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Abstract: This study presents a data-driven model for identifying failure modes (FMs) and predicting
the corresponding punching shear resistance of slab-column connections with shear reinforcement.
An experimental database that contains 328 test results is used to determine nine input variables
based on the punching shear mechanism. A comparison is conducted between three typical machine
learning (ML) approaches: random forest (RF), light gradient boosting machine (LightGBM), extreme
gradient boosting (XGBoost) and two hybrid optimized algorithms: grey wolf optimization (GWO)
and whale optimization algorithm (WOA). It was found that the XGBoost classifier had the highest
accuracy rate, precision, and recall values for FM identification. In testing, WOA-XGBoost has the
best accuracy in predicting punching shear resistance, with R2, MAE, and RMSE values of 0.9642,
0.087 MN, and 0.126 MN, respectively. However, a comparison between experimental values and
calculated values derived from classical analytical methods clearly demonstrates that existing design
codes need to be improved. Additionally, Shapley additive explanations (SHAP) were applied
to explain the model’s predictions, with factors categorized according to their impact on failure
modes and punching shear resistance. By modifying these parameters, punching resistance can be
improved while reducing unpredictable failure. With the proposed hybrid algorithms, it is possible
to determine the failure modes and the punching shear resistance of slabs during the preliminary
stages of the construction.

Keywords: failure mode; punching shear resistance; machine learning; slab-column connection;
hybrid algorithms

1. Introduction

Reinforced concrete (RC) slab-column connections are slabs supported directly on
columns without beams, presenting a very simple construction method. As opposed to
frame structures, flat slabs are prone to brittle punching failure, resulting in a limited
capacity for deformation [1,2]. Since this type of failure occurs without any warning,
alternative load paths cannot be guaranteed, resulting in progressive collapse [3]. The
above-mentioned problems of the brittle failure mode can be mitigated by applying shear
reinforcement, which must be capable of absorbing shear forces. Punching shear reinforce-
ment is an effective method for enhancing ultimate strength and deformation capacity.
Consequently, its use is encouraged in design codes, including the fib Model Code 2010 [4,5].
With its complex shear transfer mechanism, the main challenge is to accurately predict
the failure modes and its corresponding punching shear resistance of RC slab-column
connections [6].

The equations for shear design codes are derived from empirical expressions, such as
ACI318-19 [7] and Eurocode 2 [8]. A formula that is not calibrated within the range may
yield unsafe results, and engineers are still unfamiliar with the mechanics of punching
shears. For estimating the shear capacity of slab-column connections, several theoretical
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models have been developed, including the strut-and-tie model, the modified compression
field theory, and the critical shear crack theory [9–14]. Due to their limited database and
high influence of assumptions made during the derivative process, these models cannot be
applied to a wide range of tests [15,16]. Considering the complexity involved in the shear
transfer mechanism, the derivation and numerical implementation of the above models will
be extremely challenging [17]. Also, it is not possible to conduct a systematic evaluation of
concrete and shear reinforcements based on the additive approach used in most punching
shear models [18,19].

According to Ashour et al. [20] and Bradford et al. [21], the ultimate strength and
deformation capacity of slabs are influenced by the strength of the shear reinforcement
and concrete. The tension reinforcement ratio, the slab depth, and the arrangement and
amount of shear bars are also critical factors [22–25]. Even though slab’s failure mode
cannot be ignored, research on it has been limited [26,27]. When shear reinforcement is
present, the critical crack might intersect the shear-bars and result in punching within shear
reinforcement zone (Figure 1c). Critical cracks may occur be-neath the shear reinforcement
and extend toward the tension face, away from the zone of the shear-bars and result in
punching within the shear reinforcement zone (Figure 1d). The crushing of the compression
strut may also result in punching shear failure between the column periphery and the first
perimeter of the shear-bars (Figure 1b) [28,29]. Prior to punching shear resistance, it is
essential to determine the failure modes of slabs, due to the fact that the types of failures
are the result of different resistance mechanisms.
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Figure 1. Types of failure: (a) slab-column connections with shear reinforcement; (b) crushing of
compression strut; (c) failure within shear-reinforced zone; (d) failure outside shear-reinforced zone.

