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Abstract: Loess is widely distributed in Northwestern China and serves as the preferred engineering
construction material for anti-fouling barriers. Heavy metal contamination in soil presents significant
challenges to the engineering safety of vulnerable loess structures. Hence, there is an urgent need to
investigate the impact of heavy metal ions on their percolation performance. In order to investigate
the effectiveness of microbially induced carbonate precipitation (MICP) using Sporosarcina pasturii
(CGMCC1.3687) bacteria in reducing internal seepage erosion, a saturated permeability test was
conducted on reshaped loess under constant water head saturation conditions. The response of
loess to deionized water (DW) and ZnCl2 solution seepages was analyzed by monitoring changes in
cation concentration over time, measuring Zeta potential, and using scanning electron microscopy
(SEM). The results indicate that the hydrolysis of Zn2+ creates an acidic environment, leading to the
dissolution of carbonate minerals in the loess, which enhances its permeability. The adsorption of
Zn2+ ions and the resulting diffusion double-layer (DDL) effect reduce the thickness of the diffusion
layer and increase the number of free water channels. Additionally, the permeability of loess exposed
to ZnCl2 solution seepage significantly increased by 554.5% compared to loess exposed to deionized
water (DW) seepage. Following the seepage of ZnCl2 solutions, changes in micropore area ratio were
observed, decreasing by 48.80%, while mesopore areas increased by 23.9%. MICP treatment helps
reduce erosion and volume shrinkage in contaminated loess. Carbonate precipitation enhances the
erosion resistance of contaminated loess by absorbing or coating fine particles and creating bridging
connections with coarse particles. These research results offer new perspectives on enhancing the
seepage properties of saturated loess in the presence of heavy metal erosion and the geochemical
mechanisms involved.

Keywords: seepage behavior; Q3 loess; Zn contamination; microstructure; microbially induced
carbonate precipitation (MICP)

1. Introduction

Loess, which covers approximately 9.3% of the Earth’s land surface, is commonly
found in arid and semi-arid regions [1–3]. It is utilized in various engineering projects for
foundations, building materials, and constructing underground anti-fouling barriers to
treat heavy metal-contaminated soil. However, interactions between contaminated liquids
and loess can modify pore structure, deteriorate soil engineering properties, and negatively
impact the performance of anti-fouling barriers [4]. Understanding these mechanisms and
implementing strategies to improve heavy metal-contaminated soil are crucial for ensuring
the safety and longevity of geotechnical engineering projects [5].

In recent years, environmental geotechnical engineering has recently seen a growing
emphasis on the effects of heavy metal contamination on soil properties. Wu et al. [6]
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provided a comprehensive overview of the changes in material composition and physical
and chemical properties of heavy metal-contaminated soil. Gajo and Maines [7] noted
a decrease in the Atterberg limit when heavy metal ions are introduced to soil. Various
studies have explored the impact of heavy metal ions on soil permeability, shear strength,
and compressive strength. Despite extensive research by Xu et al. [8], Zeng et al. [9], and
Liu et al. [10] on different properties of contaminated soil, a gap still exists in understanding
the seepage mechanism of contaminated soil. The permeability of loess is crucial in
determining its resistance to seepage and contamination, especially in NW China [10].
Contaminants primarily enter the soil through seepage, where they migrate and transform.
Heavy metal contamination during seepage changes the chemical properties of pore water,
leading to complex soil–water interactions that degrade soil engineering performance.
The permeability coefficient of reshaped loess is a key indicator for evaluating the flow of
contaminated liquids in engineering projects [8,11]. Therefore, it is essential to investigate
the seepage characteristics and underlying mechanisms of heavy metal-contaminated loess
in environmental geotechnical engineering.

