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Abstract: Effective monitoring of road fixtures is essential for urban safety and functionality. However,
traditional inspections are time-consuming, costly, and error prone, while current automated solutions
struggle with high initial setup costs, limited flexibility preventing wide adaptation, and reliance on
centralized processing that can delay response times. This study introduces an edge AI-based remote
road fixture monitoring system which automatically and continuously updates the information
of the road digital twin (DT). The main component is a small-sized edge device consisting of a
camera, GPS, and IMU sensors designed to be installed in typical cars. The device captures images,
detects the fixture, and estimates their location by employing deep learning and feature matching.
This information is transmitted to a dedicated cloud server and represented on a user-friendly user
interface. Experiments were conducted to test the system’s performance. The results showed that
the device could successfully detect the fixture and estimate their global coordinates. Outputs were
marked and shown on the road DT, proving the integrated and smooth operation of the whole
system. The proposed Edge AI device demonstrated that it could significantly reduce the data size
by 80–84% compared to traditional methods. With a satisfactory object detection accuracy of 65%,
the system effectively identifies traffic poles, stop signs, and streetlights, integrating these findings
into a digital twin for real-time monitoring. The proposed system improves road monitoring by
cutting down on maintenance and emergency response times, increasing the ease of data use, and
offering a foundation for an overview of urban road fixtures’ current state. However, the system’s
reliance on the quality of data collected under varying environmental conditions suggests potential
improvements for consistent performance across diverse scenarios.

Keywords: road fixture; localization; remote monitoring; digital twin; smart cities; edge computing;
artificial intelligence

1. Introduction

Ensuring the safety of individuals using major infrastructure networks and urban
areas is of utmost importance from both social and economic perspectives [1]. In the context
of road infrastructure, the term ‘road fixture’ includes various elements like traffic signs,
traffic signal poles, markings, barriers, bollards, and streetlights placed within the road
reserve. These fixtures serve the crucial purpose of providing information and ensuring
the safety of road users. They offer vital guidance to drivers and pedestrians, alert them
to potential dangers, and help regulate traffic flow. When a road fixture is absent, the risk
of accidents and injuries on the road significantly rises [2]. Hence, achieving road safety
requires continuous monitoring and management of road fixtures.

Traditionally, road fixture monitoring has been performed using manual inspections
and periodic surveys. These inspections are carried out by accredited surveyors who
physically evaluate the road networks. This method, although necessary, has been found to
be time-consuming, expensive, and prone to human mistakes in addition to requiring a lot
of effort [3]. The advent of automated data collection processes is an attempt to offer a more
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efficient and precise method of evaluating road elements [4]. Advancements in remote
sensing technology and the Internet of Things (IoT) have led to a significant change in how
road fixture monitoring is conducted in recent years. Researchers have investigated the
possibility of using vehicles driven by road users, which have been provided with sensors,
to constantly monitor transportation infrastructure systems. These methods utilize the
ubiquitous nature and portability of regular vehicles to efficiently collect data about the
current infrastructure. The use of smartphones and in-vehicle devices has expanded this
capability, enabling the collection of data from moving cars through crowdsourcing [5,6].
They use accelerometers and gyroscopes to detect vibrations and movements, which are
indicative of road surface anomalies such as potholes, cracks, and bumps [7]. GPS modules
in smartphones provide geospatial data, linking detected anomalies to specific locations,
facilitating precise mapping of road conditions. Additionally, smartphone cameras con-
tribute to visual assessments, offering pictorial evidence and further details of the road
anomalies [8]. These multi-modal data streams, when aggregated, provide a comprehensive
view of road infrastructure health, enabling authorities to prioritize maintenance efforts
and enhance road safety efficiency. These advancements have facilitated the development
of a continuous flow of data, leading to a considerable enhancement in effectiveness and a
reduction in expenses for local government agencies.

In addition, the implementation of digital twin (DT) technology in infrastructure man-
agement has resulted in a profound shift. DTs, defined as functional connections between
complex physical systems and their high-fidelity digital replicas, have seen significant
growth across several industries, including road infrastructure management [9]. These
virtual replicas, continuously updated with multisource, multisensory, and multitemporal
data, enable monitoring, simulation, forecasting of potential problems, and planning for
maintenance throughout the lifecycle of infrastructure. In the context of road infrastructure
and smart cities, DTs have become crucial, creating comprehensive virtual copies of entire
road networks [10]. These representations include dynamic elements like traffic flow, envi-
ronmental conditions, and real-time infrastructure updates, far beyond traditional static
road object depictions. For example, DT technology has been employed to enhance the
monitoring and control of transportation systems, offering a real-time, multilevel layer
model method for synchronizing physical and virtual spaces [11]. Data from physical space
sensors are shared with the virtual space via technologies like 5G and Wi-Fi, allowing
cloud servers to provide end users with real-time data visualizations and information
operations through digital models and mobile applications. Moreover, DTs have facilitated
new approaches to road maintenance systems, where cloud point data acquired through
mobile mapping systems are integrated into a GIS and BIM environment, showcasing
the efficiency of volumetric auscultation in surface flatness and distortion inspection [12].
In another instance, DTs were proposed to support smart city initiatives by deploying a
‘Digital Twin Box’ on roads, which included a 360◦ camera and IoT devices connected to
an onboard computer. This system constantly sends real-time data, including live streams,
GPS location, and environmental measurements, to the edge/cloud for real-time road asset
monitoring, which is crucial for enabling smart mobility and self-driving vehicles [13].