A variety of experimental studies have been conducted on the punching shear resis-
tance of slab-column connections [30–35]; however, there are few studies that have focused
on identifying failure modes. The influences that contribute to failure and the relationship
between strain and stress prior to collapse are not fully understood. As mentioned above,
due to some constraints, such as a lack of consideration of critical factors and simplifications
of the equation-building process, the existing models are not capable of providing accurate
predictions [36].

Machine learning (ML) approaches have recently become increasingly prevalent in
structural engineering, ranging from fundamental mechanics-based models to purely
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data-driven models [37]. Despite their differences in focus, some studies have demon-
strated that both approaches are effective in resolving structural problems [38,39]. These
studies can be categorized into two types: regression-based models (e.g., resistance) and
classification-based models (e.g., failure modes). In light of this, Nguyen et al. [40] and
Asgarkhani et al. [41] applied ML methods successfully to estimate the damaged state
of the structures corresponding to residual limit states. The punching strength of slabs
without shear reinforcement has recently been estimated using several ML algorithms.
Akbarpour et al. [42] concluded that both artificial neural networks (ANN) and neuro-fuzzy
inference models were capable of accurately predicting punching shear strength. Multiple
linear regression (MLR) and artificial neural networks (ANN) were employed by Tran
et al. for the analysis of two-way flat slabs [43]. Further studies were conducted using
deep learning (DL), Gaussian Process Regression (GPR), bat-ANN algorithms, and support
vector regression (SVR) [44–46]. It has been demonstrated that ML approaches are versatile
and reliable; however, it is undeniable that the original model without parameter tuning
has limitations [47].

Until recently, no studies have been conducted using ML approaches to determine
the failure modes for shear-reinforced slabs. Even though ML-based models may produce
more accurate results, only two studies have been conducted for slabs without shear
reinforcement and have been limited to identifying the flexural failure and punching
failure [11,48]. In this sense, the proposed methods may not be applicable to actual slab-
column systems due to the lack of clarity on the failure mechanism of slabs with shear
reinforcement. As long as the failure mode is accurately identified at the design stage,
the brittle collapse of slab-column connections can be avoided. The use of ML models
in engineering applications may be limited by the fact that although they are capable of
learning from collected data, the actual modeling process may not always be obvious.
This problem was solved by Mangalathu et al. [49] by using the SHAP method to explain
the modeling process. It was then applied to various aspects of structural engineering,
thereby encouraging the application of ML techniques [50–52]. Analyzing the importance
of features can be used to determine the impact of input variables on prediction using
machine learning techniques [53].

Based on the literature review above, this study presented a hybrid optimized model
for identifying failure modes and predicting punching shear resistance of slab-column
connections with shear reinforcement. As a first step, 328 sets of punching shear tests on
slab-column connections are compiled from the literature. Following the development
of three standard classifier algorithms (RF, LightGBM, XGBoost), the actual FM is used
to develop regression models for the prediction of punching shear resistance using two
hybrid optimized algorithms (WOA-XGBoost and GWO-XGBoost). In order to determine
the predictive accuracy of the best-performing ML algorithm, it is compared to design
provisions and actual values. It is possible to optimize the design of slabs by interpreting
the results of the ML model using the SHAP.

This paper is organized as follows: A brief summary of the methodology used in this
study is presented in Section 2. For slab-column connections with shear reinforcement,
Section 3 presents a prediction of failure mode and punching shear resistance through
hybrid optimized algorithms. Section 4 compares the ML-based predictions with existing
methods, and SHAP is applied to determine a model explanation. There is a conclusion in
Section 5 of this paper.

2. Methodology
2.1. Design Codes for Punching Resistance

The punching shear resistance of slab-column connections with shear reinforcement
are equal to the lowest values lowest figures of VR,cs, VR,out, and VR,max, but cannot be less
than that of similar slabs without shear reinforcement.
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2.1.1. ACI 318 (2019)

Punching resistance is measured at a perimeter (u1) 0.5d from the face of the column,
in accordance with ACI 318-19 [7]. A formula for calculating the resistance in the failure
mode of Pmax is provided in Equation (1).

VR,max = 0.5
√

fcu1d (1)

The punching resistance in the failure mode of Pcs and Pout is calculated by applying
the following equations to the control perimeters u1 and uout.