Various methods have been proposed and implemented to address internal erosion
and seepage, such as chemical stabilization and seepage control techniques. While these
methods can effectively reduce internal erosion under specific conditions, challenges like
inadequate permeability control and the need for significant excavation and installation
work have been identified. For instance, Feng and Montoya (2016) highlighted that the
installation of protective drainage channels and slurry trenches in existing structures for
erosion and water seepage prevention necessitates extensive construction work. Microbially
induced carbonate precipitation (MICP) is a biomineralization process induced by bacteria
that has been extensively researched in civil, environmental, and infrastructure engineering
applications [12–16]. The hydrolysis of urea by native or introduced ureagenic bacteria such
as Pasteurella and Bacillus megaterium is a common pathway for biologically mediated
carbonate precipitation [17,18]. Enzyme synthesis in bacteria catalyzes the urea reaction
to produce ammonia and dissolved inorganic carbon, resulting in alkalinity accumulation
near bacterial cells when a calcium source is present.

Carbonate precipitates predominantly form on bacterial cell surfaces and accumulate
at particle–particle contacts due to microorganisms’ inclination to avoid exposed surfaces
and adhere to smaller features [13]. This process enhances cementation at pore throats,
leaving larger pores relatively open. While soil stiffness increases with cementation, changes
in permeability are minimal, making MICP technology a promising option for internal
erosion control. Previous studies [19–26] have highlighted numerous advantages of MICP
technology. These benefits include improving soil strength and stiffness, maintaining
soil permeability with minimal calcium carbonate precipitation (usually less than 5–6%),
providing energy-efficient on-site treatment compared to traditional chemical grouting, and
showing rapid biogeochemical reaction rates. However, it is crucial to consider the potential
issue of clogging in treated soil, especially in the presence of carbonate content. Feng and
Montoya [12] observed that heavily cemented soil by carbonate precipitation (above 3.5%)
leads to a significantly non-uniform distribution of precipitation. Lin et al. [27] also found
that even low carbonate contents of 1.6% can cause severe uneven distribution of calcite
in treated soils. Previous studies have indicated that the effective treatment distance for
MICP typically ranges from 0.2 to 1.0 m due to local blockage, which is shorter compared
to traditional chemical grouting methods [28]. However, achieving a satisfactory treatment
distance with conventional chemical grouting techniques usually requires a substantial
amount of energy for injecting or mixing the binder into the soil. This is primarily due
to the high viscosity of the conventional binder slurry, particularly at high water/cement
ratios. Conversely, the injection of low-viscosity bacterial and cementing solutions has the
potential to address this challenge [29,30].

MICP technology effectively combines fine soil particles with coarse particles to reduce
erosion potential under seepage [31,32]. It maintains the permeability of the existing soil,
preventing significant changes in pore pressure in upstream and downstream areas, thereby



Buildings 2024, 14, 1230 3 of 17

enhancing the overall stability of antifouling barriers. This technology is utilized in both
the construction of new antifouling barriers by blending bacteria and cementation solutions
with filler materials, and in the emergency repair of existing barriers by injecting bacteria
and cement to mitigate ongoing erosion. Current research focuses on erosion control within
constructed barriers, with adaptable injection methods proving effective against established
barriers. This study aims to (1) investigate the seepage behavior of Zn-contaminated loess,
(2) evaluate the feasibility of utilizing MICP for Zn contamination control in loess, and
(3) elucidate the enhancement mechanism of Zn-contaminated seepage erosion control
through MICP-modified loess.