Despite advancements in automated road monitoring systems, several limitations hin-
der their effective implementation and widespread adoption. Existing approaches typically
rely on processing data within centralized databases, leading to potential bottlenecks and
scalability issues due to the massive volume of data generated. This centralized processing
approach may result in delays and inefficiencies in data analysis and decision making.
Moreover, existing approaches often rely on specialized and expensive equipment such as
LiDAR, limiting their scalability and accessibility [12].

To address the limitations of current road monitoring systems, our study introduces
an integrated edge AI-based system designed for efficient and continuous monitoring of
road fixtures. This system utilizes cost-effective edge devices installed in personal vehicles,
circumventing the need for costly specialized equipment like LiDAR and facilitating exten-
sive deployment across numerous vehicles. The core of our approach is edge computing,
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which processes data proximate to its source, thereby enhancing system responsiveness and
minimizing latency. This local processing capability not only streamlines data handling but
also reduces dependence on centralized databases, which results in mitigating the typical
bottlenecks and scalability concerns. Our framework employs deep learning algorithms
to these edge devices for precise identification and categorization of road fixtures from
the captured visuals. Additionally, it incorporates advanced localization techniques to
swiftly and accurately determine the positions of detected road elements, leading to the
creation of detailed DT models. These models serve as a dependable basis for decision
making in infrastructure management. Integration with a cloud-based DT platform and
utilization of the Google Maps API enables the formation of a central, constantly updated
data repository, thereby promoting accessibility and collaborative engagement among
infrastructure management stakeholders.

The remainder of the paper is organized into the following sections. The next section
provides a review of the literature related to the topic. Section 3 describes the technical
details of the framework being proposed. Experimental setup and results are presented in
Section 4. Then, Section 5 discusses the practical implications of the approach, along with
future research potentials. Finally, the research is concluded in Section 6.

2. Literature Review
2.1. Remote Road Monitoring

Traditional road fixture monitoring methods rely on manual inspections or periodic
surveys. These inspections are performed by accredited surveyors by either walking or
driving along the roadway. If defects are detected, they are assessed and, if possible,
addressed. At the end of the inspection, all the information gathered needs to be inserted
into the road authorities’ central database. The collected data consist of images, descriptions,
and treatments of possible road or fixture defects [14]. Therefore, this process can be time-
consuming, laborious, expensive, and prone to human error [15].

Automated data collection procedures have been presented to provide more accurate
and faster information on roads. Some previous studies proposed to use of instrumented
vehicles equipped with several sensors such as laser scanners, road profilers, accelerometers,
image and video cameras, and positioning systems for this purpose [16–20]. However,
despite the efficiency of these dedicated vehicles, they are usually equipped with expensive
sensors, which means they cannot be used in a scalable manner due to the high cost. Most
transportation authorities are not able to acquire them, whereas several others can afford
only a few of them because of their extremely high purchase and operational costs [21]. For
these reasons, their usage is restricted as a road assessment tool, which happens once a
year and only on highways.

In recent years, there has been a growing interest in using remote sensing technologies
for road fixture monitoring. To overcome the abovementioned issues, researchers have
proposed utilizing road users’ vehicles, such as standard cars, equipped with sensors to
monitor transportation infrastructure systems [22–24]. This process aims to provide a
continuous data stream, increasing efficiency and reducing the cost to municipal depart-
ments. Owing to the high number and mobility of these vehicles, they can efficiently collect
information about the population of the existing infrastructure. For example, ref. [23]
presented a novel framework for transportation infrastructure monitoring using sensors in
crowdsourced moving vehicles. They utilized a vibration sensor and gyroscope through a
smartphone, along with a sports camera, to collect data. Their methodology involved large-
scale data collection from smartphones in vehicles to detect bridge damage, employing a
data-driven approach that included mel-frequency cepstral analysis (MFCA) for feature
extraction and principal component analysis (PCA) for feature decorrelation. This approach
allows for the assessment of bridge health by comparing feature distributions from different
vehicles, mitigating operational effects like vehicle speed and weight. In a recent study,
ref. [25] presented an improved framework for the instance-aware semantic segmentation
of road fixtures using mobile laser scanning data. The experimental results demonstrated
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that their framework reliably assigned both semantic information and instance information
for mobile laser scanning point clouds of road fixtures.

Overall, remote road monitoring brings several advantages. First, it is more efficient,
as it can be done much faster than manual inspections. Second, remote monitoring is more
accurate, as it is less prone to human error. Third, remote monitoring is more cost-effective,
as it does not require the use of personnel or vehicles. There are also several challenges
associated with remote road monitoring. The accuracy of remote monitoring systems de-
pends on the quality of the data that are collected. The quality is evaluated based on criteria
such as accuracy, resolution, and the frequency of data collection. Ensuring high-quality
data involves calibrating sensors regularly, using advanced algorithms to filter out noise,
and integrating data from multiple sources to validate and improve accuracy. Moreover,
machine learning techniques can be employed to identify and correct anomalies in the data,
enhancing their reliability for monitoring applications. Furthermore, remote monitoring
systems can be expensive to implement and maintain. Last but not least, these systems can
generate a large amount of data, which can be difficult to manage and analyze. Considering
these benefits and challenges, recent advancements in digital technologies, such as the
Internet of Things (IoT), edge computing, big data, and artificial intelligence, have drawn
increasing attention to remote road monitoring and maintenance tasks [26]. Among them,
smart dashboard cameras have become widespread due to their advanced capabilities in
road monitoring and safety enhancement [27]. These smart dashboard cameras extend
beyond conventional video recording functionality; they are integrated with intelligent
systems that analyze visual data in real time. Equipped with high-resolution cameras
and wide-angle lenses, they capture clear and comprehensive footage of the road ahead,
ensuring clarity and detail. Furthermore, they often feature GPS integration for precise
location tracking of incidents [28]. This GPS functionality enables accurate timestamping
and geotagging of recorded footage, enhancing its reliability and usefulness for incident
investigation and analysis. In terms of functionality, smart dashboard cameras can au-
tomatically detect unusual events, such as sudden stops, swerves, or collisions, using
integrated sensors and artificial intelligence algorithms [29]. Continuously monitoring the
road environment and analyzing the captured footage in real time, these smart dashboards
can trigger specific actions such as saving the footage or generating alerts for the driver
upon detecting an event of interest. Furthermore, they can contribute to big data analytics,
providing valuable insights for traffic management and urban planning. Their ability to
connect with other in-vehicle systems and external networks enables a more cohesive and
interactive approach to road safety, facilitating immediate response actions during emer-
gencies. For instance, ref. [30] introduced a new approach for detecting vehicle maneuvers
using deep learning visual odometry models. The method used a camera mounted on
the vehicle to capture images and then processed the images using a convolutional neural
network (CNN). Another study by [31] proposed a framework based on dashcam images
that detects pavement markings using deep learning applications, stores the information of
detected pavement markings, and analyzes their condition. These studies highlight the po-
tential benefits of using dashcam devices along with deep learning-based detection models
for road monitoring and maintenance. These benefits include having large and expandable
datasets, whole road coverage, and being relatively cheap and easy to install [29].