VR,cs = 0.17
√

fcu1d +
Asw fywtd

Sr
(2)

VR,out = 0.17
√

fcuoutd (3)

where fc is the compressive strength of concrete cylinders, d represents the effective depth
of longitudinal reinforcement in the slab, uout is the critical perimeter measured from
the last shear reinforcement perimeter by 0.5d, fywt represents the yield strength of shear
reinforcement, and Sr refers to the spacing between shear reinforcements.

2.1.2. Eurocode 2 (2004)

Punching resistance is measured at a perimeter (u0) 2d from the face of the column,
in accordance with Eurocode 2 [8]. A formula for calculating the resistance in the failure
mode of Pmax is provided in Equation (4).

VR,max = 0.24
(

1 − fc

250

)
fcu0d (4)

The punching resistance in the failure mode of Pcs and Pout is calculated by applying
the following equations to the control perimeters u0 and uout.

VR,cs = 0.135k(100ρ fc)
1
3 u0d + 1.5

Asw fyw,e f d
Sr

(5)

VR,out = 0.18(100ρ fc)
1
3 uoutd (6)

k =

(
1 +

√
200
d

)
≤ 2.0 (7)

where ρ represents the flexural reinforcement ratio, k represents the size effect, and fyw,e f
is the effective strength of the shear reinforcement. uout is the critical perimeter measured
from the last shear reinforcement perimeter by 1.5d.

2.2. Overview of Standard Algorithms
2.2.1. Random Forest (RF)

Random forest (RF) is a classifier composed of multiple decision trees; the output
category is determined by each decision tree’s mode [54]. It is possible to calculate the
mean error between the test value and the mean predicted value under all sub-nodes by
using the following equation.

F(xn) =
1
k ∑k

i=1

(
yi,exp −

1
k

k

∑
i=1

yi,pred

)
(8)

2.2.2. Light Gradient Boosting Machine (LightGBM)

LightGBM is a form of gradient boosting that relies on the decision tree, a highly effec-
tive approach for addressing regression and classification problems [55]. The subsequent
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weak estimator can be trained by fitting the gradients of the previous weak estimator as
the result of the LightGBM (Figure 2b). Leaf-wise algorithms select the leaf with maximum
loss difference to grow, as demonstrated:

(pk, fk, vk) = argmin(p, f ,v)L(Tk−1(X)split(p, f , v), Y) (9)

Tk(X) = Tk−1(X) split(pk, fk, vk) (10)

where k indicates the optimal solution, p represents the current leaf node, f stands for the
division feature, and v represents the segmentation value.
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2.2.3. Extreme Gradient Boosting (XGBoost)

The extreme gradient boosting (XGBoost) model was proposed as part of the boosting
ensemble ML approach in 2016 [56] which allows the model parameters to be continuously
optimized via an objective function, thereby improving prediction accuracy. Figure 2a
illustrates the algorithm visualization for XGBoost.

FO
(
Xi, X̂i

)
= FL

(
Xi, X̂i

)
+ FΩ

(
Xi, X̂i

)
(11)

X̂i =
M

∑
i=1

ϕm(xi), ϕm ∈ Θ (12)

where FO, FL, FΩ represent the objective function, loss function and risk function, re-
spectively. M indicates the number of trees, and the ϕm represents the prediction score
associated with the tree m; Θ refers to the boosting tree space.

2.3. Hybrid Optimized Algorithms
2.3.1. Grey Wolf Optimization (GWO)

Grey wolf optimization (GWO) [57,58] simulates grey wolves’ social behavior by
mimicking their hunting and leadership patterns. Grey wolves can be divided into four
species, with the Alpha (α) wolf serving as the pack leader, followed by Beta (β) and Delta
(δ) wolves, while Omega (ω) wolves are at the bottom of the food chain (Figure 3a).
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The hunting behavior involves searching, encircling, hunting, and attacking the prey,
whose encircling can be determined as follows:

→
D =

∣∣∣∣→C →
P xi −

→
Pn

∣∣∣∣
→
Pn+1 =

→
P xi −

→
A

→
D

(13)

where
→
A = 2

→
a

→
q 1 −

→
a ,

→
C = 2

→
q 2,

→
a = 2 − 2(t/tmax), the two random vectors

→
q 1 and

→
q 2

are in the range [0, 1], and
→
a is a parameter that decreases linearly from 2 to 0 until (tmax)

has been reached. As
∣∣∣∣→A∣∣∣∣ > 1, diverting search agents will be employed, while exploitation

is accomplished through the convergence of search agents in the case of
∣∣∣∣→A∣∣∣∣ < 1; [57]

provides more detailed information on GWO algorithm.

