difference
between the positioning results of each algorithm for rectangles at different heights. In
addition, the ESKF fusion positioning algorithm with the addition of IMU reduces the
positioning accuracy in the X and Y directions by 44% and 43%, respectively, compared to
the LS algorithm which is positioned by UWB only.

Taking the rectangle positioning experiment with a height of 210 cm as an example,
the cumulative distribution function (CDF) of positioning error is compared between the
fused positioning method and the UWB positioning method alone in the x, y directions,
respectively, and the results are shown in Figure 11.
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Figure 11. CDF comparison diagram of positioning errors of the two positioning methods. (a) Positioning
errors in the x-direction. (b) Positioning errors in the y-direction.

According to Figure 11a, it can be seen that the positioning errors of both positioning
methods in the X direction are concentrated within 16 cm. About 70% of the point errors
are less than 10 cm for positioning by UWB only, while about 85% are less than 7 cm for
fused UWB and IMU positioning. Figure 11b shows that when UWB is positioned alone,
the error in the Y direction is within 22 cm, and about 80% of the points have an error of
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15 cm. The mistake in fused UWB and IMU positioning is within 12 cm, and 80% of the
points have an error of 10 cm. It can be seen that the fusion of UWB and IMU significantly
improves the positioning accuracy of the trajectory, and most of the positioning errors are
less than 10 cm, which can meet the positioning accuracy requirements of this paper.

4.2.2. 3D Positioning Experiment

This paper aims to investigate whether the target node meets the subsequent mobile
construction requirements in the height range of [160 cm, 240 cm]. Therefore, two different
trajectories, straight and rectangular, are set up in this paper, and experiments are conducted
at different heights. In this case, the base station placement is the same as in Section 4.1.2.
The LS, WLS-T, and ESKF fusion algorithms estimate their final positioning results and
compare them with the true path (TP) to obtain Figure 12. The first column is the projection
result of the positioning trajectories of the straight line under different heights on the 2D
plane, and the second column is the overall positioning trajectory of the straight line in
the 3D space. The third column is the projection error between the measured and actual

points in the XOY plane, expressed as the magnitude of
−→
a
′
. A vector projection schematic

is shown in Figure 13.
As shown in Figure 12, only using the LS algorithm for its positioning, its positioning

results are more dispersed, seriously deviating from the actual trajectory. The WLS-T
algorithm is more convergent than the LS algorithm, which improves the accuracy of
the positioning using only the UWB sensors. Finally, the fusion of UWB and IMU using
the ESKF algorithm results in a smoother positioning trajectory. From the third column
in Figure 12, the projection on the XOY plane obtained by only the LS algorithm for
its positioning has a significant error fluctuation and exceeds 30 cm. In contrast, the
projection error on the XOY plane obtained by the Taylor-optimized WLS-T algorithm for
its positioning has more than 80% of points within 15 cm, which is a convergence of the
UWB positioning results. Finally, after the fusion of the IMU, about 80% of the issues in the
ESKF algorithm have an accuracy of 15 cm. The ESKF algorithm has about 80% of the points
with an error of 7 cm. The fusion positioning improves the positioning of the trajectory, and
the error trajectory is smoother. Finally, the positioning results of the algorithms mentioned
above are discussed regarding the average error in each axis direction and the projection
error (PE), which is the Euclidean distance between the measured and the actual results in
the XOY plane. In this case, the projection distance error on the XOY plane is calculated
according to Equation (29), which ultimately leads to the results in Table 4.