2.2. Digital Twin and Infrastructure Management

The introduction of DT technology has brought about a significant change in infrastruc-
ture management. A DT is a virtual model of a physical system, including its environment
and processes, that is continuously updated by exchanging information through physical
and virtual entities [32]. Recently, there has been a significant increase in interest in the
digital transformation of engineering assets [33–35]. The DT industry is projected to grow
significantly, with an expected increase from $3.1 billion in 2020 to $48.2 billion in 2026 [36].
This indicates that DTs are already exerting a big and noteworthy impact. The concept of
DT is highly significant and has been applied for various purposes, such as monitoring,
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management, maintenance, optimization, and prediction in several industries, including
agriculture [37], healthcare [38], sport and fitness [39], construction and smart cities [40,41],
and bridge infrastructure monitoring [12].

Within the realm of road infrastructure and smart cities [42], DTs have become essen-
tial because of their significant role in facilitating the development of comprehensive virtual
duplicates of whole road networks. These reproductions go beyond the static representa-
tions of road fixtures by capturing dynamic elements such as traffic patterns, environmental
conditions, and real-time updates on infrastructure components. The utilization of DTs
in road infrastructure has been extensive and significant, such as road automated mobile
mapping [12], road health monitoring [43], and sustainable urban road design [44]. Ref. [13]
suggested an operational implementation of the DT concept for highways by introducing
the idea of a DT box. This box consists of a 360◦ camera and a collection of IoT sensors that
are connected to a single onboard computer. Empirical tests were carried out to confirm
the practicality of this method, with a main emphasis on the processes of detection and
recognition. Ref. [45] developed a geometric model of transportation infrastructure using
GIS to expedite the advancement of road transportation. They utilized data fusion tech-
niques to calculate DT data at various levels. The resulting simulation reflects the physical
and operational rules governing the transportation infrastructure.

A fundamental benefit of DTs in infrastructure management is their capacity to enable
real-time monitoring. Ref. [46] introduced a DT system designed to gather and deliver
real-time and precise traffic data as well as identify important places for driving actions
and detecting changes in road conditions, such as damage or variations in friction. In their
study, ref. [47] developed an extensive DT framework specifically for the monitoring and
maintenance process in road and bridge construction, which consists of six distinct steps.
Through integration into ‘Smart X Platforms’, they effectively consolidated 15 types of
data about road and bridge management. Gathering and analyzing real-time information
enables proactive decision making and the implementation of predictive maintenance
procedures. In this regard, ref. [48] proposed a highway tunnel performance prediction
model based on the DT concept and machine learning (ML) technology. This model
highlights a data-driven management strategy for preventive maintenance. A DT-based
decision support tool was presented by [49] to help road operators with the tasks of road
inspection, maintenance, and improvement. Initially, the structure of the suggested tool
was introduced, including the primary elements and capabilities. The system relies on
a DT that replicates actual road assets to combine various data sources and facilitate the
transformation of detailed data into comprehensive information. Subsequently, the road
pavement data are incorporated into the decision tree and analyzed using machine learning
clustering methods according to their situation and quality.

As suggested by [50], the integration of DTs into road infrastructure would significantly
enhance monitoring and prediction accuracy, leading to more efficient decision making.
A comprehensive approach to managing road infrastructure, informed by continuous
real-time upgrading and data-informed decision making, could substantially improve road
safety and maintenance planning. However, the seamless real-world integration of recent
technological innovations, informed by continuous real-time upgrading and data-driven
decision making, still suffers from several important issues, including the integration of
multiple data sources, the need for real-time synchronization, and the management of
huge datasets.

2.3. Current Gap and Research Objective and Contributions

Although remote road monitoring and DT technology have demonstrated promising
outcomes, there are still significant gaps and obstacles that require attention in order to
establish a more comprehensive and efficient road fixture monitoring system. Ref. [51]
highlighted an important discrepancy between the optimistic outlook presented by DT and
the actual technological capabilities in the field of transportation infrastructure. Several
vital technical requirements remain unfulfilled. The collection and synchronization of
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accurate and continuous data across a vast network of road infrastructure and integration
data from various sources, including IoT dashcams, DTs, and external databases, pose a
challenge. Furthermore, it is crucial to ensure that the great amount of data generated
by advanced monitoring systems with multimodal sensors is easily accessible and user-
friendly. The development of an intuitive user interface that enables easy interpretation
and interaction with the monitoring data is an area that requires focused attention.