2.3.2. Whale Optimization Algorithm (WOA)

The whale optimization algorithm is a meta-heuristic optimization approach derived
from humpback whales’ bubble-net feeding strategy [59]. There are three common foraging
patterns: encircling, attacking with bubble nets, and hunting. Humpback whales encircle
potential prey after finding it and updating their position (refer to Figure 3b) by the
following equations: 

→
D =

∣∣∣∣→C →
XOj −

→
X j

∣∣∣∣
→
X j+1 =

→
XOj −

→
N

→
D

(14)

where in the j-th iteration,
→
X j represents the current position, and

→
XOj represents the

optimal position. The
→
C and

→
D are as follows:

→
C =

∣∣∣2→a →
q −→

a
∣∣∣, →

N = 2
→
q (15)

where the coefficient factor
→
a decreases from 2 to 0, while the

→
q represents the random

number distribution between 0 and 1.



Buildings 2024, 14, 1247 7 of 20

3. Implementation Procedures for Prediction
3.1. Database for Slab-Column Connection with Shear Reinforcement

Data-driven models must be based on high-fidelity data, such as experimental data, in
order to achieve high prediction accuracy. An in-depth literature review was conducted
in order to investigate punching resistance and failure modes in slab-column connections
with shear reinforcement configurations. Based on 328 experimental data points collected
from publications [19,25,31,33,60–73], comparative models were created. The results of
some studies [37,43,45–48] indicate that similar sized data sets may also be feasible, and
they may produce accurate predictions. In this study, independent samples were collected
from laboratory experiments performed on a two-way reinforced concrete slab with shear
reinforcement. Data information is summarized in the Supplementary Materials, in which d
is the slab’s effective depth; a represents the radial distance from column face to the bearing
point; as determined via ACI318-19, c is the equivalent width of a column; ρt stands for
the ratio of flexural reinforcements; b0 denotes the slab’s critical perimeter located 0.5 d
from the column face; Asw,d is the cross sectional area of the shear reinforcement within
the column face d, flc is the concrete compression strength; fy refers the yield strength
of the flexural reinforcement, fy,sw refers the yield strength of the shear bar; Vn,exp is the
punching resistance; and FM is the failure mode of the slabs (Pmax = 0, Pcs = 1, and Pout = 2).
Shear reinforcement is typically composed of stirrups (Sti), bent up bars (BuB), stud rails
(StR), hooks (Ho), shear bonds (SB), shear ladders (ShA), and double headed studs (DHS).
An extensive selection of parameters is available in this database, with a high degree of
dispersion. The most dangerous failure mode should be investigated when two failure
modes occur at the same time.

3.2. Definitions for Input and Output Variables

To conduct further analysis, input and output variables must be determined. In terms
of classification and regression, these are two distinct problems. In the FM classification,
there are nine input variables, and the output variable is the mode of failure of slabs (Table 1).
Additionally, according to references [60–72], these input variables have a significant
influence on failure modes and the punching resistance of slabs. The actual FM is considered
as an input variable in the resistance regression, resulting in ten input variables and one
output variable.

Table 1. Summary information of the variables.

Notation Unit Parameters
Type

FM Resistance

d m x1: Effective depth of the slab Input Input
a/d - x2: Span to effective depth ratio Input Input

c/b0 - x3: Column width to critical
perimeter ratio Input Input

b0/d - x4: Critical perimeter to effective
depth ratio Input Input

ρt % x5: Flexural reinforcement ratio Input Input

Asw,d cm2 x6: Cross-section area of the shear
reinforcement Input Input

flc MPa x7: Concrete compression strength Input Input

fy MPa x8: The yield strength of the
flexural reinforcement Input Input

fy,sw MPa x9: The yield strength of the shear
reinforcement Input Input

FM - y1: Failure mode Output Input
Vn,exp MN y2: Punching shear resistance Output
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3.3. Data Normalization

Prior to training, the input variables should be normalized since the extracted data
have different units and ranges. As part of the normalization process, features are scaled
on a similar basis [74]. By using the following normalization procedure, statistical bias can
be reduced and machine learning models can be made more reliable:

Xi,normal =
Xi − Xmin

Xmax − Xmin
(16)

where the values of Xmin and Xmax represent the minimum and maximum values of
respective input values.

