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Abstract: Urban building energy models (UBEMs), developed to understand the energy performance
of building stocks of a region, can aid in key decisions related to energy policy and climate change
solutions. However, creating a city-scale UBEM is challenging due to the requirements of diverse
geometric and non-geometric datasets. Thus, we aimed to further elucidate the process of creating a
UBEM with disparate and scarce data based on a bottom-up, physics-based approach. We focused
on three typically overlooked but functionally important commercial building stocks, which are
sales and shopping, healthcare facilities, and food sales and services, in the region of Pittsburgh,
Pennsylvania. We harvested relevant local building information and employed photogrammetry
and image processing. We created archetypes for key building types, designed 3D buildings with
SketchUp, and performed an energy analysis using EnergyPlus. The average annual simulated
energy use intensities (EUIs) were 528 kWh/m2, 822 kWh/m2, and 2894 kWh/m2 for sales and
shopping, healthcare facilities, and food sales and services, respectively. In addition to variations
found in the simulated energy use pattern among the stocks, considerable variations were observed
within buildings of the same stock. About 9% and 11% errors were observed for sales and shopping
and healthcare facilities when validating the simulated results with the actual data. The suggested
energy conservation measures could reduce the annual EUI by 10–26% depending on the building
use type. The UBEM results can assist in finding energy-efficient retrofit solutions with respect to the
energy and carbon reduction goal for commercial building stocks at the city scale. The limitations
highlighted may be considered for higher accuracy, and the UBEM has a high potential to integrate
with urban climate and energy models, circular economy, and life cycle assessment for sustainable
urban planning.

Keywords: urban building energy modeling; methodological framework; archetype development;
image processing; LiDAR analysis

1. Introduction
1.1. Background

The building sector is one of the largest contributors to global greenhouse gas (GHG)
emissions due to its energy-intensive nature [1]. Considering the necessity of decarboniz-
ing buildings, substantial efforts have been made during the past decades, particularly
for energy-efficient building retrofitting. For enhancing large-scale applications, building
energy modeling has gradually shifted from individual buildings to an urban scale [2].
Urban building energy models (UBEMs) aim to understand urban building energy con-
sumption more comprehensively, which can effectively be used in city energy planning,
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neighborhood design, and implementing carbon reduction strategies [3–6]. UBEMs can
also effectively help city managers to determine, evaluate, and select energy strategies in
the urban context [7–9]; evaluate future climate change scenarios [10]; and establish an
energy performance benchmark at the city level for future improvement [11].

The typical UBEM creation approach involves developing archetypes by segment-
ing the building stock, collecting geometric and non-geometric information, simulating
through a simulation engine, and validating the measured data. However, creating a UBEM
can be challenging and highly uncertain [3,12,13]. Three main UBEM approaches have
been commonly used in the literature: data-driven, physics-based, and reduced-order
approaches [14–16]. The data-driven approach is useful for analyzing load prediction,
energy pattern analysis, etc. [17], but has limited ability for strategic reduction scenario
analysis. The physics-based approach is more useful as it allows for scenario analysis and
produces results at a high spatial and temporal resolution without considering historical
energy consumption and socioeconomic factors. However, the approach is associated with
detailed physical and technical building information, which is often complex to obtain, and
it requires time-consuming modeling and simulation procedures [18]. The reduced-order
approach is gradually being adopted to quickly simulate the building energy performance
as it needs fewer input data than the other two [19]. As the characteristics and functions of
each approach are different, the choice could be based on the aim of the study and the data
and resources available [20,21].

1.2. Building Stock Energy Simulation and Modeling

Large-scale building energy simulation and modeling in both residential and commer-
cial building stocks has gained increasing attention over the past decade. Krati et al. [22]
analyzed the energy benefits of utilizing hybrid indirect evaporative and vapor compres-
sion systems for the existing residential building stock in Saudi Arabia. The potential of
installing large-scale building-integrated photovoltaics (PVs) on building façades and roof-
top-mounted PVs in the commercial building stock was demonstrated in Tokyo, Japan [23].
Kotarela et al. [24] studied the energy performance gap for selecting dynamic and quasi-
steady-state simulation tools. The study found about a 4.5% higher annual electricity
consumption per conditioned area in the existing building when using the steady-state
simulation tool. Ward et al. [25] proposed a modular framework to estimate the energy con-
sumption of residential neighborhoods using drive-by image capture and mobile sensing
data. Important parameters such as thermal properties were collected based on statistical
archetypes, internal load, and scheduling data, which were extracted from the literature
and industry guidelines, and uniform assumptions were made for all simulations. By
analyzing multiple available building systems and energy conservation measures, Yam-
aguchi et al. [26] employed statistical models for commercial building stocks, especially to
analyze the effect of technology deployment. The study identified system alternatives for
heating, ventilation, and air conditioning (HVAC) systems, water heating systems, and a
combination of energy conservation measures, where building stock segments were classi-
fied by building use types and floor sizes. A GIS-based hybrid approach for commercial
building stock was introduced by Perwez et al. [27] for multi-scale simulating of energy con-
sumption. The approach is feasible when important physical factors, such as the geometric,
non-geometric, and typology data of buildings including the thermo-physical properties,
footprints, heights, shape features, etc., are embedded as geo-referenced datasets.