2. Materials and Methods
2.1. Testing Materials
2.1.1. Tested Soil

The Guanzhong area, located in the middle reaches of the Yellow River, is known as the
largest loess region globally, covering approximately 6.4 × 105 km2. Soil specimens used in
this study were taken from Q3 loess in Tongchuan City, Shaanxi Province. The disturbed
Malan loess specimens were collected from depths of around 3–5 m below the surface and
then transported to the laboratory for analysis. The loess displays loose characteristics
and a light grayish-yellow color. Particle size analysis was carried out using a Malvern
Mastersizer 2000 laser particle size analyzer following pretreatment procedures outlined
by Xu et al. [11] and Hou et al. [33]. The physical and mechanical properties of the loess are
detailed in Figure 1 and Table 1, in accordance with the Standard for Geotechnical Testing
Method [34]. The particle size distribution was obtained using a laser particle size analyzer
(WJL-602 Model), indicating that 73.44% of particles were silt, as well as 26.36% clay and
0.20% sand. The liquid limit and plastic limit, tested using a liquid–plastic combine tester,
were 33.42% and 20.43%, respectively. Moreover, the plasticity index (value of 13.01%) was
the difference between the liquid limit and the plastic limit. The loess is classified as low
plasticity clay (CL) according to the ASTM D2487 [35]. Chemical composition analysis of
the loess was carried out using inductively coupled plasma mass spectrometry (ICP-MS) as
illustrated in Table 2. The primary chemical components identified in the loess specimens
are SiO2, followed by Al2O3, CaO, and Fe2O3.
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Table 1. Physicochemical properties of the loess.

Physical Index Data

Fines (%) 91.18
Sand (%) 8.82
Gravel (%) 0
Specific gravity, Gs 2.72
Void ratio, e 0.88
Dry density, ρdmax/(g/cm3) 1.78
Initial water content,
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Table 2. Chemical element composition of the loess specimen.

Chemical Element Content (%)

Silicon (Si) 73.66
Aluminum (Al) 15.5
Iron (Fe) 7.93
Potassium (K) 1.09
Magnesium (Mg) 0.95
Sodium (Na) 0.54
Calcium (Ca) 0.33

2.1.2. Bacteria and Cementation Solutions for MICP Treatment

MICP harnesses naturally occurring bacteria to enhance soil mechanical properties by
promoting the formation of soil aggregates through calcium carbonate precipitation [31,36,37].
Ureolytic bacteria such as Bacillus pasteurii, Bacillus sphaericus, Bacillus licheniformis, nitrate-
reducing bacteria, and other alkaliphilic bacteria are utilized in MICP. Bacillus pasteurii, known
for its strong tolerance and ease of cultivation, has been shown in previous studies to play
a significant role in calcium carbonate precipitation [25,26,31,38,39]. Sporosarcina pasteurii
(CGMCC1.3687) bacteria were obtained from the China General Microbiological Culture
Collection Center for this study. The liquid culture medium consisted of urea (20 g/L),
peptone (5 g/L), yeast extract (3 g/L), and manganese sulfate (0.01 g/L) as reported by
Jiang et al. [13] and Wang et al. [26].The pH was adjusted to 7.0 using a 10% NaOH solution
and sterilized at 121 ◦C for 20 min in an autoclave. Following cooling, the bacteria were
inoculated at a 1:100 ratio and incubated aerobically in a shaking incubator at 30 ◦C and
180 rpm for 48 h. Bacterial liquid concentration was determined by OD600 at 600 nm
wavelength, and urease activity was measured by the average conductivity change within
5 min. The OD600 of the cultured liquid was approximately 1.70, with urease activity around
4.0 mM urea hydrolyzed/min, assessed using a spectrophotometer and conductivity meter.
Furthermore, the experiment utilized a cementing solution composed of urea and calcium
chloride dissolved in deionized water at a 1:1 concentration ratio. Urea functioned as the
nitrogen source, while calcium chloride acted as the calcium source in the MICP process [40].
To prevent urea evaporation from the cementing solution over time, it was used within 1 h
of preparation.

