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Abstract: Due to the capability of multiplexing thousands of sensors on a single optical cable, ultra-
weak fiber Bragg grating (UWFBG) vibration sensing technology has been utilized in monitoring the
vibration response of large-scale infrastructures, particularly urban railway tracks, and the volume
of the collected monitoring data can be huge with the great number of sensors. Even though the
train-induced vibration responses of urban railway tracks constitute the most informative and crucial
component, they comprised less than 7% of the total operational period. This is mainly attributed to
the temporal sparsity of commuting trains. Consequently, the majority of the stored data consisted
of low-informative environmental noise and interference excitation data, leading to an inefficient
structural health monitoring (SHM) system. To address this issue, this paper introduced an adaptive
monitoring strategy for railway track structures, which is capable of identifying train-load patterns
by leveraging deep learning techniques. Inspired by image semantic segmentation, a U-net model
with one-dimensional convolution layers (U-net-1D) was developed for the pointwise classification of
vibration monitoring data. The proposed model was trained and validated using a dataset obtained
from an actual urban railway track in China. Results indicated that the proposed method outperforms
the traditional dual-threshold method, achieving an Intersection over Union (IoU) of 94.27% on the
segmentation task of the test dataset.

Keywords: urban railway track; vibration monitoring; ultra-weak fiber Bragg grating; data segmentation;
dual-threshold method

1. Introduction

Urban railway tracks, a pivotal mode of transportation in contemporary urban areas,
significantly contribute to the efficiency of transportation and the development of the
economy. However, the track structure’s performance may gradually decline due to a
combination of factors such as train loads, environmental wear, and material aging [1], and
subsequently lead to critical safety risks.

To ensure the safety of train operations, the implementation of structural health
monitoring techniques in urban rail transit has become critically important [2–4]. Recently,
the ultra-weak fiber Bragg grating (UWFBG) sensing system has been developed for large-
scale infrastructures due to its capability of multiplexing thousands of sensors on a single
optical cable [5,6]. This system has proven to be the ideal monitoring technique for urban
rail transit. Despite its effectiveness, the volume of the collected monitoring data surges
with the great number of sensors. For instance, a railway track in China, spanning 39 km
and equipped with the UWFBG sensing system, accumulates more than 4 TB of data daily.
However, due to the temporal sparsity of commuting trains, the stored data predominantly
comprise low-information environmental noise and interference signals, while the most
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crucial data–the train-induced vibration responses under railway tracks–accounts for less
than 7% of the total operational period. This underscores the significance of implementing
an adaptive monitoring strategy.

To enhance the efficiency of monitoring systems, triggered sampling techniques have
traditionally been implemented to initiate and terminate the sampling process via external
sensors. This method is well-suited for traditional point sensors operating independently.
However, for distributed sensing technologies like UWFBG, applying a uniform start and
stop time is impractical due to discrepancies in the times at which each sensor detects
the target signal. A potential solution is the development of a data preprocessing algo-
rithm, which is capable of autonomously identifying the segments of the train-induced
vibration signals within the monitored data. This ensures the adaptability within the
monitoring system.

By formulating the recognition of specific patterns in time series data as a classifica-
tion problem, traditional methods typically subdivide the signals into smaller segments
using sliding windows and classifying each segment based on predefined features. These
features may include time-domain features such as short-time energy (STE) and short-time
zero crossing rate [7], frequency-domain features like spectral entropy [8] and spectral
variance [9], and cepstral features, for instance, Mel-frequency cepstral coefficients [10].
These conventional methods have experienced numerous developments in the field of voice
activity detection (VAD) [11,12]. Jiang et al. [13] proposed a dual-threshold method for
endpoint detection of speech founded on STE and frequency centroid. The thresholds are
determined by the local maxima of the statistical feature sequence histogram. Roy et al. [14]
suggested a speech endpoint detection method based on wavelet convolution. This method
decomposes the speech signal using wavelet convolution and then automatically identifies
speech segments based on thresholds of information entropy in the frequency domain.
Ma et al. [15] proposed a speech activity detection algorithm that relies on long-term spec-
tral flatness measurement. Traditional methods have also been found to be applicable in
the segmentation of structural monitoring data. Bao et al. [16] introduced an algorithm
that combines signal features in both time and frequency domains to recognize intrusion
vibration signals in the perimeter security system. Liu et al. [17] enhanced the wavelet
thresholding algorithm and the double thresholding algorithm for segmenting traffic flow
monitoring data based on distributed acoustic sensing. Among the traditional VAD meth-
ods based on predefined features, the dual-threshold method is the most classical and
widely utilized method.