1.3. UBEMs and Energy Simulation

Among other available tools such as building stock modeling, UBEMs can effectively
support city-scale energy performance simulation and planning [28]. Borràs et al. [29] eval-
uated energy communities by integrating a UBEM and solar installation into the rooftops
of residential and school buildings in Portugal. Similarly, a GIS-synthetic hybrid UBEM
coupled with building-integrated photovoltaics was proposed by Perwez et al. [30] with the
aim of understanding the carbon neutrality potential of the commercial building stock in
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Tokyo city. The study found that a 16–40% decarbonization potential can be attributed to im-
plementing this measure. A UBEM was developed for 30 multifamily residential buildings
in Uppsala, Sweden, through modeling by zoning requirements [31]. Carnieletto et al. [32]
generated a UBEM for residential and office building stock by developing a prototype in
northern Italy. Katal et al. [33] integrated a microclimate model into a UBEM to simulate
the dynamic energy consumption of downtown Montreal, Canada. By considering the
disparateness of HVAC systems, a UBEM was developed for simulating the energy con-
sumption of Japanese office building stock [34]. By using data-driven graph neural network
models, Hu et al. [35] studied solar-based building interdependency in their UBEM and
modeled energy consumption at the hourly timescale of campus buildings in Atlanta.

Recently, web-based and digital approaches were integrated with UBEMs for data
collection and simulation. For example, Wu et al. [36] used mobile position data to collect
more representative occupancy-related information, compared it with the Department
of Energy (DOE) reference models, and then evaluated the impacts on building energy
consumption. The study observed a considerable difference in HVAC energy demand from
variations in occupancy rate, although lighting and plug loads were not considered. A
similar approach was adopted by Mosteiro-Romero et al. [37] in Zurich, Switzerland. The
study found a 33% lower maximum number of occupants for adopting a population-based
approach compared to the deterministic model, which could vary by around 10% of annual
energy demand. Pasichnyi et al. [21] analyzed building retrofit potential by developing
a data-driven building archetype in Stockholm, Sweden. A similar approach was also
adopted for residential buildings in Ireland [38]. Roth et al. [5] proposed an augmented
UBEM by combining data-driven (open-source) and simulation methods for generating
synthetic hourly load curves for city-scale buildings. Though statistical analyses were
conducted, the simulated results were not validated. Prataviera et al. [39] integrated a
physical UBEM and the sensitivity and uncertainty of the main input parameters obtained
from the regional/national statistics in Verona, Italy. The study found that stochastic load
profiles obtained from the analysis could significantly improve the simulations compared
to the deterministic archetype data, especially the peak load and energy demands in
residential buildings. Buckley et al. [40] evaluated the efficiencies of different energy
retrofitting policies for residential buildings in Ireland by developing an archetype-based
UBEM and running urban modeling interface simulations. Deng et al. [41] introduced
automated Building Performance Simulation (AutoBPS) to estimate urban building energy
use and analyze potential energy savings, including rooftop photovoltaics. Ang et al. [6]
developed a web-based framework (UMEB.io) to quickly develop UBEMs for analyzing
energy use and carbon scenarios. This tool requires a high level of technical expertise to
accurately collect the archetype data and input the data into the model. In addition, it is
not clear how to collect and model several critical parameters such as the window-to-wall
ratio (WWR).

A lack of high-quality and open-source data has increased the uncertainty in input
parameters (building elements, operation, and geometry) and thus hindered the effective
application of UBEMs in many parts of the world, as UBEMs mostly depend on archetype
data [39]. In addition, construction year, usage, and refurbishment states are important
in energy performance simulations and are often excluded in open datasets [42]. As the
data are almost similar for each same class (particularly for non-geometric data), the use of
archetypes may reduce variations in modeled energy use compared to the actual data [43].
Cerezo et al. [44] developed UBEMs in several cities using a probabilistic approach for
nongeometric parameters of archetypes. Similar to Ang et al. [6], the study did not specify
the calculation method for several parameters such as the WWR ratio.