2.2. Experimental Methods
2.2.1. Specimen Preparation

The susceptibility of natural loess to uncontrollable factors, such as root and insect
holes, poses challenges in maintaining specimen consistency during collection, thereby
impacting the reliability of research outcomes. To overcome this challenge, we employed
the wet compaction method to create loess specimens with optimal moisture content (see
Figure 2). To compare, initial infiltration tests were conducted using deionized water and
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ZnCl2 solution on untreated specimens. The process of MICP treatment for loess specimens
consists of two stages: (1) injection of bacterial solution and (2) injection of cementing
solution. As highlighted by Jiang et al. [13], excessively high or frequent injection rates
may result in precipitation flushing, thus affecting precipitation efficiency. Hence, we
established the injection rate of bacterial solution at 2 mL/min and the injection rate of
cementing solution at 4 mL/min.
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Figure 2. The procedures for experimental methods.

Despite the limitations of working with small specimen sizes in laboratory testing,
which may not fully represent real soil conditions, this issue can be mitigated by using
parallel specimens. Laboratory methods are generally deemed more dependable due to
the controlled settings in which they are carried out, including temperature and hydraulic
gradients. Additionally, soil specimen permeability is typically assessed in the laboratory
under constant load, as shown in Figure 3 for saturated hydraulic conductivity testing.
In our research, we employed the Chinese ST-55 permeameter and utilized the constant
head method to measure permeability. The required hydraulic gradient was established
by adjusting the water tank’s height, and outflow measurements were taken only after the
hydraulic head had stabilized. The infiltration test on loess closely followed the procedures
outlined by Xu et al. [8,11].
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2.2.2. Zn-Contaminated Solutions

The Guanzhong Plain, a typical agricultural area in China, has seen an increase in
zinc contamination in its loess due to rapid agricultural and industrial development in
the NW region. Zinc (Zn), a trace element essential for plant growth, plays a central role
in this issue. To investigate the geochemical mechanisms of soil microstructure evolution
and percolation behavior under Zn2+ erosion, we employed ZnCl2 reagents known for
their high solubility. Previous studies have indicated that a concentration of 2.5 mmol/L of
inorganic salt solution can effectively illustrate the influence of ion types on the structure
and percolation behavior of loess [13]. Consequently, solid powder reagents were dissolved
in deionized water (DW) to create a 2.5 mmol/L concentration of contaminated solution.
Furthermore, DW served as the control group in the experiment.

2.2.3. Seepage Tests

Although the drawback of laboratory testing may suffer from small sample sizes that
may not fully represent the actual soil medium, this limitation can be addressed by using
parallel specimens. Laboratory methods are generally considered more reliable due to
their controlled environments, including temperature and hydraulic gradients. The mea-
surement of soil specimen permeability is commonly conducted in the laboratory under
constant loading conditions, as shown in Figure 3 for saturated hydraulic conductivity
testing. In this study, the Chinese ST-55 permeability meter was used to determine perme-
ability through the constant head method. The necessary hydraulic gradient was achieved
by adjusting the water tank’s height, and outflow data were collected once the hydraulic
head had stabilized. The procedures for the loess infiltration tests closely followed those
outlined by Xu et al. [8]. All tests applied to the present work had three replicates, and
the statistical analysis indicated that the coefficient of variance was far below 10%. Results
from the three test trials were averaged.

2.2.4. Zeta Potential Measurement

Charged soil particles in aqueous solution can attract ions with opposite charges,
forming stable connections in a Stern layer close to the particles. Further away, in the
diffuse layer, weaker adsorption forces create looser connections. The concentration of
Na+, K+, Ca2+, and Mg2+ ions was measured via ion chromatography (IC) (Thermo Fisher
Scientific, Fair Lawn, NJ, USA) every 12 h during DW and ZnCl2 seepage tests. Heavy
metal ions can alter the thickness of DDL by adsorbing onto clay mineral surfaces through
hydration and ion exchange reactions, impacting soil structure and hydraulic properties.
Zeta potential analysis can characterize the thickness of DDL. Prior to experimentation,
loess was sieved through a 50 µm sieve, then treated with different chemical solutions and
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stirred for 30 min. Zeta values of loess particles in various heavy metal solutions were
determined using a Zeta potential analyzer (Zeta Plus, Malvern, UK). DW was used to rinse
the microelectrophoresis cell before and after each measurement to prevent contamination.