AE =
1
i ∑

√
(xi− x)2 + (yi− y)2 (29)

According to the data in Table 4, it can be seen that the projection vector errors of
the measured and actual points on the trajectory after fusion with the ESKF algorithm are
all within 10 cm, which satisfies the positioning requirements in the X-Y direction. The
positioning errors in the Z direction are all within 15 cm. Compared with single UWB
positioning, the ESKF fusion positioning effect has a noticeable improvement. Its vector
error in the XOY plane is 6.5 cm on average, while the average PE of the LS algorithm is
12.2 cm and the average PE of the WLS-T algorithm is 8.6 cm, and their mean accuracy
values are improved by 47% and 25%, respectively. In the Z direction, the ESKF algorithm
improved the mean accuracy value by 47% and 44% compared to the LS and WLS-T
algorithms. By analyzing the error results in the X, Y, and Z directions, it can be deduced that
the positioning accuracy of the fused ESKF algorithm is significantly improved compared
to both the LS algorithm and the WLS-T algorithm.

As shown in Figure 12, the positioning error at the height of 160 cm gradually increases
as the trajectory slowly approaches the distance to the highest base station. Meanwhile,
the distribution of positioning error at 200 cm and 240 cm elevations is more uniform and
without significant fluctuations. Therefore, the height range is further reduced to [200 cm,
240 cm]. To verify the validity of the above height range, this paper adds the rectangular
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trajectory at different heights for the positioning experiments on this basis. Figure 14 shows
the results of rectangular positioning at different heights.
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Table 4. Error analysis of straight at different heights and with different positioning algorithms.

H = 160 cm H = 200 cm H = 240 cm

LS WLS-T ESKF LS WLS-T ESKF LS WLS-T ESKF

X-axis AE 10.2 5.9 4.6 9.1 5.5 4.7 8.2 8.0 6.8
Y-axis AE 10.1 7.4 3.8 6.1 3.9 2.9 4.6 2.7 3.4
Z-axis AE 24.5 20.6 14.2 24.3 23.5 12.9 26.0 24.9 11.7
XOY-PE 14.8 9.9 6.2 11.8 7.3 5.5 10.0 8.7 7.8
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From Figure 14, it can be clearly seen that when the target node is at the corner, the
LS algorithm has obvious fluctuation and large error, while the positioning results of the
WLS-T positioning algorithm gradually converge to the real trajectory after incorporating
the Taylor level. The ESKF algorithm after adding IMU sensors is closer to the real trajectory,
and compared with the WLS-T algorithm, its trajectory is smoother and more similar to the
real value. The specific analysis of their positioning data can be obtained in Table 5.
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Table 5. Error analysis of rectangle at different heights and with different positioning algorithms.

H = 200 cm H = 210 cm H = 220 cm

LS WLS-T ESKF LS WLS-T ESKF LS WLS-T ESKF

X-axis AE 9.3 5.1 4.1 8.8 5.1 5.4 9.3 4.3 4.1
Y-axis AE 8.3 5.4 4.6 10.8 9.1 7.3 8.4 5.8 5.5
Z-axis AE 23.5 16.6 14.5 17.8 8.4 7.1 10.2 9.8 9.5
XOY-PE 13.7 7.6 7.0 15.6 11.7 9.6 13.2 7.9 7.4

As can be seen from Table 5, compared to the LS algorithm, the ESKF algorithm
improves the mean value of the accuracy in the XOY plane and Z direction by 44% and
40%, respectively. Its error pattern is consistent with the error pattern in Table 4 above.
Therefore, when the height of the target node is in the range of [200 cm, 240 cm], it can meet
the experimental requirements of this paper.

4.3. Experimental Validation

Since the experimental site of this study only involves position transformation in the
X and Y direction, the KUKA-KR60 robotic arm with a tracked chassis is used as the MCP
for the experiments in this paper, and the 2D plane is used as an example to verify the
positioning effect of the above method in the stationary and moving states of the MCP, as
shown in Figure 15.
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Figure 15. Experimental validation of positioning in real experimental scenarios: (a) MCP;
(b) installation position of each sensor.

When the MCP was stationary, 6 positioning points were selected for fixation tests,
and each position point was tested for 200 positioning tests, respectively. The data analysis
of the positioning results of these 6 test points leads to Table 6.