However, the accuracy of traditional VAD methods is significantly affected by the
effectiveness of the predefined features, and insufficient exploitation often leads to poor
accuracy. Moreover, as original signals are processed by sliding windows, the predicted labels
are assigned to the entire windows rather than each data point. To overcome these limitations,
several researchers have turned to deep learning-based methods. Gaugel et al. [18] proposed
a deep learning model that integrates a convolutional neural network (CNN) and a recurrent
neural network (RNN) for feature extraction. In this model, the CNN is utilized for intra-
window feature extraction, while the RNN is employed for inter-window context detection.
However, this method still utilizes non-overlapping sliding windows, preventing it from
achieving pointwise segmentation. Perslev et al. [19] introduced a fully convolutional U-net,
applying it to the segmentation of sleep electroencephalogram (EEG) data. Londhe et al. [20]
proposed a model that employs hybrid channel convolution and a bidirectional LSTM
network to extract the temporal correlation of electrocardiogram (ECG) data for time series
segmentation. Shang et al. [21] proposed a revised U-net model for segmenting vibration
monitoring data of bridges to extract the structural free decay response.

Unlike time-series data such as ECG and EEG, which display more readily identifiable
patterns, the vibration monitoring data collected by the UWFBG sensing system pose a
unique challenge due to its complexity. Inspired by image semantic segmentation [21–25],
this study proposed a U-net model with one-dimensional convolution layers (U-net-1D)
for the segmentation of vibration monitoring data. This model does not require predefined
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features and can achieve pointwise accuracy. Furthermore, a dual-threshold method that
integrates STE and a time-frequency domain feature (short-time low-frequency energy,
STLFE) is also proposed for comparison. The accuracy and effectiveness of these two
methods are validated and compared using the long-term monitoring data collected by the
UWFBG sensing system from a 39 km-long railway track in China.

The remainder of this paper is structured as follows: Section 2 introduces the proposed
U-net-1D for the segmentation of vibration monitoring data, detailing the loss function
used for training and the metrics used for performance evaluation. Section 3 presents the
engineering verification of the U-net-1D model and the traditional dual-threshold method,
including comparisons between them. Finally, Section 4 concludes this paper.

2. Methodology

In this study, the U-net model is proposed for the semantic segmentation of monitoring
data. U-net is a well-established deep neural network architecture and is frequently
employed in image semantic segmentation, which involves assigning semantic labels to
each pixel and thus facilitates pixel-level classification of the image [22]. U-net has also
been widely employed in many fields, such as medical image segmentation [26,27], natural
image segmentation [28,29], etc.

2.1. Semantic Segmentation of Monitoring Data

The classic U-net model utilizes 2D convolutional layers to perform semantic segmen-
tation on images. However, when this architecture is applied for segmenting monitoring
data, modifications are necessary, including changes to the convolutional layers and acti-
vation functions of the output layer. Specifically, in this study, all 2D convolutional layers
in the classic U-net model are replaced with 1D convolutional layers to accommodate
time series data input. The size of the input layer is modified to match the size of the
monitoring data under analysis. Additionally, considering that the prediction labels for the
data points in this study are binary (that is, either passing-train signals or other signals), the
prediction results can be determined by a single output channel. This channel represents
the probability that each input data point is classified as a passing-train signal. Therefore,
the output channel of the classic U-net model is reduced to one. The activation function of
the output layer is also modified to a sigmoid function, ensuring that the output results fall
within the range of (0, 1).