1.4. Research Gap and Study Contribution

Developing UBEMs for commercial buildings can be important due to their energy-
intensive sub-segment and considerable energy-saving potential [30]. Several commer-
cial building stocks are used in UBEM analysis including offices, educational buildings,
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lodgings, warehouses, garages, and public safety and assembly buildings [45]; offices,
educational buildings, and hotels [37]; residential and office buildings [32]; office and retail
buildings [9]; residential buildings, offices, and hotels [41]; and residential buildings [46].
Moreover, researchers have adopted physics-based approaches in developing UBEMs in
different research contexts, in addition to the studies highlighted in Sections 1.1–1.3. For
instance, Beltran-Velamazan et al. [47] proposed a national-scale physics-based UBEM based
on an energy performance certificate to build a single GIS database in Spain. Kim et al. [48]
proposed a novel framework for a physics-based UBEM to model electricity load profiles
in commercial building stocks (e.g., offices, hotels, and medical buildings) by considering
the building system composition and occupancy profile. Though UBEMs are used globally in
commercial buildings, several functionally important commercial buildings such as healthcare facilities,
food sales and service buildings, and sales and shopping buildings are typically overlooked in the
existing literature. Therefore, this study developed a bottom-up physics-based UBEM for sim-
ulating these three commercial building stocks in Pittsburgh, Pennsylvania, as a case study
to support the potential decarbonizing solutions. With this paper, we are building on and
expanding our prior work and focusing on the commercial buildings that were missing [45].
In this work, we expanded our archetype library while further enhancing our semi-automatic
process for collecting the building envelope properties (such as the WWR), as the WWR is an
important geometric parameter for UBEMs [49]. We provided a comprehensive framework
for estimating building heights, as these were not embedded with the existing GIS dataset
in many regions including the study location. As validation is a major challenge of UBEMs,
our results were validated with actual energy data and/or with statistical analysis. Several
energy conservation measures were explored in this study. The adopted methodological
framework, including archetype development, data collection procedure, LiDAR analysis for
estimating building heights, image collection and processing, 3D building design, simulation,
and validation process, can effectively be used for UBEMs in other regions.

2. Methodology

Developing UBEMs is often complicated, especially when public data are not ac-
cessible or available. The availability and quality of these data affect the reliability of
UBEM results [50]. To fill this existing gap, a multi-layer process was adopted for creating
the UBEM (described in Section 2.5). An enhanced physics-based UBEM approach for
commercial buildings developed by this research group was adopted in this study [45].

2.1. Selection of the Building Stocks

The three commercial building stocks selected for this study were healthcare facilities,
food sales and services, and sales and shopping. The location, Pittsburgh, is in the western
part of Pennsylvania within climate zone 5A (cold climate) in the United States (US) [51].
Pittsburgh is a part of the 2030 District Network, where building owners voluntarily commit
to reducing 50% of their energy, water, and transportation emissions by the year 2030 [52].
In our prior work, we modeled a number of commercial buildings such as educational
buildings, offices, lodgings, warehouses, garages, and public safety and assembly buildings
in Pittsburgh except for the three stocks studied in this paper [45]. The Department
of City Planning provided the latest actual annual energy use data for validating the
simulated results. The geospatial data, in GIS format, were collected from the Western
Pennsylvania Regional Data Center (WPRDC) [53] for spatial information and analysis of
the studied buildings.

In this study, the archetypes were developed based on the construction year and
function of the buildings. Three building stocks comprising 48 buildings were used in this
UBEM: sales and shopping (40%), healthcare facilities (38%), and food sales and services
(22%). Among the selected buildings, 42% of the buildings were constructed before 1980,
44% during 1980–2004, and 14% after 2004. The stocks were further classified based on
their function, such as shopping center/mall, strip mall, grocery store, and supermarket
within the sales and shopping stock; full- and quick-service restaurants within food sales
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and services; and out-patient services and hospitals within healthcare facilities (Figure 1).
The reason for this subclassification was to have a more detailed and accurate archetype of
the stocks, as this can influence the accuracy of the model [54].
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Figure 1. Information on the three building stocks for this study: sales and shopping, healthcare
facilities, and food sales and services. (A) Year of construction, (B) the percentage of studied buildings,
and (C) further classification of the building stock.

2.2. Archetype Library

Archetype-based UBEMs are most commonly used due to the data requirements for a
large-scale study [21,39,40,44]. In an archetype, buildings are classified according to their
functionality and characteristics [32]. In this study, the selected buildings were broadly
classified based on function and construction year, as these are the important criteria for
developing archetypes in a UBEM study [2,55]. In this study, twenty archetypes were
developed for the three commercial building stocks (built during three construction pe-
riods: pre-1980, 1980–2004, and post-2004) (Figure 1). The selected building stocks were
subclassified considering the differences in certain variables and characteristics (further
discussed in Section 3.1), as detailed archetypes can improve the accuracy of the model [54].
Available resources such as standards, building codes, the literature, and surveys, including
the Commercial Building Energy Consumption Survey (CBECS), were used for extracting
non-geometric information. Depending on the data requirements for modeling and simula-
tion, three sets of non-geometric parameters were collected: occupancy-related parameters,
envelope properties, and electrical and mechanical systems. The input parameters cor-
responding to their sources are shown in Supplementary Figure S1. The collected data
were checked and pre-processed (if needed) before being input into the simulation process.
The archetype was developed for each subclass (Figure 1) of the studied building stocks.
For instance, the occupancy-related parameters, envelope properties, and internal loads
were the same for each subclass of the building within each stock. It was believed that
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archetypes based on the subclass (rather than a broader class or stock) would give more
accuracy in the results.