Due to the limitations of the experimental site and the size of the KUKA-KR60 MCP,
this paper verifies the positioning effect of the platform in the mobile state by controlling
the MCP to take a “U” shaped trajectory in the real site. The positioning results are shown
in Figure 16.
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Table 6. Analysis of positioning results for stationary point positions.

Test Point True Position (cm) LS Result (cm) WLS-T Result (cm)

1 (300, 505) (295.1, 511.1) (303.8, 509.8)
2 (260, 230) (256.3, 223.9) (256.8, 226.3)
3 (400, 490) (405.2, 483.4) (402.1, 493.2)
4 (221, 60) (215.6, 67.4) (222.4, 56.7)
5 (360, 35) (366.4, 42.6) (361.4, 37.4)
6 (207, 525) (201.1, 532.4) (204.7, 527.7)

Average Error - 5.3/6.9 2.4/3.6
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From Table 6 and Figure 16, it can be seen that when the MCP is in a stationary state,
the improved WLS-T algorithm’s positioning results for fixed position points are closer to
the true position compared to the LS algorithm. When the MCP is in motion, the trajectory
of the improved ESKF algorithm with IMU fusion is closer to the real path than the LS and
WLS-T algorithms with UWB sensors only, and the positioning points on the trajectory
converge near the real trajectory. The error analysis of the positioning results of this “U”
shaped trajectory is shown in Table 7.

Table 7. Positioning error analysis of U-shaped trajectory.

Error LS (cm) WLS-T (cm) ESKF (cm)

X 8.7 7.0 3.9
Y 9.1 6.7 5.2

XOY-PE 16.1 12.8 8.0

As can be seen from Tables 6 and 7, when the MCP is in a stationary state, the
positioning results of the improved WLS-T algorithm for fixed position points are closer to
the real position compared to the LS algorithm. When the mobile platform is in motion, the
trajectory of the ESKF algorithm with fused IMU is closer to the TP and the positioning
points on the trajectory converge nearer the true trajectory compared to the LS and WLS-T
algorithms that only use UWB sensors. By fusing the preprocessed raw UWB data with
the data from the IMU using the ESKF algorithm, the mean absolute error in the X and Y
directions is 4.5 cm. In summary, the results validate the effectiveness of the above method
and demonstrate that the method proposed in this paper can be used for the positioning of
mobile platforms in real scenarios.
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5. Construction Simulation
5.1. Simulation Experiment Process

In order to realize the continuous simulation construction of the MCP, it is necessary
to know the specific position of the platform at the current moment, and then combine
the construction position with the simulation construction operation of the robotic arm.
Figure 17 introduces the simulation construction experimental process of this paper.
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Figure 17. MCP construction simulation process.

As can be seen from Figure 17, it is necessary to output the positioning data through
the external positioning sensors and preprocess them to eliminate the ranging error and
improve the positioning accuracy. In this paper, the above improved high-accuracy position-
ing algorithm is written as a GH block in the WLS-T algorithm, and the coordinate system
conversion is performed on the positioning result to convert the positioning information
into the position information of the platform in Rhinoceros.

Since the large-scale building model cannot be built directly by the existing robotic
arm in one go, this experiment prepares the model separately according to the slice position
of the above model, and the initial building position of the MCP is shown in Figure 18.
In this paper, the KUKA-KR60 MCP equipped with a chassis and lift is used to create
simulation construction experiments for large-scale models. The construction planes were
extracted from the center spot of the tested block placement planes, and the construction
planes were inputted into the KUKA|prc core operator, which automatically produces
KUKA Motion Command to control the movement of the robotic arm.
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For subsequent mobile intelligent construction design research, it is crucial to accu-
rately obtain the positional information of the robotic arm to facilitate the completion of
the corresponding operation of the robotic arm. Since the mobile robot starts to perform



Buildings 2024, 14, 1196 25 of 31

the related operations only when it is at stationary mode, this paper adopts the C# lan-
guage to custom-definition the GH plug-in, which implements the real-time transmission
of the previously optimized UWB positioning results into Rhinoceros and converts the
{UWB} coordinate system into the {World} coordinate system through the coordinate sys-
tem conversion to obtain the position information of the robotic arm under the {World}
coordinate system.