As depicted in Figure 1, the proposed method utilizes U-net-1D to process the track
vibration signal and subsequently generates the corresponding point-wise classification
probabilities of this signal. The classification probability of the passing-train signal is
significantly higher than that of other signals, thereby enabling effective recognition of
the trains. In Figure 1, each blue box within the U-net-1D represents a combination of a
convolutional layer and an activation layer, whereas each gray box indicates a copy of the
feature map. The U-net-1D model is structured with an encoder on the left and a decoder
on the right, each comprising four sequential 1D convolutional blocks that form the core
architecture of the model. The encoder serves as a contracting path that performs down-
sampling through max-pooling layers, with both the pooling region width and stride set at
2, thereby halving the size of the feature map. In contrast, the decoder acts as a symmetric
expanding path that executes up-sampling through transposed convolutional layers with
a stride of 2, which doubles the size of the feature map. To facilitate the integration of
feature maps of varying depths from the encoder, skip connections, indicated by gray
arrows, are implemented between the encoder and the decoder. ReLU activation functions
are employed in all layers except for the output layer, which uses a sigmoid function. N
denotes the length of the input signals.
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Figure 1. Semantic segmentation of monitoring data using U-net-1D.

2.2. Weighted Loss Function

The loss function based on cross-entropy is extensively employed in tasks involving
semantic segmentation, as it effectively quantifies the disparity between the predicted
probability distribution and the actual label distribution [30]. In the case of segmentation
with only two class labels, the binary cross-entropy (BCE) is typically adopted and defined
as follows:

LBCE(y, ŷ) = −(y log(ŷ) + (1 − y) log(1 − ŷ)) (1)

where y and ŷ denotes t the true label and the predicted probability of each pixel by the
deep neural network model.

BCE is a criterion that computes the mean binary cross-entropy over all data points,
leading the segmentation model to weigh each point of the time series uniformly throughout
the training process. Nonetheless, it is worth noting that in numerous semantic segmenta-
tion applications, there’s often a significant disparity in the volume of data points among
various classes. For instance, the passing-train signals typically account for less than 7%
of the total monitoring time. This imbalance could lead the model to be biased towards
predicting dominant classes, thereby neglecting the minority classes. To tackle this issue, a
weighted cross-entropy loss function is usually employed to introduce weights between
different data points. Accordingly, the weighted binary cross-entropy (WBCE) is similar
to the standard BCE, with the exception that positive data points are weighted by certain
coefficients when computing the pointwise loss. The formula for WBCE is as follows:

LWBCE(y, ŷ) = −(α × y log(ŷ) + (1 − y) log(1 − ŷ)) (2)

where α denotes the weight allocated to positive data points, which is calculated based on
the proportion of negative to positive data points within the dataset under examination.
Therefore, in situations where there are fewer positive data points than negative data points,
the weight assigned to each positive sample will be greater than 1. This approach ensures
that the model pays more attention to the less frequent class during training, thereby
mitigating the impact of class imbalance on the model’s performance.

2.3. Evaluation Metrics

In semantic segmentation tasks, Intersection over Union (IoU), Recall, and Preci-
sion are commonly used evaluation metrics, which are expressed mathematically in
Equations (3)–(5). IoU metric quantifies the overlap extent between the predicted seg-
mentation and the ground truth, determined by dividing the area of their intersection by
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the area of their union. It evaluates the accuracy of the model in detecting the target, with a
higher IoU indicating a greater overlap between the predicted and true results. Recall is
a metric that captures the fraction of actual positive instances that the model accurately
classifies as positive. A higher Recall indicates a better performance of the model on the
positive samples. Precision is the metric that gauges the accuracy of the model in predicting
positive instances, calculated as the ratio of true positives to the sum of true and false
positives. Elevated Precision reflects a model’s proficiency in minimizing the incidence of
false positives. It is worth noting that Precision and Recall are generally in conflict with
each other in classification tasks. Improving Precision could lead to a decrease in Recall
and vice versa. Therefore, to provide a comprehensive evaluation of the performance of the
proposed U-net-1D, these three metrics–IoU, Recall, and Precision–are considered together
in this study.