2.2.5. Microstructure Characterization

Scanning electron microscopy (SEM) is a widely used technique for analyzing soil mi-
crostructures, allowing for both qualitative and quantitative assessments. In this study, we
utilized field emission SEM (Zeiss Gemini sigma 300, Oberkochen, Germany) to investigate
the microstructure of loess specimens before and after seepage to understand the seepage
characteristics and mechanisms of heavy metal-contaminated loess. The methodology for
characterizing soil microstructures in our research was adapted from previous studies by Xu
et al. [11] and Hou et al. [33]. Specimens were trimmed to create films measuring 2 mm in
height, 5 mm in width, and 5 mm in length. These films were dried at 60 ◦C and reinforced
with a solidification agent. Subsequently, they were ground with sandpaper, polished with
an alumina solution to emphasize microstructural features, and finally coated with gold foil
before being installed. Our SEM analysis revealed notable variations in the microstructural
features of loess at different magnifications, as depicted in Figure 4. Therefore, we opted
for a magnification of 1000× to examine the evolution of loess microstructures under Zn2+

seepage, drawing inspiration from the work of Li et al. [17]. ImagePro Plus 6.0 (IPP 6.0)
software was employed for preprocessing, segmentation, and parameter extraction of the
SEM images. By following the pore classification criteria established by Lei et al. [41], we
calculated the area ratio of each pore.
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3. Results
3.1. Seepage Behavior of Loess

A thorough understanding of soil hydraulic conductivity is crucial for studying per-
meability behavior. Darcy’s law offers insights into the temporal variations and statistical
characteristics of permeability in compacted loess. In the case of DW seepage, the perme-
ability of compacted loess gradually increases over time, with an initial rapid decrease in
the first three days of the seepage test, followed by a more gradual decline (see Figure 5).
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The concentrations of Ca2+, Mg2+, Na+, and K+ ions also fluctuate during the seepage
test, with Na+ exhibiting the most significant changes initially, followed by Ca2+. In sub-
sequent seepage tests, both Na+ and Ca2+ concentrations decrease, while Mg2+ and K+

concentrations remain relatively stable (see Figure 6). When seeped with a ZnCl2 solution,
the permeability of compacted loess increases over time, indicating a notable influence
of Zn2+ on loess seepage behavior. The experimental process shows a slight increase in
Mg2+ concentration over time, while the concentration of Ca2+ demonstrates a significant
upward trend. Exposure of calcite to ZnCl2 seepage leads to the formation of calcium
bicarbonate and magnesium bicarbonate, subsequently reducing the ionization of calcium
and magnesium ions. In comparison to the compacted loess specimen under DW seepage,
the permeability of the loess specimen under ZnCl2 solution seepage exhibits a noticeable
change, increasing by 554.5%.
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3.2. Seepage Behavior of Modified Loess

To investigate the impact of MICP technology on loess under the seepage of DW and
ZnCl2 solution, seepage tests were conducted on untreated and modified loess specimens.
The evolution of permeability over time was compared, as shown in Figure 7. When
exposed to DW seepage, the permeability of loess gradually increases while the leaching of
various ions decreases, indicating a weakening of geochemical processes. In contrast, under
ZnCl2 solution seepage, the permeability of compacted loess increases over time. MICP
treatment significantly reduces the permeability of loess under DW seepage conditions
by solidifying the specimens with calcium carbonate, filling the pores between soil parti-
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cles and strengthening the bonding effect. However, under ZnCl2 solution seepage, the
permeability of modified loess increases gradually due to the hydrolysis of Zn2+ creating
an acidic environment that promotes the dissolution of carbonate minerals and MICP
mineralization products in loess. This process, particularly the variations in ion concentra-
tions such as Na+, Mg2+, and K+, as depicted in Figure 8, highlights significant chemical
interactions between loess and modified loess induced by ZnCl2 solution. Additionally,
the adsorption of Zn2+ and its DDL effect compress the diffusion layer, enhancing the
presence of free water channels. The increase in seepage time leads to a gradual increase
in the permeability coefficient, as supported by Chen et al. [42]. Furthermore, studies
by Jiang et al. [13], Huang et al. [36], Xing et al. [37], Kang et al. [38], Li et al. [39], and
Wang et al. [25] suggest that carbonate precipitation enhances particle bridging through
the adsorption/encapsulation of sand–clay mixtures, thereby enhancing erosion resistance.
The use of MICP technology in this study has shown a significant reduction in the per-
meability coefficient (see Figure 7). However, as leaching time extends, there is a gradual
increase in zinc content, which inhibits mineralization reactions and results in a gradual
increase in the permeability coefficient. This finding aligns with the research findings of
Wang et al. [43].
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3.3. Microstructural Characteristics