A critical challenge also exists in finding the accurate location of road elements. Cur-
rent systems often face challenges in accurately determining the exact position of identified
objects with the level of precision required for dependable DT representations. This defi-
ciency impedes effective decision making and timely response to infrastructure issues.

Considering these practical gaps, the primary objective of this research is to develop
and validate an integrated system that tackles the challenges in current remote road fixture
monitoring approaches. This innovative framework incorporates a road fixture DT, employs
automated identification techniques, and features a user interface designed for remote
monitoring. Rigorous practical testing underlines its effectiveness. The method relies on an
edge AI device specifically designed for common personal road vehicles and cutting-edge
deep learning algorithms to comprehensively analyze video footage or images of road
fixtures. This analysis involves detection of the fixture category, determining the precise
location, and the ability to assess the fixture condition. The framework also incorporates
a road DT, which provides an up-to-date database of analyzed information for relevant
authorities. This study contributes significantly to the field of road fixture monitoring and
management by:

• Proposing a cost-effective and scalable solution for automated monitoring using read-
ily available technology, including processing on edge devices to alleviate bottlenecks
associated with centralized data processing;

• Overcoming limitations in accurate localization of road fixture elements;
• Developing a user-friendly interface for enhanced usability and interaction with

monitoring data;
• Establishing a cloud-based DT platform for continuous data synchronization

and accessibility.

By addressing these key challenges, the proposed system promises a transformative
approach to automated road fixture monitoring, promoting enhanced infrastructure safety,
efficiency, and cost effectiveness.

3. Methodology

This study outlines a systematic framework for remote road fixture monitoring, as
depicted in Figure 1. This system is intended to be comprehensive while remaining fast,
accessible, and practical. The proposed system involves object detection, geospatial local-
ization, and DT visualization. Notably, object detection and localization are performed on
an edge device, a custom-built device equipped with multiple sensors. Utilizing advanced
computer vision and deep learning techniques, the device achieves real-time identification
of road fixture elements. Subsequently, built-in sensor data from cameras, GPS, and Iner-
tial Measurement Units (IMUs) are integrated to localize detected objects within a global
coordinate system. The extracted information is then transmitted to a cloud database to
be stored in a structured and accessible manner. Eventually, the location of the fixture is
marked on the road map, along with the corresponding information, including the object’s
image, geographical location, and its temporal and assessment details.
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Figure 1. Overview of the proposed road fixture monitoring system.

3.1. Object Detection

In the first module of the proposed remote road fixture monitoring system, the use
of a computer vision algorithm for the detection of road fixtures is the primary focus of
attention. The YOLOv7 algorithm [15] was employed for object detection in this module.
YOLOv7 represents the latest advancement in the YOLO (You Only Look Once) series
of object detection algorithms, known for their efficiency in processing images in real-
time scenarios [52]. The accuracy and detection speed of YOLOv7 have both significantly
increased compared to previous YOLO models, particularly the widely used YOLOv5.
These improvements are beneficial for the objective of the proposed system study, which
substantially depended on fast and accurate detection. Additionally, this latest version
is capable of image segmentation, a feature that can further be used in the condition
assessment analysis of the detected road fixture.

For applications that require detection of objects outside these categories, the YOLO
model would need to be further trained or fine-tuned on a dataset that includes the desired
object types. This additional training would allow the model to learn and accurately detect
new or specific objects. For this purpose, an image dataset consisting of approximately
900 images of three primary road fixture categories was collected from the web. Subse-
quently, these images were carefully annotated based on the objects, specifically road
fixtures, using the Computer Vision Annotation Tool (CVAT). CVAT [53] is an open-source,
web-based tool that facilitates the detailed annotation of images and videos for computer
vision applications. Designed to support a wide range of annotation tasks, including
bounding boxes, polygons, polylines, and points, CVAT enhances the efficiency of the
annotation process with features such as automatic annotation using deep learning models
and a user-friendly interface that simplifies the management of large datasets. The tool’s
support of the YOLO format allows for direct use of annotated data in training object
detection models. Furthermore, CVAT offers a user-friendly interface that simplifies the
task of manual annotation while providing tools for team collaboration, which is essential
for large-scale annotation projects. Using the dataset, the YOLOv7 model was customized
for the objective of real-time road fixture detection as the planned output of this module.

The dataset consists of approximately 900 images featuring three types of road
fixtures—traffic lights, stop signs, and streetlights—sourced from various online plat-
forms to ensure a diverse visual representation. Each image was carefully selected to reflect
the range of conditions typically found in real-world scenarios. The dataset is structured
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into training, testing, and validation sets, comprising 80%, 10%, and 10% of the images,
respectively. Accompanying each image is an annotation file that specifies the object’s
class and bounding box coordinates, meticulously detailed to enhance model training and
evaluation accuracy. Annotations were precisely crafted using CVAT to ensure accuracy
and consistency across the dataset, facilitating effective model training and evaluation.
To provide a clear understanding of the data used, examples of the annotated images are
shown in Figure 2.
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3.2. Geospatial Localization