3.4. Development of ML Models

As part of the process of developing a ML-based model for classification, the following
steps should be followed: (1) preparation of data with input variables; (2) normalization
of data; (3) in this study, the data set has been divided into two types: a training set (80%)
and a testing set (20%); (4) training has been conducted using three standard machine
learning models (RF, LightGBM, and XGBoost); (5) selecting the most accurate classification
model; (6) obtaining the results of the prediction for the testing set. The actual FM is
used as an input variable in the development of hybrid optimized ML algorithms (GWO-
XGBoost, WOA-XGBoost) that can be used to assess the impact of different failure modes
on punching resistance capacity (Figure 4). Following Figure 4, the best regression models
to punching shear resistance have been developed for slab-column connections with shear
reinforcement. The optimized parameters for regression models are also shown.
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There are three different failure modes, with Pmax = 69, Pcs = 200, and Pout = 59, respec-
tively. Due to this unequal distribution of the database, there is the possibility of skew prob-
lems, which may also affect the calculation results. In this paper, the (scale_pos_weights)
value of ML algorithms are adjusted to avoid bias in the experimental dataset. As a result
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of this design, the ratio of different failure modes will remain the same during the training
of each model. Some research studies have adopted the same approach as well [11,48].

3.5. Grid Search for Classifiers

As shown in Figure 5, a grid search with 5-fold cross validation is used in this study.
Once the appropriate parameters have been selected for each ML model, they are used
to train the data and construct models for identifying failure modes. The predictive
performance is evaluated using a test dataset following 5-fold cross-validation training. By
further validating each iteration with an independent dataset, overfitting concerns could
be mitigated. Model performance is evaluated using several metrics, which are presented
in the following sections, including the classification confusion matrix, accuracy precision,
and recall. Table 2 shows the main parameters for classifiers.
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Table 2. Main parameters for classification model.

ML Algorithms Main Parameters

RF classifier Number of estimators = ‘103’; Maximum depth = ‘10’.

LightGBM Number of estimators = ‘247’; Maximum depth = ‘7’;
Learning rate = ‘0.6259’

XGBoost classifier Number of estimators = ‘38’; Maximum depth = ‘4’;
Learning rate = ‘0.6022’.

3.6. Hybrid Optimization Process for Regression Analysis

A comparison of the convergence curves of the hybrid algorithms (GWO-XGBoost and
WOA-XGBoost) is shown in Figure 6. According to the results, the WOA-XGBoost model
performed better during training (Swarm = 75, R2 = 0.9645 in Figure 6a). Despite similar
shapes, convergence curves for the WOA present a faster rate of convergence. The WOA
achieves the best comprehensive performance not only during training, but also during the
testing of MAE, RMSE, and R2. Table 3 lists the main parameters of regression models.
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Figure 6. Convergence curves of the hybrid algorithms: (a) WOA; (b) GWO.

Table 3. Main parameters for regression models.

ML Algorithms Main Parameters

XGBoost Number of estimators = ‘20’; Maximum depth = ‘3’; Learning rate = ‘0.1’;
Objective = ‘linear’; Booster = ‘gbtree’.

GWO-XGBoost Number of estimators = ‘183’; Maximum depth = ‘10’; Learning
rate = ‘1.3205’; Objective = ‘linear’; Booster = ‘gbtree’.

WOA-XGBoost Number of estimators = ‘85’; Maximum depth = ‘3’; Learning rate = ‘0.2008’;
Objective = ‘linear’; Booster = ‘gbtree’.

3.7. Measurement of Performance

Three performance metrics are used in classification to evaluate the effectiveness
of predictive models, including precision (P), recall (R), and accuracy (Acc). As part of
regression, three performance measures are considered: the mean absolute error (MAE),
the root mean square error (RMSE), and the coefficient of determination (R2).