See Figure 18 for an example of a transformation relationship between two coordi-
nate systems established in Rhinoceros, from which the relationship between the new
coordinates and the original coordinates can be obtained.[

x
y

]
=

[
460
600

]
+

[
cos θ − sin θ
sin θ cos θ

][
x
y

]
=

[
460− x
600− y

]
(30)

According to the conversion relationship of the coordinate system mentioned above,
the GH plug-in block after completing the coordinate conversion is shown in Figure 19.
Component A is the positioning module, which is used to transfer the external positioning
information into Rhinoceros in real-time. Component B is the coordinate conversion
module, which is used to convert the positioning data in this paper to the positioning data
under the {World} coordinate system.
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5.2. Application of Construction Simulation for Wooden-Cabin
5.2.1. Cabin Model

In this paper, a large-scale model is prepared based on Rhinoceros modeling software
and visual programming plug-in GH, and KUKA|prc is used to prepare the motion path
for the simulation model based on robotic arm.

In order to apply the above method to a real construction scenario, a large-scale
model of a cabin, for example, was built, as shown in Figure 20. The model has a base of
330 cm × 400 cm and a height of 420 cm. The whole wooden construction model consists
of wood blocks with a uniform size of 60 cm × 10.5 cm × 10.5 cm, totaling 737 blocks. The
MCP is only responsible for vertically constructing the main A, B, and C parts of the cabin
model, with a total of 30 layers and 536 wooden blocks, while the front and rear parts of
the model are pre-constructed. As the working range of the KUKA-KR60 is within 210 cm,
it is not possible to realize a complete construction within a fixed working range, so it is
necessary to equip it with a mobile chassis to complete the overall construction process. The
system is not always in the same position during the entire construction process, but builds,
moves, and builds again, cyclically, by changing the construction position of the mobile
platform to complete the construction of large-scale models. According to the working
range of the KUKA-KR60 arm and the size of the target model, the model is separated
into 3 parts and built sequentially, and all of the wooden blocks are built according to the
preconfigured path during the whole building process.
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Figure 20. Cabin model for robotic construction with MCP.

During the construction process, the change in the position of the MCP results in a
change in the relative position of this robotic arm to the target component. It is therefore
necessary to associate the position of the mobile platform after it has been moved with
the position of the successive construction. In this paper, the complete construction of this
workflow is achieved by integrating the mentioned positioning plug-in module with the
process of continuously mobile construction of the wooden structure model.

5.2.2. Continuous Construction Simulation

When the first part of the construction is completed, the MCP needs to move to the
second task spot for the second part of the construction, as shown in Figure 21a. The
position and sequence of the second part of the wooden model constructed by the MCP is
shown in Figure 21b. In this case, the construction sequence is the same for each section of
the model.
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In the KUKA|prc plug-in of GH, it is not possible to change the position of the MCP
directly from external data. Therefore, in this paper, the position of the platform within
Rhinoceros is changed by changing the position of the construction plane of the robotic arm
and then the position of the platform through the inverse kinematics of the robotic arm,
thus realizing the continuous simulation building operation of the MCP. The entire mobile
simulation of the GH definition component is shown in Figure 22a. The final vertically
constructed cabin model of the MCP is shown in Figure 22b.
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In this case, the procedure to build the wooden model of the simulation is divided
into four parts. The first part of the GH definition (A in Figure 22a) is responsible for
transferring the position information of the platform in the external {UWB} coordinate
system to the GH platform, and then calculating the position relationship between the
two coordinate systems based on the {UWB} coordinate system and the {World} world
coordinate system in the real scene, which is then transformed into the world coordinates
available for the robotic arm. The second part (B) is based on the Rhinoceros modelling
software to create the overall model of the cabin, in which the size of the wooden blocks
is adjustable, so that the shape of the main structure of the cabin can be adjusted at any
time. The third part (C) is responsible for the positioning value of the coupling platform
and the plane of the wooden block construction, by changing the building position of the
wooden block at the next task point, thus realizing the whole continuous construction
workflow. The fourth part (D) is the simulation operation part, which can manually adjust
the value of the SIM slider to view the simulated building process of the platform at the
current position. At this point, the continuous on-site construction simulation experiment
has been completed.