This methodology integrates sensor data from cameras, GPS, and IMUs to achieve the
localization of detected objects within a global coordinate system. Figure 3 illustrates the
process of the detected object’s geospatial localization.
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Initially, the images captured by the camera underwent object detection, resulting
in pixel coordinates (xp, yp), which are then translated into a vector (X, Y) using intrinsic
camera parameters, such as the dimensions of the camera frame width in pixels (wc), camera
frame height in pixels (hc), the angle between the device level (parallel to the ground) and
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the camera in degrees, and the horizontal (hfov) and vertical (vfov) angles of the field of
view. The angle between the camera and the car’s level was set vertically aligned with the
vehicle’s frontal direction to ensure optimal field of view and image quality. This positioning
was determined through preliminary tests that evaluated the camera’s ability to capture
clear and comprehensive views of the road fixture. The horizontal positioning provided a
balanced perspective, minimizing perspective distortion while maximizing the coverage
area. Distance to center frame Dc was calculated (Equation (1)). The detected objects’
pixel locations from multiple images were merged to refine their calculated locations. This
improved the accuracy of the vectors (X, Y) representing the lateral displacement (xc)
(Equation (2)) and vertical displacement (yc) (Equation (3)) of the detected target from the
center of the camera frame. From here, (XG, YG) were obtained by fusing data from the
IMU and GPS across multiple images, refining the estimation of the target’s coordinates.
Subsequently, the global vector was converted into GPS coordinates through Williams’
aviation formula, also known as the flat earth approximation, which provides a simplified
approach for converting local Cartesian coordinates (X, Y) to latitude and longitude offsets
(∆Lat, ∆Lon) (Equations (4) and (5)) on the Earth’s surface. This formula assumes a flat
Earth within the region of interest. The latitude offset (∆Lat) indicates the north–south
displacement and is calculated by dividing the vertical distance (Y component of the vector)
by the Earth’s radius R (approximately 6378 km). The longitude offset (∆Lon) denotes the
east–west displacement and is computed by dividing the horizontal distance (X component
of the vector) by the Earth’s radius multiplied by the cosine of the reference latitude. These
offsets are then added to the current GPS coordinates ( Latc, Lonc) to determine the target
object’s GPS coordinates (LatT , LonT) (Equations (6) and (7)). The mathematical equations
are as follows:

Dc =

√
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2 +
(yc

2

)2
(1)

xc = Dc·tan
(

xp − wc
2

wc
·h f ov

)
(2)

yc =

(
hc

2

)
− yp (3)

∆Lat =
YG
R

(4)

∆Lon =
XG

R· cos(Latc)
(5)

LatT = Latc + ∆Lat (6)

LonT = Lonc + ∆Lon (7)

In cases where GPS data are temporarily unavailable for a device, which may occur
in environments with obstructed signals, such as urban canyons, tunnels, or areas with
dense foliage, the proposed system estimates the trajectory based on the last known GPS
coordinates and the motion detected through the IMU sensors. It allows for a continuous
update of the road fixture’s position, ensuring minimal disruption to the monitoring
system’s performance despite the temporary loss of GPS data. When GPS data become
available later, it resumes using both GPS and IMU data to establish a global reference
frame, facilitating the transformation of the initially obtained local coordinates into accurate
global coordinates. This process involves aligning the local and global coordinate systems
through translation and rotation transformations based on known camera positions.

3.3. Digital Twin Platform

The main objective of this research is to present a DT of road infrastructure containing
specific information about its fixture. To do so, a cloud-based database has been devel-
oped. This cloud database is connected to the Google Maps API [54], enabling continuous
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synchronization and data transfer. At predefined time intervals, the cloud database trans-
mits the newly collected data to the Google Maps API, which subsequently updates the
user interface.

The data collection and integration aspect of this process is central to the proposed
system functionality. As mentioned in previous sections, edge devices play a critical role
by detecting road fixtures, capturing their category information, images, estimated geo-
locations, and timestamps. These data, gathered from multiple devices deployed across
road networks, constitute the primary source of information for the DT platform. A router
is used to transmit the collected data over cellular networks to the cloud-based analysis
platform. For each newly detected object, the system creates a dedicated folder within
the DT platform. These folders serve as repositories for essential information, including
the object’s location, category, date, time of the last update, and the updated image. This
organized structure ensures that data related to each object are readily accessible and can
be retrieved efficiently.

One significant challenge in developing the proposed system is the prevention of
information duplication for individual objects. Variability in sensor data and image capture
can lead to discrepancies in location estimates, potentially resulting in the creation of multi-
ple records for the same object. To streamline data integration and mitigate redundancy,
our system preliminarily employs a zone-based categorization approach. In this method,
objects are categorized based on their geographical proximity within predefined zones.
A proximity threshold is established, allowing the system to identify objects within close
proximity to each other. If a newly detected object falls within the threshold distance of
an existing object of the same category, it is considered the same object, and the existing
object’s data are updated accordingly. Conversely, if the object falls outside the threshold, it
is treated as a new object, and a unique identifier is created for it. However, this mechanism
is a preliminary step to handle data duplication, and a more sophisticated approach needs
to be developed in future updates to accurately differentiate between unique and repetitive
detections in dense urban environments. The data storage process is presented in Figure 4.
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In this process, the zoning method further enhances computational efficiency. As
the database accumulates a significant number of objects, conducting direct comparisons
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between all objects becomes resource intensive. To address this challenge, the zoning
method divides the database into zones corresponding to geographical regions. When
processing new objects, the algorithm focuses exclusively on the zone relevant to the
object’s location, reducing the computational burden and optimizing system performance.

The user interface (UI) of the DT platform is crucial to making monitoring data ac-
cessible and user friendly. In this study, the UI is designed to comprise object markers
on a map, with detailed information available on the left side. Users can access compre-
hensive information about road fixture objects by clicking on the corresponding markers.
Furthermore, the images stored in the cloud database hold the potential for implementing
image processing techniques to assess the condition of road fixture objects. This addi-
tional layer of analysis enhances the platform’s capability to monitor and manage road
infrastructure effectively. This feature enables users to assess the condition of the road
infrastructure quickly and efficiently, which is important for making informed decisions
regarding maintenance and repair efforts.