Particle morphology, contact relationships, pore structure, and degree of cementation
collectively determine the microstructure of soil, thereby influencing its macroscopic physi-
cal and mechanical properties [11,25]. Figure 9 provides an overview of the microstructure
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of compacted loess and modified loess under the seepage of DW and ZnCl2 solutions.
Before seepage test, the outlines of coarse particles in compacted loess are clearly visible,
with a small amount of fine particles covering them. The particle distribution in the loess
specimens is uniform, and the microstructure is relatively dense. However, pore develop-
ment is incomplete, and particles form an interlocking structure. The primary contact mode
between particles is embedded contact, followed by aerial contact. Following DW seepage,
some coarse particles become covered by fine particle aggregates, forming larger aggregates
that enhance the development of pore space. This phenomenon is more pronounced in loess
specimens infiltrated with ZnCl2 solutions, where pore space develops more effectively,
leading to a significant increase in the permeability of loess under the seepage of ZnCl2
solutions over time. While aggregates are present in samples of MICP-modified loess after
DW seepage, they appear rough, indicating differences in microstructural characteristics
compared to after ZnCl2 seepage. This is primarily attributed to an increase in van der
Waals forces and a decrease in electrostatic repulsion during seepage. The formation of
large aggregates is more prominent in loess specimens contaminated with Zn2+, where the
aggregates are larger, and the flocculation and expansion of pore space are more noticeable.
This could lead to increased permeability and reduced impermeability. These findings
suggest that the introduction of Zn2+ lead to the reorganization of soil microstructure,
negatively impacting the engineering performance of loess. However, MICP-modified loess
remains an effective treatment method. Compared with the modified loess specimen under
DW seepage, the permeability of loess specimen under ZnCl2 solution seepage exhibits an
obvious change, increasing by 1450%.
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Compared to the compacted natural loess specimens, the changes in micropore area
ratio after DW and ZnCl2 seepage were minimal, decreasing by 1.07% and 1.57%, respec-
tively. After DW seepage, there was a reduction in the proportion of small pore area while
the proportions of medium and large pore areas increased. This shift from micropores and
small pores to medium and large pores during DW seepage led to a gradual increase in
permeability. Conversely, with the seepage of the ZnCl2 solutions, the changes in micropore
area ratio were more pronounced, decreasing by 48.80%, with an increase in mesopore
areas by 23.9%. The decrease in permeability can be primarily attributed to the transition
from small pores to medium pores, positively impacting permeability [8]. This suggests
that variations in permeability characteristics between DW seepage and ZnCl2 solution
seepage are mainly influenced by mesopores. Additionally, the soil skeleton particle area
ratio experienced the most significant decrease in Zn-contaminated loess, while the total
pore area ratio increased the most, indicating substantial geochemical interactions between
water and loess during the seepage process.