IoU =
TP

TP + FP + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

where TP represents the count of true positive samples, indicating the correctly predicted
positive instances; FP denotes the false positive samples, referring to the negative instances
incorrectly labeled as positive; and FN stands for false negative samples, which are the
positive instances that were mistakenly identified as negative.

3. Case Study

An in-situ urban railway track allocated with the UWFBG sensing system in China
is employed as the validation in this section. For comparative analysis with the proposed
method, a dual-threshold approach that combines STE and STLFE features is also introduced.

3.1. UWFBG-Based Urban Railway Track Vibration Monitoring Data

The investigated structure is a 39-km-long underground railway track in China; it
operates entirely underground and has been in service for six years. The UWFBG sensing
system was continuously installed on the surface of track beds parallel to the track, as
depicted in Figure 2a. Figure 2b provides a zoom-in view of the optical cable, illustrating
the adhesive bonding method used to secure the optical cable to the concrete track bed.
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Figure 2. Optical cable installed on the surface of track beds: (a) a global perspective and (b) a
zoom-in view.

Figure 3 illustrates the optical cable, which employs UWFBGs. A distinguishing
feature of UWFBGs is their extraordinarily low reflectivity, enabling the multiplexing of
thousands of sensors on a single optical cable. The smallest sensing unit within the UWFBG
system is referred to as the sensing zone, which comprises two adjacent UWFBGs and
the optical fiber situated between them. UWFBG system operates by detecting the phase
change of reflected light due to micro-vibrations between adjacent UWFBGs. Consequently,
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the vibration response measured by each sensing zone signifies the average dynamic
strain endured by the optical fiber within that area. The UWFBG system achieves a strain
measurement resolution of 1 µε, with the distance between adjacent UWFBGs determining
the size of the sensing zones, designed at 5 m. The system samples vibration responses at a
frequency of 1000 Hz.
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The investigated railway track structure comprises two types of track beds: the general
integral track beds (GIT, as depicted in Figure 4a) and the steel spring floating slab track
beds (SSFT, as shown in Figure 4b). The primary distinction lies in the fact that the GIT is in
direct contact with the concrete base, while the SSFT is supported by steel spring isolators
(highlighted in blue in Figure 4b) on the concrete base, forming a mass–spring–damper
system. Consequently, compared to the GIT, the SSFT exhibits significantly enhanced
vibration and noise reduction effects. Furthermore, the vibration responses collected by the
UWFBG system installed on both types of track beds under train loads display markedly
different patterns, as illustrated in Figure 5.
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Figure 5. Typical data patterns collected from (a) GIT and (b) SSFT.

Figure 5 showcases the typical dynamic response collected from GIT and SSFT under
train loads. The vibration response from the GIT exhibits a more consistent pattern com-
pared to that of the SSFT, with response peaks coinciding with the load time of the train
wheels. As depicted in Figure 5a, the vibration signal when a train comprising six carriages
passes by is clearly discernible. Conversely, the vibration response duration of the SSFT is
longer, approximately twice that of the GIT. This is attributed to the interference signals
generated by the vibration of adjacent track beds.
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3.2. Dataset Construction

The sampling frequency of the UWFBG system is 1000 Hz, while the maximum fre-
quency component of the vibration responses typically does not exceed 100 Hz. Therefore,
in accordance with the Shannon sampling theorem, the original monitoring data are initially
filtered and subsequently down-sampled. This leads to a re-adjusted sampling frequency
of 200 Hz, which contributes to a substantial reduction in data volume and significantly
enhances the efficiency of subsequent data analysis.