P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

Acc =
TP + TN

TP + FP + TN + FN
(19)

MAE =
1
n

n

∑
i=1

∣∣ypre,i − yexp,i
∣∣ (20)

RMSE =

√
1
n

n

∑
i=1

(
ypre,i − yexp,i

)2 (21)

R2 = 1 −
∑n

i=1
(
ypre,i − yexp,i

)2

∑n
i=1

(
yexp,i − 1

n ∑n
i=1 yexp,i

)2 (22)

where true positive (TP) is the number of accurately predicted failures for a given label,
based on three types of failure modes: the crushing of the compression strut (Pmax), failure
within the shear reinforced zone (Pcs), and failure outside the shear-reinforced zone (Pout).
False positive (FP) refers to the number of incorrect predictions associated with the same
label. As opposed to TN, which represents true negative, FN represents false negative,
which represents the number of incorrect predictions made by the other labels. yexp,i and
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yexp,i are the predicted and actual values, respectively. Originally, the above expressions
were proposed for two-class classification problems. The macro-average should be used
when dealing with multiclass classification problems.

4. Results and Discussion
4.1. Prediction Results for Failure Modes

Figure 7 illustrates the prediction results using a confusion matrix. In general, diagonal
elements indicate failure modes that have been correctly classified using machine learning
approaches, while other elements indicate failed predictions [75]. Accuracy (Acc) refers to
the degree of accuracy with which each of the three possible failure modes can be predicted.
The precision (P) is defined as the percentage of correct predictions for each predicted
failure mode, while the recall (R) is defined as the percentage of correct predictions for each
real failure mode.

Buildings 2024, 14, x FOR PEER REVIEW 11 of 20 
 

straightforward. While LightGBM is intended for large datasets, it is extremely sensitive 
to overfitting in small datasets. Figure 7 indicates that the recall for predicting the failure 
modes of Pcs and Pout is lower than that for Pmax, primarily due to the complex mechanism 
of the Pcs and Pout and the differences between them during the testing not being well 
defined, which requires additional investigation. 

 
Figure 7. Failure mode classification based on ML approaches: (a) RF-training; (b) LightGBM-
training; (c) XGBoost-training; (d) RF-testing; (e) LightGBM-testing; (f) XGBoost-testing. 

4.2. Prediction Results for Punching Shear Resistance 
4.2.1. Hybrid Model Performance under Optimization 

As shown in Table 4, the predicted results are compared to the actual results. With 
R2, MAE, and RMSE values of 0.9642, 0.087 MN, and 0.126 MN in the testing process, the 
WOA-XGBoost demonstrated the best performance in predicting the punching shear 
resistance. In comparison to the standalone XGBoost, the GWO-XGBoost and WOA-
XGBoost models demonstrate better performance. Accordingly, using hybrid optimized 
algorithms (GWO and WOA) to optimize the initial weights and biases can improve the 
performance of the hyperparameter determination process. With this method, the 
hyperparameters of the XGBoost algorithm are found to be well converged and an 
appropriate solution is obtained. 

Table 4. Performance comparison of regression models. 

ML Algorithms 
Training Testing 

MAE (MN) RMSE (MN) R2 MAE (MN) RMSE (MN) R2 
XGBoost 0.125 0.203 0.884 0.149 0.242 0.8682 

GWO-XGBoost 0.001 0.002 0.999 0.094 0.133 0.9603 
WOA-XGBoost 0.033 0.045 0.994 0.087 0.126 0.9642 

4.2.2. Comparison with Empirical Models for Resistance 
On Figure 8, the current design codes are compared with ML-based models. In terms 

of prediction performance, ML-based models outperform empirical models significantly. 
As shown in Table 5, the proposed WOA-XGBoost produces the most effective results, 
with smaller error metrics MAE and RMSE as well as higher correlation coefficients R2. A 
hybrid algorithm may be able to (1) capture complex nonlinear mapping relationships 

Figure 7. Failure mode classification based on ML approaches: (a) RF-training; (b) LightGBM-training;
(c) XGBoost-training; (d) RF-testing; (e) LightGBM-testing; (f) XGBoost-testing.