4. Discussion
4.1. DDL Effect

The presence of heavy metals in soils with clay minerals, such as those found in
loess, can result in cation exchange and adsorption processes. This can potentially lead
to higher leaching ion concentrations, changes in soil strength, and alterations in soil mi-
crostructure [44–47]. It is essential to account for these effects when conducting infiltration
experiments in zinc and copper-contaminated loess. The introduction of Zn2+ disrupts the
charge equilibrium of clay minerals, causing the adsorption of ions like Na+, K+, Ca2+, and
Mg2+ on the surfaces of clay minerals. This results in cation exchange and an increase in
leachate ion concentration, as illustrated in Figure 6. Furthermore, heavy metal ions in the
exchange phase may decrease the thickness of the double layer, leading to clay particle
flocculation and an increase in pore space [48–50]. Additionally, when clay content exceeds
10%, the double layer effect becomes significant [7]. This has implications for the shrinkage
rate of clay aggregates due to heavy metal leaching through infiltration. Similar effects
have been observed in other heavy metal-contaminated soils, corroborating the broader
relevance of the study’s findings [32,44,45]. Zeta potential analysis can be used to evaluate
the thickness of the double layer, with positive values in the loess indicating the entry of
Ca2+ and Zn2+ into the Stern layer through electrostatic attraction, leading to a change
in Zeta potential sign (see Figure 10) [48,51]. The Zeta potential values of the loess in
DW and ZnCl2 solutions were positive, suggesting the entry of Ca2+ and Zn2+ into the
Stern layer through electrostatic attraction, resulting in a change in Zeta potential value [8].
Furthermore, heavy metal ions form inner-layer complexes after being adsorbed by parti-
cles, exerting a strong compressive effect on the diffusion layer and causing expansion in
the free layer. According to the double-layer theory, the free gravitational water space of
Zn-contaminated loess increases, thus enhancing the permeability of the loess [48,51].
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4.2. Response Mechanism of Seepage Behavior

Based on the geochemical interactions and morphological characteristics of loess
microstructure discussed earlier, schematic diagrams illustrating the evolution of loess
microstructure under varying infiltration conditions are presented in Figure 11. At optimal
moisture content, a water film surrounds particle surfaces, facilitating particle aggregation
and the formation of a relatively stable structure (Figure 10a) [11]. During DW seepage,
erosion enhances pore connectivity, and cation exchange between Ca2+ and Na+ results
in the formation of particle aggregates, creating pathways for water flow [2,11]. Addi-
tionally, the DDL thickness on clay particle surfaces increases, as depicted in Figure 10b.
Consequently, although the saturated hydraulic conductivity of compacted loess exhibits a
rising trend, the increment is only 7.7% (Figure 11a). A rapid growth phase is observed
in the final 4 days of the seepage cycle, possibly attributed to carbonate dissolution in the
loess [49]. Other studies suggest that carbonate dissolution significantly contributes to
enhancing water channels within loess [8,52]. When utilizing ZnCl2 solution for seepage,
the hydrolysis of Zn2+ results in the release of abundant free hydrogen ions. The intricate
chemical reactions of hydrogen ions with calcium and magnesium compounds present in
loess diminish the level of soil cementation [51]. Meanwhile, the alternate adsorption of
Zn2+ and its double layer effect not only strongly promote particle aggregation but also
compress the diffusion layer, increasing the abundance of free water channels (Figure 10b).
As a result, the saturated hydraulic conductivity of loess exhibits a significant increasing
trend. The application of MICP technology notably reduces the pores in compacted loess,
leading to the formation of a calcium carbonate hard shell layer. This layer is characterized
by a uniform texture, dense surface, and substantial thickness, covering the soil surface, as
shown in Figure 11. The water-resistant hard-shell layer possesses a certain level of strength,
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effectively preventing moisture from penetrating the specimen and causing corrosion. At a
macroscopic level, the specimen demonstrates a low permeability coefficient and strong
erosion resistance, consistent with previous test results (see Figure 11) [48–51].
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Figure 11. Schematical illustration of the loess microstructure before and after seepage test.