The UWFBG system operated at a sampling frequency of 1000 Hz. However, the
maximum frequency component of the vibration responses typically does not exceed 100 Hz.
Therefore, in accordance with the Shannon sampling theorem, the original monitoring
data were initially filtered and subsequently down-sampled. This leads to a re-adjusted
sampling frequency of 200 Hz, which contributes to a substantial reduction in data volume
and significantly enhances the efficiency of subsequent data analysis.

To extract samples from the long-term monitoring data, a sliding fixed-size window in
the time domain is employed. Specifically, the window size is set to 10 min, approximately
twice the interval time for train passing. This ensures each sample covers at least one train
passing event and contains 120,000 data points. Figure 6 presents two typical samples
extracted from the monitoring data of GIT and SSFT. The samples primarily comprise train-
induced signals, environmental noise signals, and interference vibration signals. Generally,
the train-induced signals display the largest amplitude and typically last between 10 and
20 s, determined by the type of track bed and the speed of the train. The environmental
noise signals have the longest duration, with their amplitudes almost zero. The interference
vibration signals fall between the previous two categories in terms of amplitude and could
be attributed to ground vehicles, construction activities, or other factors. The amplitudes
and durations of these interference vibration signals exhibit a higher degree of randomness.
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Figure 6. Typical dynamic responses collected from (a) GIT and (b) SSFT.

The proposed method aims to extract passing-train signals, defined as the vibration
responses of tracks subjected to immediate wheel loads. These passing-train signals form a
portion of the train-induced signals, and different labeling principles should be applied to
different types of track beds. Figure 7 offers an illustrative view and the spectrogram of
train-induced signals of a GIT, as seen in Figure 6a. Given the significant stiffness of the
GIT and its isolation from adjacent track beds, the train-induced signals mainly stem from
the immediate wheel loads. This is substantiated by the spectrogram, which demonstrates
that the main energy of passing-train signals is located around 5 Hz. Consequently, the
train-induced signals align with the desired passing-train signals, as denoted by the blue
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box in Figure 7. A key characteristic of the passing-train signals of GIT is a quick increase in
amplitude (labeled as the start point), followed by a rapid decrease after a certain duration
(labeled as the endpoint), typically ranging from 10 to 20 s.
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Figure 7. The train-induced signals of GIT in Figure 6a: (a) the first passing and (b) the second
passing. The blue boxes represent the duration of passing-train signals.

Distinct from GIT, the train-induced signals of the SSFT structure generally consist
of passing-train signals within the middle segment, while the terminal portions are oc-
cupied by responses of different modes, mainly instigated by the vibrations of adjacent
track beds. As depicted in Figure 8, the response arising from immediate wheel loads
comprises frequency components predominantly lower than 10 Hz. To improve the quality
of the monitoring dataset and the efficiency of subsequent structural condition assessment
methods, it is crucial to eradicate the signals of abnormal modes at both ends of the train
load-related signals, retaining only the passing-train signals. As such, the labeling principle
for the SSFT signals should not be solely dependent on the time domain information but
should integrate the spectrogram as well. As marked in the red boxes in the time-frequency
domain of Figure 8, the start and endpoints of the passing-train signals are positioned
at the shift points of the spectrogram to conserve a signal period with a recognizable
low-frequency component.
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Figure 8. The train-induced signals of SSFT in Figure 6b: (a) the first passing and (b) the second
passing. The red boxes represent the duration of passing-train signals.