2.3. Photogrammetry and Image Processing for Estimating the WWR

Though UBEM studies have flourished in recent years, challenges in collecting data
still exist. For example, several key and influential envelope properties, notably the WWR,
are unavailable in city databases and tedious to collect manually at an urban scale. To
fill this gap, Szczesniak et al. [56] proposed an automated façade analysis for collecting
the WWR and found around a 20% error between manual and automated methods in
90% of the studied buildings. Mohammadiziazi et al. [45] proposed a semi-automatic
method for collecting the WWR. Both approaches used an image-processing technique
where they obtained Google’s Street View Static (SVS) images. This study adopted the
aforementioned approach. In this approach, photogrammetry (acquiring façade images)
and image processing (interpreting images) were used to obtain the WWR. Information on
building façades can be collected by obtaining and analyzing aerial or street-level images.
Considering the difficulties in obtaining building façades through aerial images due to the
block vision of neighboring façades in the city, street-level images of façades were used.
SVS façades of each building were collected according to the application programming
interface (API) designed by Google [57]. The required format for image processing (e.g.,
JPEG or PNG) (along with the desired resolution) can be downloaded by employing SVS
API, which cannot be collected through regular Google Street View. Building coordinates
(found in the GIS analysis) were input into the SVS API to obtain façade images for every
building. This semiautomatic API allows the users to remotely control the attribute of an
image by changing the vertical angle of the camera (pitch), the horizontal angle of the camera
(heading), the field of vision (fov), and the resolution (size) to find images with the desired
quality. The images can be rotated to examine details, such as the façade’s materials. First,
the external wall material was identified from the images, and then the compositions and
specifications were matched with ASHRAE standards [58–60]. Then, the number of floors
of each façade was identified, as it is important for thermal zone definition. The obtained
images were checked and verified and then transferred into SketchAndCalc, an online area
calculator software, to measure the total area of the windows and the gross wall area and
then estimate the WWR. Following Equation (1), the WWR of building i with n façades was
estimated. This process was replicated for all of the selected buildings in each stock.

WWRi =
∑n

j=1 WWR

n
(1)

2.4. LiDAR Analysis for Estimating the Building Height

Another important geometric parameter for building energy simulation is the ele-
vation, or building height, which is not embedded in GIS data in many cities, including
Pittsburgh. Though the average floor height was used in several UBEM studies (e.g., [30]),
it may affect the accuracy of the models [61]. We used a similar process to determine the
building height as in [45], but we provide more specific information herein. The light
detection and ranging (LiDAR) technique was used to determine the building height in this
study [29,38]. The step-by-step procedure for estimating the building height is shown in
Figure 2. In the first step, GIS-compatible airborne LiDAR data were collected from the U.S.
Geological Survey (USGS) in las format. At the second step, the collected raw LiDAR data
were processed into an LAS dataset (.lasd format), and then the processed LAS datasets
(different blocks) were combined to make a Pittsburgh city map. The building footprint
shape file was then embedded into the combined blocks in the third step. The file was
then further processed to create the two elevation models. In the fourth step, the digital
elevation model (DEM) was created, which contains the elevation information of the earth’s
surface with reference to a specific datum. The digital surface model (DSM) was created at
the fifth step, which contains the elevation information of different objects on the earth (i.e.,
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buildings) with reference to the same datum. Thus, the height of objects can be obtained
by subtracting the DEM’s elevations from the DSM’s elevations at the sixth step. The new
height model was then filtered in relation to its building footprint. Several random points
were assigned to the building footprint (at the seventh and eighth steps) and then averaged
to estimate the final height of the building at the ninth step.

Buildings 2024, 14, x FOR PEER REVIEW  7  of  20 
 

Figure 2. In the first step, GIS-compatible airborne LiDAR data were collected from the 

U.S. Geological Survey (USGS) in las format. At the second step, the collected raw LiDAR 

data were processed into an LAS dataset (.lasd format), and then the processed LAS da-

tasets (different blocks) were combined to make a Pittsburgh city map. The building foot-

print shape file was then embedded into the combined blocks in the third step. The file 

was then further processed to create the two elevation models. In the fourth step, the dig-

ital elevation model (DEM) was created, which contains the elevation information of the 

earth’s surface with reference to a specific datum. The digital surface model (DSM) was 

created at the fifth step, which contains the elevation information of different objects on 

the earth (i.e., buildings) with reference to the same datum. Thus, the height of objects can 

be obtained by subtracting the DEM’s elevations from the DSM’s elevations at the sixth 

step. The new height model was then filtered in relation to its building footprint. Several 

random points were assigned to the building footprint (at the seventh and eighth steps) 

and then averaged to estimate the final height of the building at the ninth step. 

 

Figure 2. LiDAR analysis for estimating the building height. 

   

Figure 2. LiDAR analysis for estimating the building height.