MICP technology plays a crucial role in reducing internal erosion and soil permeability
by inducing the precipitation of carbonate minerals. This process involves two key mecha-
nisms: absorbing and encapsulating fine particles with a high surface area, and bridging
contacts between coarse particles to enhance soil stiffness. The former helps in retaining fine
particles, while the latter minimizes soil shrinkage. Consequently, loess treated with MICP
exhibits improved erosion resistance, optimizing its structure and enhancing its ability to
resist the seepage of DW and ZnCl2 solutions. The permeability of the soil is significantly
decreased, as demonstrated in Figures 5 and 7. Moreover, the influence of seepage time on
the permeability coefficient diminishes over time. These results indicate that MICP tech-
nology holds great promise for soil and water conservation, as well as geological disaster
prevention in the Loess Plateau. Previous studies by Jiang et al. [13], Huang et al. [36],
Xing et al. [37], Kang et al. [38], Li et al. [39], and Wang et al. [25] have highlighted that
carbonate precipitation enhances particle bridging by adsorbing/encapsulating sand–clay
mixtures, thereby boosting erosion resistance. The application of MICP technology in
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this study has led to a notable decrease in the permeability coefficient. However, with
prolonged leaching time, there is a gradual rise in zinc content, hindering mineralization
reactions and causing a gradual increase in the permeability coefficient. This observation is
in line with the findings of Wang et al. [42]. Further work on the statistical analysis, Zeta
test results against loess contaminated with Zn2+ and the change in shear strength of loess
contaminated with Zn2+ under different coaxial loads is still ongoing and the results will
be discussed in another paper.

5. Conclusions

This study identified the permeability, leaching characteristics, and microstructure
evolution of loess and modified loess under DW and ZnCl2 seepages. The geochemical
mechanism driving the seepage behavior was also revealed. Overall, the results and
discussion led to some main conclusions:

(1) Among the various cations leaching out, the most significant concentration varia-
tion over time was observed for Na+ ions during the early stage of DW seepage. Under
DW seepage, the concentration of Na+ exhibited a decreasing trend. The penetration of
Na+ in loess into the double layer increased the Zeta potential, causing repulsion to exceed
attraction, leading to the expansion and dispersion of clay particles in loess and the forma-
tion of small pores at the junction of loess particles. Additionally, as seepage time extended,
the permeability coefficient gradually increased.

(2) The hydrolysis of Zn2+ resulted in an acidic pore water environment, which
facilitated the dissolution of carbonate minerals in loess. The alternating adsorption of Zn2+

and its DDL effect reduced the thickness of the diffusion layer, enhancing the attraction
between soil particles, minimizing repulsion, and strongly promoting the formation of
particle aggregation structure. Moreover, the proportion of small and medium pores
contaminated by Zn2+ in loess increased, indicating significant geochemical processes
occurring during the seepage.

(3) Compared to natural loess, MICP-modified loess shows a significant decrease in
permeability coefficients to both DW and ZnCl2. This is because MICP modified loess
particles by producing a large number of calcium carbonate crystals, which fill the pores of
loess and stack on the loess skeleton to form cementation. The formation of the cementation
structure reduces macropores and micropores, decreasing the ability of water infiltration,
leading to a significant decrease in permeability coefficients. On the other hand, the
carbonate formed by MICP technology can resist the increase in Zeta potential, maintaining
the stability of the aggregation structure under infiltration.

(4) The above research results and discussions are of great theoretical significance for
revealing the geochemical processes of Zn erosion in loess and the infiltration response
mechanism of MICP-modified loess. The findings of this study have important practical
significance for the prevention and control of geological disasters in the loess plateau
region for engineering construction. In future research, further investigation should be
conducted on the permeation evolution, heavy metal blocking capacity, and microstructural
characteristics of MICP-modified loess under heavy metal seepage conditions. Further
research on the above shortcomings is underway, and the results will be presented in
another document.
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