The UWFBG sensing system installed on the investigated urban railway track contains
over 15,000 sensing zones. Through random sampling, 1200 samples of 10-min length were
selected and manually labeled, among which the number of samples collected from GIT
and SSFT were the same, both being 600. To boost the efficiency of segmentation methods,
all labeled samples are further down-sampled to 50 Hz. As a result, each sample consists of
30,000 data points.
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3.3. Results of the Traditional Dual-Threshold Method

The traditional dual-threshold method, established for VAD, employs two thresholds
of features, T1 and T2 (where T2 > T1), for signal segment classification. Initially, the
original data are subdivided into smaller segments using sliding windows; subsequently,
each segment is assigned its respective feature value, as illustrated in Figure 9, where the
data are transformed into a series of short-term energy feature values. As expected, the
magnitude of short-term energy features escalates as the original data’s amplitude increase.
The threshold T2 aims to roughly categorize the target segments—any segment with a
feature value surpassing T2 is recognized as a target segment (as depicted between points
B and C in Figure 9). The threshold T1, on the other hand, forms the boundary of these
target segments. To fulfill this, a search springs from both ends of the target segments
(determined by T2) until the first intersection points with T1 emerge (points A and D in
Figure 9), thus marking the final target segments from point A to D. Consequently, all data
within these segments are identified as the passing-train signals.
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Figure 9. An example of the traditional dual-threshold method: (a) the original data and (b) short-
term energy feature.

The dual-threshold strategy is usually merged with multiple features of the original
data to ensure a more reliable segmentation. Furthermore, the intersections of the target
signals arising from these features were regarded as the outcome. The classic dual-threshold
method predominantly employs short-term energy (STE) and the short-term zero-crossing
rate (ZCR) as its most common features.

Figures 7 and 8 demonstrate the obvious differences between the train-induced signals
and other signals in the time-frequency domain. Specifically, the main energy of the
passing-train signals is focused on frequency components below 10 Hz. Consequently, this
study introduces the STLFE to effectively discern the passing-train signals. This feature
is incorporated alongside the STE into the dual-threshold strategy. The mathematical
expressions for both STE and STLFE can be observed in Equations (6) and (7).

STE(i) =
Ni

∑
n=1

si(n)
2 (6)

STLFE(i) =
K

∑
n=1

|X(n)| (7)

where STE(i) denotes the short-time energy of the i-th segment; si(n) denotes the n-th data
point of the signal within the i-th segment; Ni is the number of data points per segment;
STLFE(i) denotes the short time low-frequency energy of the i-th segment, |X(n)| denotes
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the magnitude of the k-th frequency bin in the spectrum of si; K is the index of the frequency
point corresponding to the upper limit of frequency range researched (0–10 Hz in this paper)
in the spectrum.

Appropriate post-processing is essential for enhancing the dual-threshold strategy,
including the fusion of adjacent passing-train signals and the elimination of short-duration
passing-train signals. The hyperparameters associated with the proposed dual-threshold
approach are listed in Table 1. The merge distance is set to 1, indicating that passing-train
signals detected within an interval of less than 1 s are merged. The minimum duration is set
to 5, implying that passing-train signals identified to persist for less than 5 s are discarded.

Table 1. Hyperparameters of the dual-threshold method.

Hyperparameter Window
Size

Overlap
(%)

Merge
Distance (s)

Minimum
Duration (s) T1 T2

Value 128 90 1 5 0.28 0.4

Moreover, the optimal T2 for the normalized STE and STLFE is determined to be 0.4
after several attempts, and the optimal T1 is searched within the range of 5% to 95% of T2,
with a 5% interval. As shown in Figure 10, the mean IoU of the manually labeled dataset
varies with T1 for both STE and STLFE. In the end, the optimal T1 for both the STE and
STLFE is determined to be 0.28, with the highest mean IoU achieved at 0.887.
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3.4. Results of the Proposed U-Net-1D Approach

The manually labeled dataset is composed of 1200 samples, 900 of which are assigned
to the training dataset, 100 to the validation dataset, and the remaining 200 to the test
dataset. These samples, randomly allocated, have their amplitudes normalized within
the confines of [−1, 1]. The training parameters for the U-net-1D model are detailed in
Table 2, employing a stepwise learning rate strategy. Under this approach, the learning rate
is halved at every 50-epoch interval. The model is trained with a batch size of 64 across a
total of 200 epochs.