2.5. Developing UBEM and the Energy Simulations

The methodological framework for developing the UBEM in this study is shown in
Figure 3. Similar to estimating the building height, we provided more detailed information
for replication purposes. In Step 1, the latest building footprint shape file of Pittsburgh
was collected from the WPRDC. The scope of the study was defined, and the commercial
building types were selected in Step 2. After developing an archetype library for the
selected building stocks in Step 3 (described in Section 2.2), the envelope properties of
each archetype of the studied building stocks were collected and/or identified (e.g., roof,
infiltration, etc.) in Step 4. Then, the WWR of the selected buildings was measured, and
the number of floors and external wall composition were identified in Step 5 (described in
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Section 2.3). After that, LiDAR analysis was conducted to estimate the building heights
in Step 6 (described in Section 3.4). The 3D building models were designed using the
platform SketchUp in Step 7, as 3D geometric models of buildings are fundamental for
UBEMs [49]. GIS data (building footprints) were preprocessed from ArcGIS to SketchUp to
accurately model the buildings, which reflect the actual volumetric shapes and orientations.
Then, the total heights and number of floors were assigned to model every building
separately. The WWR was then assigned to the corresponding building once the 3D model
was developed. Windows were evenly assigned to each façade of the model (Step 7 in
Figure 3). One thermal zone on each floor was defined to reduce the model complexity and
running time [14,45]. The OpenStudio platform (an add-in tool of SketchUp) was used to
complete the boundary condition of the roof, floors, and external walls. Examples of 3D
models for the studied stocks are shown in Figure 4. After completing the 3D model and
inputting the geometric information, the model was converted to EnergyPlus format (.idf)
and imported into EnergyPlus, where non-geometric information was then input into the
different thermal zones of the building in Step 8, based on the archetypes of the building
stocks (based on Step 3). After verifying all inputs (both geometric and non-geometric
information) including the selection of weather data, the completed energy models were
run to simulate the energy consumption of the selected buildings in each stock in Step 9.
The simulated results were then analyzed to identify the pattern of energy consumption in
each stock and validate the UBEM with the collected actual energy consumption data.
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2.6. Energy Conservation Strategies

The UBEM can effectively be used in calculating the EUIs for large-scale building
stocks (for both base EUIs and for implementing the selected energy conservation strate-
gies), as the accuracy of the UBEM results is high (See Tables 1 and 2), and the UBEM also
involves straight-forward calculations (using the already collected input parameters and
developed 3D models) (Figure 3). Considering the EUIs of the existing commercial build-
ing sector, enhancing building energy efficiency is of paramount importance, as carbon
emissions are directly proportional to energy consumption. For quantifying the energy
efficiency potential, it is important to break down the energy consumption across building
types and energy systems and also identify the relevant energy efficiency hotspots [62].
Some studies suggested that lighting upgrades are the most effective individual energy
conservation measure for commercial buildings, while window upgrades are more so for
residential buildings [41]. Therefore, this study adopted two energy conservation measures:
(i) lighting upgradation to LEDs, and (ii) plug and process load reduction. As most of the
buildings were built before 2004, it is easier and more cost-effective to upgrade lighting
systems and install energy-efficient appliances [63] compared to other measures such as
building envelope, ground-source heat pump, fault detection and diagnostics, etc. [64]. In
addition, upgrading traditional incandescent lighting to LEDs consumes up to 90% less
energy and lasts up to 25 times longer [65]. Thus, this study assumed that the lighting
upgradation would reduce 75% (for pre-1980 and 1980–2004) and 50% (for post-2004) of
the lighting inputs, whereas 15% for the plug and process load reduction was assumed
(for all buildings), according to Mohammadiziazi et al. [45]. After modifying the energy
models, the simulations were run again according to the considered measures for all the
studied buildings.

Table 1. Comparative annual EUIs for studied building stocks to the references.

Building Stock Simulated EUI (kWh/m2)
Actual/Reference EUI

(kWh/m2)

Sales and shopping 528 486
Food sales and services 2894 3145 *

Healthcare facilities 822 922
* According to Zhang et al. [66]; actual data on food sales and services were not available.

Table 2. Validation of UBEM results.

Building Stock Type PE (%)
KS Test Results

p-Value Hypothesis

Food sales and
services * * *

Sales and shopping 9 0.541 0
Healthcare facilities 11 0.699 0

* Not carried out due to unavailability of actual data for testing; 0: null hypothesis not rejected; 1: null hypothe-
sis rejected.