4. System Evaluation and Results
4.1. Experimental Setup

This experiment assesses the applicability of the proposed framework in real-world
scenarios, with primary objectives aimed at evaluating the edge device’s ability to detect
various road fixture, specifically traffic poles, stop signs, and streetlights, and determining
their locations while also reducing the data size sent to the central database. The detailed
procedure involved the design of the device, training an object detection model with a
custom dataset, and implementing a localization model for detected objects. The edge
device, specifically designed for this project, comprises an onboard computer, a camera,
an SD card, GPS, and IMU sensors, as shown in Figure 5. Raspberry Pi 4 (Raspberry
Pi Ltd., Cambridge, UK) was used as the onboard computer. The Raspberry Pi camera
module v2 via CSI (Camera Serial Interface) as the camera module, SAM-M10Q via USB
as the GPS module, and BNO055 via SPI as the IMU module were used in this research,
with a 4 GB micro-SD card as the primary storage for the OS, machine learning models,
images, videos, and sensor data logs for analysis. The device equipped with advanced
computing capabilities allows the preliminary analysis of data on site, i.e., within the vehicle
itself. The code for this was written in the Python language, with development tools and
libraries essential for deep learning, such as TensorFlow and OpenCV. The corresponding
pseudocode is shown in Algorithm 1.
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A field test was conducted near the NDSU campus in Fargo, USA, in a region with
diverse road fixtures to evaluate the effectiveness of our proposed Edge AI device compared
to the conventional. These experiments demonstrate the reduction in data size using the
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Edge AI device as compared to the conventional approach that transmits all images without
any object detection or location estimation. GPS, IMU, and image data were collected for
5 min in five locations for both the proposed method and the conventional method, and it
was repeated five times. The car was driven at 60 km/h on average, and the device was
installed on the dashboard of the vehicle near the windshield to maintain a strong signal
connection with GPS satellites without obstructing the driver’s field of view or interfering
with the vehicle’s operating controls.

Algorithm 1. ObjectGPSCoordinates (N, M, C, G, I)

Parameters:
N: Total number of iterations
M: Number of frames to process within each iteration
C: Set of parameters for camera initialization (frame width and height, horizontal and
vertical FOV)
G: Data structure for real-time GPS data
I: Data structure for real-time IMU data

1: Initialize_Camera(C) // Setup camera with given parameters
2: Initialize_GPS(G) // Establish connection to GPS for real-time data
3: Initialize_IMU(I) // Setup IMU for orientation and movement data
4: n← 0
5: while n < N do
6: for i = 1 to M do
7: frame[i]← Capture_Image_From_Camera()
8: // Detect objects within the captured frame
9: detected_objects[i]← Detect_Road_Fixture(frame[i])
10: j← 0
11: while j < length(detected_objects[i]) do
12: object← detected_objects[i][j]
13: // Extract pixel coordinates of the detected object
14: coordinates← Get_Pixel_Coordinates(object)
15: // Convert pixel coordinates to global geographical coordinates
16: global_position← Convert_To_Global_Coordinates(coordinates,
GPS, IMU)
17: // Transmit detected object information to the cloud
18: Transmit_To_Cloud(global_position, frame[i])
19: Return global_position # Return the GPS coordinates of the
detected object
20: j← j + 1
21: end while
22: end for
23: n← n + 1
24: end while
25: Return object’s GPS coordinates

In our proposed approach, the detection and localization models ran inside the pro-
posed edge device, and only the images where road fixture was detected were sent to the
central data station along with their respective locations, while all captured images were
sent to the central station in the conventional approach. In the conventional approach, each
image was captured every two seconds to balance comprehensive spatial coverage of road
fixtures, given typical urban vehicle speeds, with the computational and storage capacities
of the edge device. The images were stored in JPEG format with an average size of 3 MB,
and approximately 150 images were captured each time. The collected data were sent to
the central data station through a cellular network router.
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4.2. Evaluation and Results

The experiments demonstrated significant data reduction using our proposed Edge AI
device compared to the conventional approach. With the conventional method, the system
captured approximately 30 images within a 1 km distance and sent all the images to the
central station without detecting road fixtures or locations. Over 5 min, it captured about
150 images along with GPS and IMU data. The total size of the data generated each time
ranged from 409 to 478 MB.

In contrast, our proposed approach sent significantly fewer images under the same
conditions—approximately 2 to 5 images within the same 1 km distance and between 22 to
28 images over 5 min. The number of images depended on several parameters, including
the speed of the vehicle, the density of road fixtures, and the camera’s predefined sampling
rate. In areas with more complex scenes or dense road fixtures, the system might send more
images to ensure comprehensive coverage. The processing time for each image, influenced
by the scene’s complexity, the number and type of road fixtures, and the image’s data size,
ranged from 12 to 25 s. The total size of the data generated ranged from 51 to 96 MB each
time. A comparison between the two approaches for each location, based on data collected
over 5 min, is presented in Table 1, indicating a significant decrease in data size with the
proposed method.

Table 1. Comparison between conventional and proposed approach from data size reduction point
of view.