Table 2. Training parameters of U-net-1D.

Hyperparameter Initial Learning
Rate

Drop
Factor

Drop Period
(Epoch)

Batch
Size Epoch

Value 0.001 0.5 50 64 200

The convolutional kernel size notably impacts the U-net-1D’s performance. To as-
certain the ideal kernel size, U-net-1D models utilizing kernels of sizes 3, 5, 15, and 25
undergo training for comparative analysis. Figure 11 showcases the typical segmentation
results derived from a sample taken from the SSFT. The observed trends indicate that
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smaller convolutional kernels engender a more refined segmentation granularity, thereby
facilitating the identification of a greater number of candidate segments. Conversely, larger
convolutional kernels promote smoother predictions.
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Figure 11. Typical segmentation results using U-net-1D with different kernel sizes.

To perform pointwise segmentation, a fixed decision boundary is employed. Data
points boasting predicted probabilities surpassing this boundary are categorized as passing-
train signals. To curtail the impact of misidentified signals, the post-processing method as
well as its parameters used for U-net-1D are consistent with the dual-threshold method.

The performance of U-net-1D with varying kernel sizes across the training dataset,
validation dataset, and test dataset is detailed in Table 3, where the decision boundary is set
to 0.5. The last row of Table 3 shows the segmentation results of the dual-threshold method.
The IoU and Precision for U-net-1D with smaller kernel sizes (3 and 5) surpass that of the
models with larger kernel sizes (15 and 25) and the dual-threshold method. This implies
that models carrying smaller kernel sizes exhibit superior segmentation efficacy. U-net-1D
consistently posts Recalls exceeding those of the dual-threshold method, nearing a perfect
100%; this denotes U-net-1D’s enhanced ability to identify positive data points—passing-
train signals. Furthermore, the Recalls of the U-net-1D are higher than the corresponding
Precisions, which indicates that the U-net-1D is conservative and the identified segments
generally cover the labeled regions, as shown in Figure 12.

Table 3. Results of U-net-1D with different kernel sizes (decision boundary is 0.5).

Kernel Size
IoU (%) Precision (%) Recall (%)

Tra. Val. Te. Tra. Val. Te. Tra. Val. Te.

3 94.32 91.03 93.61 94.37 91.17 93.84 99.93 99.85 99.76
5 94.01 91.00 93.62 94.06 91.07 93.77 99.94 99.92 99.84
15 92.00 89.47 92.05 92.03 89.47 92.11 99.94 99.99 99.93
25 89.40 85.90 90.00 89.48 85.92 90.01 99.88 99.98 99.99

Dual-threshold 88.59 89.98 89.16 92.47 91.03 92.25 95.57 98.85 96.64

Note: Tra., Val., and Te. represent the training, validation, and test datasets, respectively. The optimal results are
highlighted with an underline (same as below).
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Figure 12. Typical segmentation results of U-net-1D with Recall higher than Precision.

To enhance the IoU, the decision boundary is elevated to 0.9, with the corresponding
results presented in Table 4. Upon comparing with Table 3, it is evident that the U-net-1D
models, with their varying kernel sizes, have achieved superior IoU for the testing dataset
as the decision boundary increased. A kernel size of 5 yielded the highest IoU at 94.27%,
which is a commendable outcome considering the inherent randomness involved in the
manual labeling process. Given that IoU is a more comprehensive metric than Precision
and Recall, a kernel size of 5 is deemed the optimal choice for this study.

Table 4. Results of U-net-1D with different kernel sizes (decision boundary is 0.9).

Kernel Size
IoU (%) Precision (%) Recall (%)

Tra. Val. Te. Tra. Val. Te. Tra. Val. Te.