3. Results and Discussion
3.1. Estimating the Window to Wall Ratio (WWR) for Individual Stock Is Essential for the UBEM

Considering the importance of the WWR in UBEM studies, which is often unavailable
in public datasets, the measured values were used in this study. The estimated WWRs for
the studied building stocks were compared with the values derived from the CBECS 2018
data for the same commercial use of buildings in the cold region in the US [67]. The values
were organized according to the CBECS classification for comparative analysis.
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For sales and shopping, about 27% of the buildings had a WWR of less than 0.01
according to the CBECS data, whereas it was only 6% of buildings measured in this
study. However, about 20% of the buildings in the same category had a WWR of 0.02–0.10
according to the CBECS data, which was much lower than the value (39% of buildings)
measured in this study. For healthcare facilities, about 23% of buildings had a WWR less
than 0.10 according to the CBECS data, compared to only 6% of the buildings measured
in this study. Differing results from the CBECS data and this study were again found for
WWRs of 0.26–0.50. For instance, about 21% of the buildings had a WWR of 0.26–0.50
according to the CBECS data, which was 47% of the buildings measured in this study. The
measured WWRs for food sales and services from this study revealed that the values from
the CBECS survey data are an underestimate (Figure 5). Although a similar trend of WWRs
was found from the CBECS survey data and this study when all of the building stocks were
combined (Figure 5d), clearly distinguished values can be noted for the individual stocks.
Therefore, it is suggested to use measured values for UBEM studies, as WWRs are city-
or region-specific.
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with the Commercial Building Energy Consumption Survey (CBECS) data [59].

3.2. Energy Use Intensity Pattern of the Studied Buildings

The UBEM results (e.g., annual energy use intensity) for the selected building stocks
are shown in this section, which were obtained based on the developed archetype data
(input parameters, highlighted in Supplementary Figure S1), measured data (e.g., WWRs,
building heights), designed 3D buildings, and the modeling and simulation through the
EnergyPlus 24.1.0 software. The annual energy use intensity (EUI) pattern for the studied
building stocks is shown in Figure S2. One of the most common measures of building
energy performance benchmarking is the EUI, which is calculated by dividing the total
energy consumed by the building in one year by the total gross floor area of the building
(EUI, kWh/m2) [68,69]. The EUI is the sum of the energy consumption by the different
end uses such as heating and cooling systems, lighting, ventilation, plug and process
systems (various appliances), water systems, and water heating systems normalized by the
total floor area. The estimated annual EUI was 282–676 kWh/m2 for sales and shopping,
545–1298 kWh/m2 for healthcare facilities, and 2727–3332 kWh/m2 for food sales and
services. The EUI composition by the end use of the studied building stocks is shown in
Figure 6. The composition is defined by three main classes such as HVAC, lighting, and
equipment. On average, the lighting, HVAC system, and equipment contributed about
34%, 6%, and 59% to the total EUI for sales and shopping. The plug load and processes
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(e.g., internal equipment and appliances), including refrigerators, were the predominant
contributors in this category. Lighting also contributed considerably to the higher energy
consumption due to the selection of lighting systems and the density of lighting. Similarly,
equipment contributed to the highest energy consumption (about 81%) for food sales and
services, as this can be attributed to high natural gas consumption, the intensity of internal
equipment (e.g., cooking appliances and refrigerators), and the corresponding operational
schedules. For healthcare facilities, the share was 18% by lighting, 21% by the HVAC
system, and 61% by the plug load and processes (e.g., internal equipment, appliances,
refrigerators, etc.). Compared to the other two categories, the share of the lighting and
HVAC systems contributed to a higher EUI in healthcare facilities due to the operational
schedules and the other factors described above. In addition to the variations found in
the simulated energy use pattern of the studied commercial building stocks (Figure 6),
considerable variations were also observed within buildings of the same stock. For instance,
the contributions of lighting, the HVAC system, and equipment were 18–58%, 1–27%, and
26–82%, respectively, in the category of sales and shopping; they were 4–7%, 12–14%, and
79–83%, respectively, in the category of food sales and shopping; and 7–52%, 9–43%, and
12–81%, respectively in the category of healthcare facilities. Such higher variations were
observed mainly for the functions of the buildings in the same category (e.g., outpatient
clinics vs. hospitals in the category of healthcare facilities).
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3.3. Variations in the Simulated EUIs in the Studied Buildings

We calculated the frequency distributions for the actual and simulated annual EUIs
and the probability distribution function (PDF) for the estimated EUIs, see Figure 7. Al-
though similar thermal zones were considered in each building, the simulated EUIs were
considerably varied among the buildings in each stock. In addition to the description of
such variations for lighting systems and equipment (Section 3.2), solar heat gain and loss
through the different WWRs, external wall composition, and orientation of the buildings
can contribute to the differences (for HVAC systems) [45,70]. The PDF of the simulated
EUIs for the studied building stocks followed a lognormal distribution (Figure 8). Lower
EUIs had a higher frequency in buildings in the food sales and services and healthcare
facilities stocks, but higher EUIs with higher frequency were observed for sales and shop-
ping. This finding is proven by more than 70% of the buildings having annual EUIs within
500–700 kWh/m2 in this category. The frequency distributions of the EUIs demonstrate
that UBEM results were mostly concentrated for the simulated data but scattered for the
actual data. This was due to using archetype data for the UBEM, but this can vary for
individual buildings in the real world. However, the average annual simulated EUIs for the
studied building stocks were considered with the actual annual EUIs or with the references
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for the same commercial use types (Table 1). It should be noted that the Department of City
Planning of the City of Pittsburgh provided the most recent actual annual energy use data
of several commercial buildings to the research group, which was used for comparing and
validating the simulated results; data on food sales and services were not provided. The
actual energy consumption data for the buildings from the Department of City Planning
was from 2018. Along with data for other building stocks (325 individual buildings in total),
the actual energy consumption data for 9 healthcare facilities and 7 for sales and shopping
buildings were provided. The average values were then used for the comparison (Table 1).
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3.4. Validation of UBEM Results