Case Conventional
Approach (MB)

Proposed
Approach (MB)

Data Size
Reduction (%)

1 2119 331 84%

2 2168 408 81%

3 2264 426 81%

4 2247 433 80%

5 2246 406 81%

During the field test, the device achieved an aggregate accuracy of 65% in identifying
road fixtures, along with a recall rate of 78% and a precision rate of 72%. This denotes
that the trained object detection algorithm accurately recognized 65% of all existing road
fixtures, with a recall rate of 78%, signifying the proportion of correctly identified road
fixture relative to the actual total. The precision rate of 72% further illustrates the ratio of
correctly identified road fixtures to the entirety of detected fixtures. The accuracy varied
depending on the type of fixture, with traffic poles achieving the highest accuracy and
streetlights the lowest. The operational speed of the monitoring vehicle was identified as a
factor that can influence the accuracy of the object detection system. High vehicle speeds can
introduce motion blur into the captured images, potentially affecting the clarity needed for
optimal object detection. While the system, utilizing the YOLOv7 algorithm, is engineered
to accommodate various image quality challenges, including motion blur, preliminary
observations suggest a correlation between increased vehicle speed and a decrease in
detection performance. Though YOLOv7 is known for its efficiency processing images,
making it suitable for edge computing scenarios, its computational cost is influenced by
several factors, including the image resolution, the complexity of the neural network model,
and the hardware specifications of the edge device. Figure 6 shows the identification of a
traffic pole, stop sign, and streetlight from various viewpoints by the proposed model.

Despite the overall success of the experiment, certain challenges were encountered
during the field test, and potential limitations should be considered. Additionally, the accu-
racy of the detected objects’ location was verified by comparing them to ground truth data
obtained through manual inspections of the same locations. The location errors for traffic
poles and stop signs were calculated and are presented in Table 2, revealing a 4.3 to 4.5 m er-
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ror for traffic poles, a 4.6 to 5.7 m error for stop signs, and a 5.3 to 6.5 m error for streetlights.
These errors serve as indicators of precision and reliability in real-world scenarios.
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To develop the road digital twin platform, we designed a web application capable
of receiving, processing, and storing data from devices deployed in the field. Hosted on
Vercel, our application benefits from the platform’s ease of deployment and scalability,
essential for managing the data-intensive nature of our system. The GPS coordinates of
detected objects, along with their categories and image data, were computed on the edge
device and sent directly to our server in JSON format. The web application’s back end,
which handles data processing and storage, utilizes MongoDB Atlas [55], a fully managed
cloud database offering the flexibility of a NoSQL database. Communication between
the field devices and our web application is managed through a REST API, enabling the
transmission of collected data in JSON format. Upon a receive request from device, the data
undergo processing and are stored in the MongoDB Atlas, with each new entry assigned a
unique ID.

To improve user experience, especially in real-time data visualization, we integrated
Pusher into our platform. Pusher, a real-time communication service, allows for the live
updating of the UI, ensuring that the displayed data are current and dynamic. Additionally,
the web application integrates MongoDB Atlas with the Google Maps API through the
user interface to dynamically display spatial data on the map. This process involves
retrieving the latest spatial data from the database and formatting them as needed to ensure
compatibility with the Google Maps API before rendering them on the map interface within
our UI. The final representation of these fixtures on the map is presented in Figure 7. The
screenshots were taken directly from the URL dedicated to our project and connected to
the database server, which receives data in real time.



Buildings 2024, 14, 1220 15 of 20

Table 2. GPS coordinates of the detected objects.

Road Fixture Estimated GPS Coordinates from
Our Device

Estimated GPS Coordinates from
Detected Road Fixture

RMS
Error (m)

Traffic pole

1 46.90764279, −96.78438378 46.90117861, −96.79360287 4.4

2 46.90064577, −96.79887722 46.89418159, −96.80809511 4.5

3 46.90408798, −96.79746032 46.89762380, −96.80667880 4.4

4 46.90567631, −96.78438594 46.89921213, −96.79360469 4.4

5 46.91645479, −96.77919637 46.90999061, −96.78841698 4.3

Stop sign

1 46.897282360, −96.7855960 46.89081818, −96.79481331 4.6

2 46.82409764, −96.85415915 46.81763346, −96.86336391 5.3

3 46.89331785, −96.79045317 46.88685367, −96.7996698 5.7

4 46.88447833, −96.77829662 46.87801415, −96.78751173 5.6

5 46.86501168, −96.84036913 46.85854750, −96.84958090 4.8

Streetlight

1 46.88274829, −96.77203295 46.87628411, −96.78124776 6.5

2 46.88507764, −96.78517595 46.87861346, −96.79439116 5.3

3 46.89514093, −96.78901977 46.88867675, −96.79823671 6.1

4 46.81016343, −96.85989261 46.80369925, −96.86909498 5.8

5 46.89641841, −96.78897575 46.88995423, −96.79819291 5.9
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5. Discussion

The proposed system for remote road fixture monitoring, leveraging edge devices and
DTs, carries significant practical implications for both current and future road infrastructure
management. These implications extend beyond the immediate system implementation
and address broader aspects of transportation and urban planning.
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One of the key practical implications of this system is its ability to facilitate data
collection and storage. By efficiently capturing details about road fixtures, including
geolocation and category information, through the utilization of cost-effective devices that
can be readily installed on vehicles traveling road networks, the system simplifies the
process of maintaining an up-to-date digital replica of road infrastructure. These data
streamline inventory management and serve as a valuable resource for transportation
authorities. Moreover, this data-capturing capability is not limited only to road fixtures; it
can be extended to encompass a wide range of other objects.