3 95.09 91.92 94.11 95.14 92.15 94.44 99.92 99.76 99.66
5 95.07 92.04 94.27 95.12 92.21 94.50 99.93 99.81 99.76
15 93.62 91.18 93.43 93.68 91.18 93.53 99.92 99.99 99.88
25 92.24 89.61 92.77 92.36 89.64 92.83 99.85 99.97 99.94

Dual-threshold 88.59 89.98 89.16 92.47 91.03 92.25 95.57 98.85 96.64

Table 5 presents the comparative analysis of segmentation results for samples from
GIT and SSFT, with the kernel size configured to 5 and the decision boundary set to 0.9.
The results reveal that U-net-1D significantly outperforms in segmenting the monitoring
data of GIT as compared to SSFT. This outcome aligns with intuitive expectations, given
the complexity of interference signals in SSFT’s monitoring data.

Table 5. Comparisons of the results for GIT and SSFT.

Track Type
IoU (%) Precision (%) Recall (%)

Tra. Val. Te. Tra. Val. Te. Tra. Val. Te.

GIT 96.33 93.71 96.53 96.35 93.82 96.78 99.98 99.88 99.74
SSFT 93.82 90.36 92.02 93.89 90.60 92.22 99.89 99.73 99.78

The visualization of segmentation results for consecutive sensing zones is shown in
Figure 13. Specifically, Figure 13a presents a heatmap composed of amplitude data from
consecutive sensing zones numbered from 1 to 220. The horizontal axis indicates the zone
number, while the vertical axis represents time. Thus, each column of data corresponds to a
10-min sample of monitoring data from a specific sensing zone. Sensing zones 1–53 consist
of GIT beds, whereas sensing zones 54–220 consist of SSFT beds. Given the directionality
of train movement from smaller-numbered sensing zones to larger ones in the track moni-
tored, corresponding train-induced signals appear in the heatmap as a negatively sloped
highlighted area. Conversely, positively sloped highlighted zones in the heatmap are
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attributable to interference vibration signals produced by trains operating in the opposite
direction on adjacent tracks. Figure 13a also exhibits randomly dispersed environmental
noise signals, evident in the randomly positioned vertical highlights throughout the figure.
Figure 13b presents the binary segmentation results of data from Figure 13a using the
proposed U-net-1D, where the white zones signify recognized passing train signals. It is
evident that the U-net method successfully avoids disturbances from environmental noise
and interference vibration signals, thereby adaptively recognizing passing train signals.
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Figure 13. Visualization of segmentation results for consecutive sensing zones: (a) amplitude heatmap
and (b) binary segmentation results.

4. Conclusions

This study introduced an adaptive monitoring system that can automatically identify
and retain the passing-train signals during the data preprocessing process while eliminat-
ing non-essential signals like environmental noise and interference vibration signals. A
U-net model with one-dimensional convolution layers (U-net-1D) is proposed for efficient
pointwise segmentation of vibration monitoring data. For comparison, a dual-threshold
method integrating the short-term energy (STE) and short-term low-frequency energy
(STLFE) features is also presented. The main conclusions are as follows:

(1) Inspired by image semantic segmentation, the proposed U-net-1D model is capable
of identifying the train-induced vibration signals collected by the UWFBG sensing
system in pointwise segmentation with high accuracy. When the convolutional kernel
size is 5, and the decision boundary is 0.9, the U-net-1D model achieved a remarkable
mean Intersection over Union (IoU) of 94.27% on the test dataset, validating its
profound accuracy.

(2) In comparison with the traditional dual-threshold method, the U-net-1D model con-
sistently yields superior metrics, including IoU, Precision, and Recall, across all stages
including training, validation, and testing. This clearly demonstrates its effectiveness
and accuracy.

(3) Considering that passing-train signals constitute less than 7% of total monitoring time,
leveraging the U-net-1D model for the data preprocessing stage holds great promise
for reducing data storage costs, thereby highlighting the considerable practical poten-
tial of the proposed method.
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