The reliability of UBEM results can be proven through validation against actual data,
particularly with measured energy data, which are often challenging to collect for large
stocks [3,12,14,33]. A possible alternative way to validate UBEM results is to find out the
modeling error, which can be estimated through the variation in the simulated and actual
energy use due to data input and simulation engine errors [71]. The difference between
these two, or the percent error (PE), was estimated using Equation (2) [45]. The PE was
estimated using the aggregated energy use of each use type. Mean EUIaj is the average
annual actual EUI for use type j, and Mean EUIsj is the average annual EUI obtained from
the UBEM for use type j.

Mean PEj =
Mean EUIaj − Mean EUIsj

Mean EUIaj
× 100% (2)

The UBEM validation results are given in Table 2. The PE for sales and shopping was
9%, compared to 11% for healthcare facilities. The overall acceptable EUI variation is 1–19%,
as suggested by the existing literature [14,16]. As the PE for food sales and services was
not calculated due to unavailability of the actual data, we compared the results with the
existing literature. The variation was 8% according to Zhang et al. [66] for the same climate
zone in the US. In addition to calculating the PE, a two-sample Kolmogorov–Smirnov (KS)
test was performed to analyze the similarity of distributions of the simulated and actual
EUIs. The KS test is a non-parametric test that gives insight to the statistical difference
between two samples [72]. The KS test reports the maximum difference between two
cumulative distributions and calculates a p-value from that and the sample sizes. Two
datasets comprising the actual EUIs and simulated EUIs for both sales and shopping and
healthcare facilities were used to conduct the KS test separately using the SPSS 28 software.
The assumption of a null hypothesis means that the two distributions are not statistically
different, and it is not rejected when the p-value is greater than a specific significance
level (either 0.05 or 0.01). With a significance level of 0.05, the null hypothesis was not
rejected for both sales and shopping and healthcare facilities (Table 2), implying that the
distributions of the simulated and actual EUI were not distinct. Both the PE and KS results
demonstrate the validity of the UBEM-simulated results and prove that they can be adopted
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by Pittsburgh for further energy planning and conservation strategies. The low PEs for both
sales and shopping and healthcare facilities were likely because of the experiences of the
research team in characterizing archetypes with greater similarity to real-world operation
and the availability of representative input parameters, especially found in [66,67]. The
errors for both building stocks were almost similar and could mainly be traced to various
occupant-related inputs and internal equipment. Though the errors were already low, they
can be further addressed by conducting occupant surveys and determining the inventory
of internal equipment with case studies.

3.5. Energy Conservation Strategies of the Studied Commercial Building Stock

Considering the contribution of lighting and equipment to the total EUI composition
of the studied commercial building stocks (Figure 6), this study adopted two energy
conservation measures such as lighting upgrades to LED and plug and process load
reduction. The results of the energy conservation strategies considered in this study,
including the average percentage of composition by end use (Section 2.6), are shown in
Figure 8. About 18% of the total EUI can be saved by upgrading the lighting systems
in sales and shopping buildings, whereas 8% can be saved by implementing the plug
and process load reduction. The higher reduction in the EUI from upgrading lighting
systems in buildings can be attributed to the significant energy consumption by lighting
in this category (it is about 34% for the base case) (Figure 6). These combined strategies
could reduce about 26% of the total annual energy consumption. For food sales and
services, the savings for implementing these two strategies were not considerably high
(about 17%), as fuel consumption for cooking contributed the greatest portion of the total
energy consumption. The lighting system upgradation can reduce around 10% of the
total energy consumption in healthcare facilities, whereas plug load and process load
reductions were not significant (only 4%). Both strategies combined could reduce around
14% of the total energy consumption in this category. The results suggested that upgrading
lighting systems could be important strategy for achieving the energy reduction goals
for commercial buildings in Pittsburgh. Though not covered in this study, there is also
the potential for substantial economic and environmental benefits from implementing the
suggested energy conservation measures.

This study enhanced a step-by-step framework for adopting a UBEM for energy
simulation, which would be very effective for city planners for policy and implementing
energy conservation strategies. The framework has high potential to be scaled up for
implementing the UBEM for the large-scale energy simulation of different building stocks,
including residential and commercial, and it can be implemented in other cities, regions,
and countries (depending on the collection of required data).