Beyond the current application, the proposed system offers scalability and adaptability
due to its modular design. Its architecture allows for easy integration with other edge
devices and sensors, such as weather monitoring systems or traffic management tools. This
adaptability makes it suitable for a variety of transportation applications, including urban
road planning, highway management, and even public transit systems. On the other hand,
the cloud-based structured storage of data serves as a robust foundation for advanced
analysis. Specifically, employing rigorous deep learning and image processing techniques
on the fixture images can enable real-time assessment of their conditions and monitoring of
changes over time. This not only aids in more proactive maintenance but also improves
overall safety by identifying potential hazards promptly. These practical advantages result
in cost savings and a significant reduction in road downtime due to maintenance activities,
which benefits both road users and responsible authorities.

The system’s ability to collect, analyze, and present data in an accessible manner
empowers decision makers. Transportation authorities and urban planners can utilize these
data to make informed decisions about road design, fixture maintenance, and infrastructure
expansion. Moreover, while the current application may primarily cater to expert users in
road fixture monitoring and inventory, the system’s intuitive user interface ensures that
the data presented can be readily interpreted, even by those without specialized expertise.
This user friendliness ensures that the system’s insights are accessible to a wide range of
professionals, further augmenting its practical utility in the field of road infrastructure
management and beyond.

While the proposed remote road fixture monitoring system demonstrates significant
potential for improving efficiency and accuracy, it is imperative to recognize its limitations
to guide future enhancements. The system’s performance heavily relies on the continuous
and high-quality data stream from dashcam-like devices. Fluctuations in data quality, due to
factors such as device malfunctions or environmental interferences, can impair the accuracy
of data processing, object detection, and localization, subsequently affecting the reliability
of digital twin updates and visualizations. Additionally, while utilizing cost-effective edge
devices offers an economical solution, maintaining and managing a large-scale device
network could impose considerable infrastructural and computational demands. The
method’s reliance on sensor fusion for enhancing geospatial localization accuracy might
still be susceptible to inaccuracies due to camera angle discrepancies, sensor limitations,
and varying environmental conditions. Moreover, the extensive collection and sharing of
image data within the system necessitates robust measures for ensuring data security and
user privacy, requiring effective encryption and data anonymization protocols to mitigate
potential risks. Also, the financial implications of broad deployment, alongside the reliance
on external APIs like Google Maps for visualization, present additional operational and
economic considerations. Finally, while the current implementation of the system employs
YOLOv7 for object detection, we acknowledge its limitations, particularly in detecting
small objects with high accuracy. Although YOLOv7 offers balanced performance in terms
of speed and accuracy, cutting-edge developments in object detection algorithms, such as
YOLOv8 and YOLOv9, promise improvements in universality, generalization ability, and
computational efficiency.

Looking forward, future research should focus on developing advanced algorithms
for data filtration and analysis to enhance the system’s resilience against inconsistencies in
data. Potential variations in the camera’s angle due to vehicular dynamics in more diverse
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driving conditions should be accounted for, and advanced stabilization mechanisms and
adaptive orientation correction algorithms should be explored to maintain the camera’s
optimal angle under a broader range of operating conditions. Strategies for data storage in
scenarios of internet inaccessibility will ensure continuous system updates. On the other
hand, investigating more sophisticated AI models, multimodal sensor fusion incorporating
GPS, gyroscopes, and accelerometers, as well as regular calibration of sensors, could signif-
icantly improve road fixture detection and categorization accuracy, particularly in complex
environments. Moreover, exploring alternative deep learning architectures optimized for
resource-constrained devices can further enhance detection accuracy and computational
efficiency on edge devices. Lastly, the integration of additional internet-connected devices,
such as environmental sensors, could expand the system’s capabilities, providing a more
comprehensive infrastructure monitoring solution. Through the use of different sensors
as well as advanced image processing algorithms for condition evaluation, the system
could generate richer, more detailed DT. Future research should focus on this integration to
leverage the full potential of the system, enabling a wider range of data collection and an
enhanced representation of infrastructure conditions.

6. Conclusions

This study presents a comprehensive solution for remote monitoring and manage-
ment of road fixtures within urban environments. Our research attempts to overcome the
limitations of existing monitoring systems. The development of an edge device, designed
specifically for the purpose of this research and comprised of camera and location sensors,
was the first step. This device is designed for data collection and analysis through a vast
network of personal cars on roads, eliminating the need for complicated and equipment-
installed inspection vehicles. By leveraging recent deep learning algorithms and edge
computing capabilities, our solution achieves real-time processing of data directly on
the device, enhancing efficiency and scalability while minimizing reliance on centralized
databases. We used a feature matching technique to accurately localize the fixture on
the images captured by the device. Furthermore, the integration of a cloud-based road
DT platform facilitates continuous synchronization and accessibility of monitoring data,
which enables informed decision making and subsequent timely intervention implemen-
tation. The user-friendly interface enhances usability and interaction with monitoring
data, bridging the gap between sophisticated technology and practical utility for trans-
portation authorities and infrastructure managers. Our system has proven its ability to
accurately identify, categorize, and locate road fixture elements through a thorough testing
and validation approach in a real-world scenario.

Overall, this research contributes significantly to the field of road fixture monitoring
and management by introducing an automated system that is continuously updated with
new information related to fixture categories, conditions, and precise locations. This ap-
proach eliminates the need for expensive specialized equipment and expert involvement.
Moreover, the user interface plays a vital role in connecting advanced technology with
practical usability for transportation authorities and infrastructure management. Acknowl-
edging the limitations presented in Section 5, future research endeavors should focus on
enhancing data analysis algorithms, incorporating other sensors in the edge device while
improving sensor fusion techniques, considering challenges of low-quality images due to
weather or lighting conditions, and developing a temporary storage solution for situations
in which connection is lost. By concentrating on these areas, we can improve the system’s
capabilities, leading to a more thorough and efficient road fixture monitoring solution.
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