The results indicate that XGBoost classifier had the highest accuracy rate, and that its
precision and recall were also the highest in the training and testing datasets. According to
the test results, Pmax, Pcs, and Pout have precisions of 88.2%, 81.8%, and 75%, respectively,
and recalls of 93.8%, 81.8%, and 70.6%, respectively. Almost all of the failure modes are
correctly classified in the training process. According to the bottom right corner of the
diagram, the XGBoost classifier achieves an accuracy of 81.8%, which is better than RF and
LightGBM. This may be due to the fact that the objective function and row and column
sampling technique in XGBoost are designed to prevent overfitting. The branching metric
is reset to a gain in structure score when the growth direction is more straightforward.
While LightGBM is intended for large datasets, it is extremely sensitive to overfitting in
small datasets. Figure 7 indicates that the recall for predicting the failure modes of Pcs and
Pout is lower than that for Pmax, primarily due to the complex mechanism of the Pcs and
Pout and the differences between them during the testing not being well defined, which
requires additional investigation.

4.2. Prediction Results for Punching Shear Resistance
4.2.1. Hybrid Model Performance under Optimization

As shown in Table 4, the predicted results are compared to the actual results. With R2,
MAE, and RMSE values of 0.9642, 0.087 MN, and 0.126 MN in the testing process, the WOA-
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XGBoost demonstrated the best performance in predicting the punching shear resistance.
In comparison to the standalone XGBoost, the GWO-XGBoost and WOA-XGBoost models
demonstrate better performance. Accordingly, using hybrid optimized algorithms (GWO
and WOA) to optimize the initial weights and biases can improve the performance of the
hyperparameter determination process. With this method, the hyperparameters of the
XGBoost algorithm are found to be well converged and an appropriate solution is obtained.

Table 4. Performance comparison of regression models.

ML Algorithms
Training Testing

MAE (MN) RMSE
(MN) R2 MAE (MN) RMSE

(MN) R2

XGBoost 0.125 0.203 0.884 0.149 0.242 0.8682
GWO-XGBoost 0.001 0.002 0.999 0.094 0.133 0.9603
WOA-XGBoost 0.033 0.045 0.994 0.087 0.126 0.9642

4.2.2. Comparison with Empirical Models for Resistance

On Figure 8, the current design codes are compared with ML-based models. In terms
of prediction performance, ML-based models outperform empirical models significantly.
As shown in Table 5, the proposed WOA-XGBoost produces the most effective results, with
smaller error metrics MAE and RMSE as well as higher correlation coefficients R2. A hybrid
algorithm may be able to (1) capture complex nonlinear mapping relationships between
input variables and punching shear resistance; (2) and use the failure mode as a variable to
predict the punching shear resistance, which may improve the accuracy of prediction.
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Table 5. Summary of punching shear resistance.

Model AVG
(Vn,exp/Vn,pre)

COV
(Vn,exp/Vn,pre) R2 MAE (MN) RMSE (MN)

ACI 318-19 1.83 0.23 0.67 0.41 0.53
Eurocode 2 1.09 0.22 0.81 0.17 0.26

XGBoost (testing) 1.02 0.18 0.8682 0.149 0.242
GWO-XGBoost (testing) 1.003 0.077 0.9603 0.094 0.133
WOA-XGBoost (testing) 0.995 0.071 0.964 0.087 0.126

Furthermore, the average value (AVG) and coefficient of variation (COV) of the
(Vn,exp/Vn,pre) ratio are reported. ACI 318-19 [7] has been shown to be the most con-
servative in predicting punching shear resistance for slabs with shear reinforcement. It
was found that the experimental results were more closely matched by the equations in
Eurocode 2 since it calculates the punching shear capacity by taking into account both the
shear and flexural reinforcements as well as the concrete [76]. In contrast to the assumption
made in most design codes, concrete may not provide consistent resistance to slab-column
connections. In the case of low amounts of shear reinforcement, most design codes under-
estimate this contribution whereas in the case of large amounts, they overestimate it [24]. It
appears that the design equations may have been over simplified, and that some influential
factors should be taken into account.

4.3. Model Explanation
4.3.1. SHAP Theory

The SHAP theory is a widely used interpretation model based on game theory [77].
Using the SHAP value, each feature contributes to the prediction result, and the output
model is formed by adding the input variables linearly.