3.6. Limitations

As diverse information is needed to develop UBEMs, several uncertainties are associ-
ated with both non-geometric and geometric parameters during the archetype development.
For non-geometric parameters, fixed values were mostly adopted in each stock (or subclass)
in this study, which may vary practically. For instance, the operation schedules or occu-
pancy rates may vary in each building even though they are in the same class or subclass.
The same limitations are also applicable to the geometric parameters. When estimating
the WWR through image processing, images of various façades were collected using SVS
API. Obtaining a full coverage of the façades of some buildings was not possible, and some
façade images were also not available (not covered by Google). In both cases, the total
façade area and number of windows were calculated, and the WWR was estimated by
multiplying the similar window size (from the accessible façades of the same building).
Google Earth was used to check and verify the number and type of windows. For estimat-
ing the building height, random sample points were averaged in this study. This approach
may induce inaccurate height information, as roofs may be pitched and height variations
might exist in different blocks of the building. This problem can be minimized once this
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information is readily available in the city’s GIS dataset. Moreover, inspecting reports on
the detailed building design is often impractical due to unavailability or inaccessibility and
its time-consuming nature. Calibration is also often very difficult, especially for collecting
detailed information of each building for a large and diverse stock [73]. Chen et al. [7]
suggested using a range of key input (upper and lower limits) parameters for each building
for UBEM calibration. For UBEMs, a detailed model involves a significant increase in the
time required for the development, especially the required data collection and carrying out
simulations. Thus, simplifications are preferred in 3D model development, data collection,
and simulation. For instance, modeling and simulating for a single floor to represent
the other floors of a high-rise building would reduce difficulties in the creation of the
model and increase the simulation time, while developing building databases required
for simulation would also considerably reduce the time [74–76]. Sensitivity analysis is
important to evaluate the effect of input parameter uncertainties on UBEM simulation
results. Prataviera et al. [39] proposed a three-phase methodology for uncertainty and
sensitivity analysis, such as (i) identifying the key uncertain input parameters (operational,
geometrical, and physical parameters) and their characterization by using probability
distribution functions, (ii) uncertainty analysis based on Monte Carlo sampling, and (iii)
conducting sensitivity analysis on the simulation outputs. Though sensitivity analysis was
not conducted in this study, it is recommended to conduct sensitivity analysis to ensure the
robustness of simulation results.

4. Conclusions

Based on the bottom-up engineering approach, a UBEM was developed in this study
for simulating three commercial building stocks in the City of Pittsburgh. The major
conclusions of this study can be drawn as follows:

• Considerable variations for the measured WWRs were found compared to the latest
CBECS survey data among the studied individual building stock. Considerable
variations were also observed when comparing the WWRs. For instance, a higher
frequency of WWRs was found between 0.02–0.50 (83%) in the survey data compared
to 93% for the studied building stocks.

• The simulated annual EUI ranged from 282–3332 kWh/m2 for the studied building
stocks depending on the type of use. Lower EUIs were found for sales and shopping,
while much higher ones were found for food sales and services.

• More than 70% of the buildings had annual EUIs within 500–700 kWh/m2 for sales
and shopping, about 70% within 2600–2900 kWh/m2 for food sales and services, and
about 65% within 600–1000 kWh/m2 for healthcare facilities.

• Validating the simulated results with the actual data showed a 9% and 11% PE for sales
and shopping and healthcare facilities, respectively. The KS results also demonstrated
the validity of the UBEM-simulated results for the studied stocks.

• Lighting system upgrades together with the energy-efficient appliances could reduce
the annual EUI by 26%, 17%, and 14% for sales and shopping, food sales and services,
and healthcare facilities, respectively.

The simulated results can be considered in city planning in the City of Pittsburgh,
especially for achieving the energy and carbon reduction goals for commercial buildings.
The limitations highlighted in this study may be considered in future studies for higher
simulation accuracy. In addition, the UBEM may be integrated into urban climate models,
urban energy systems, thermal comfort models and urban mobility models [12], materials
stock and flow analysis (for adopting circular economy) [77], lifecycle assessment [5], and
future climate scenarios for better energy use prediction and management. For emerging
data mining techniques, the data-driven approach is preferred over the engineering- or
physics-based approach due to the higher variance, complex and time-consuming modeling,
and lack of validation/calibration [19,78]. The integration of both approaches (e.g., hybrid
model) could significantly enhance the UBEM performance [12,35]. Input parameters such
as occupant behavior can significantly influence the UBEM simulation results. As fixed



Buildings 2024, 14, 1241 16 of 19

occupant-related inputs (e.g., occupancy rate, schedules, etc.) are mostly employed in the
existing studies, the uncertainty related to this input parameter on the simulated results
should be a focus of future studies [79]. Though the fixed schedules may be sufficient for
large-scale simulation, they may influence small groups of buildings [80]. It would also be
interesting to see the variations in the simulation results for this UBEM and other methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/buildings14051241/s1, Figure S1: Archetype library for the
studied commercial buildings; Figure S2: Annual energy use intensity (EUI) of the studied building
stocks in Pittsburgh. References [81–88] are cited in the Supplementary Materials.
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