As a result, the on-site continuous construction simulation experiment of the MCP
realized in this paper proves that the combination of the mobile construction platform’s
positioning technique and robotic construction technique can provide the feasibility of
realizing on-site large-scale construction in the future. Since the positioning algorithm
proposed in this paper shows high accuracy in the set placement range of UWB base station
of 600 cm × 700 cm, the positioning technique investigated in this paper is applicable to
any on-site large-scale building construction within this range.

6. Conclusions

In the mobile intelligent construction process, the reliable positioning technology of the
MCP is critical. This paper conducts the positioning experiments for MCPs in two different
states, stationary and moving, when it performs the construction work. A KUKA-KR120
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carrying UWB tags and IMU sensors are used for the positioning test. The experimental
results show that in the stationary state, when only the UWB sensor is used for positioning,
the improved WLS-T algorithm improves the positioning accuracy by 53% on average
compared with the LS algorithm. In the moving state, using fused positioning with UWB
and IMU sensors, the ESKF fused positioning algorithm improves the positioning accuracy
in the XOY plane and Z direction by 46% on average compared to the LS algorithm. When
the method is ported to a real KUKA-KR60 MCP, the static positioning errors in the X and
Y directions are 2.4 cm and 3.6 cm, respectively. In the mobile state, the positioning errors
in the x and y directions are 3.9 cm and 5.2 cm, and the trajectory error is 8 cm. Compared
with other studies, which have errors of 4.1 cm and 5.8 cm in the x and y directions [58],
and trajectory errors of 28 cm and 10 cm [60,61], the method in this paper shows a high
level of positioning accuracy.

In this paper, the above positioning results are verified using a KUAK-KR60 MCP
equipped with chassis for positioning verification. A custom GH plug-in is programed
using C#, which can transmit the positioning results in the stationary state to the Rhinoceros
modeling software in real-time, and finally carry out the conversion to the position infor-
mation in the {world} coordinate system that can be recognized by the robotic arm, in order
to correspond to the position of the subsequent operation. In order to better apply the
positioning technology in the field of mobile construction, this paper finally integrates the
above positioning plug-in in a large-scale model and realizes on-site continuous simulation
construction by positioning the MCP with the real-time positioning data, which confirms
the effectiveness of the method proposed in this paper. However, there are still some
shortcomings, as well as directions in which improvements can be made. (1) In this paper,
only four UWB base stations are used in 3D space, and there is still some error in the non-
line-of-sight situation; therefore, more base stations can be added in the future to make the
positioning more accurate. (2) In the stationary state, only the UWB positioning algorithm
is improved, and it can be fused with more sensors in the future to better improve the posi-
tioning accuracy and increase the stability of the system. (3) The positioning algorithm in
the mobile state and the positioning algorithm in the stationary state cannot be switched in
real time, and in the future, it can be designed as a seamless switching algorithm operation
to reduce the operation time of the whole construction process. (4) This study is limited by
the surrounding environment; the simulated environment was constructed to ensure that
there is no obstruction between the UWB base stations, the dimension of wood component
is unified, and the operation height of the MCP is limited, all of which could be improved
in future studies.

In order to meet the needs of mobile construction in real scenarios, it is necessary to
combine the positioning results with the operation of the robotic arm and to consider more
influencing factors in the construction environment, so as to better realize the continuous
on-site construction tasks.
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