F(x) = G
(
x′
)
= δ0 +

n

∑
i=1

δixi′ (23)

δi( f , x) = ∑
z∈x′

|z|(M − |z| − 1)!
M!

[ fx(z)− fx(z ∖ i)] (24)

where n stands for the number of inputs, and S is the constant value in the absence of all
inputs. |z| represents the number of non-zero entries in z (z ∈ x′), z and z ∈ x′, and δi is
the SHAP value. Each SHAP value depicts the change in the anticipated model prediction
when the feature is conditioned. SHAP can be further explained in previous studies [78,79].

4.3.2. Sensitivity Analysis for Failure Modes

The SHAP theory was used to determine the sensitivity of the variables affecting
types of failure. Figure 9 illustrates the importance of input variables through a visual
representation, and each variable contributes to a varying degree to the prediction. It
provides additional information regarding slab failure modes that has not previously been
examined. Previously published studies [11,20,22,48] focused more on global failure mode
than on individual classes (Pmax, Pcs, or Pout). According to Figure 9, Asw,d and (a/d) have
been found to be the two variables that are of highest importance in all three types of failures.
There is a significant impact of fy on the failure mode Pmax, while its effect on the two
other failure modes is relatively minimal. The failure mode Pout is significantly influenced
by d, whereas its impact on the other two failure modes is relatively limited. These two
parameters can also be used to determine a simple indicator of different failure modes.
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4.3.3. Summary Plots of the Failure Modes

The XGBoost classifier was selected as the model for interpretation using SHAP as
it has the greatest ability in Section 4.1. Figure 10 shows the specific effect of each input
variable on failure mode, where the colors from blue to red correspond to the size of the
value from small to large. In order to assess the activation of the shear reinforcements and
their contribution to punching shear resistance, the following analysis is conducted on Pcs.
In Figure 10b, the four variables ( flc, ρt, d, and b0/d) have a positive effect on predictions,
which means that slabs fail more frequently in Pcs if those four variables are high. The
four input variables (Asw,d, a/d, fy,sw, and fy) have a negative effect, while there is no
obvious influence on the (c/b0). Several studies [32,80] have demonstrated a positive effect
of the ρt of the slab on the formation of punching shear cones. This also explains why
thick slabs with a high flexural reinforcement ratio fail in punching shear, even if they are
shear-reinforced [28].
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4.3.4. Sensitivity Analysis of the Punching Shear Resistance

WOA-XGBoost was selected as the most accurate model in this research, and SHAP
was used to interpret the results. The feature importance for each of the ten input variables
is presented in Figure 11a. The most sensitive variable is d, followed by Asw,d, ρt, (a/d), flc,
(c/b0), fy, fy,sw, (b0/d), and FM. As a result, it is evident that improving Asw,d and ρt is a
more effective way of enhancing punching shear resistance than increasing fy,sw and fy.
Although FM contributes the least to punching resistance, it cannot be ignored due to its
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close relationship to the other input variables in Figure 9. After incorporating FM into the
data-driven model, the punching resistance can be predicted more accurately.
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As shown in Figure 11b, punching resistance increases as these seven variables (d,
Asw,d, ρt, flc, c/b0, fy,sw, b0/d) are increased, while (a/d, fy) are decreased. As can be seen,
increasing ρt and flc not only improves punching resistance, but also reduces the risk of
the failure mode in Pmax and Pout (refer to Figure 10). Increasing d reduces the risk of Pout
failure (Figure 10c), and because of the shear bars, the failure mode of those slabs is more
likely to be Pcs. The use of (c/b0) to increase punching resistance could increase the risk
of Pout failure, so this consideration should be taken into account when designing this
parameter. The increase in the (a/d) not only reduces the resistance, but also increases
the risk of failure of the Pout, which should be avoided. Furthermore, it has been shown
that the punching shear resistance decreases as fy increases [43], which might be explained
by widening shear cracks and, therefore, a reduced contribution of concrete to punching
shear capacity.

4.3.5. Feature Dependency of the Punching Shear Resistance

This section presents the six most sensitive factors (refer to Figure 11a) for resistance
and demonstrates the validity of WOA-XGBoost’s prediction based on SHAP. In Figure 12,
feature dependency plots are shown for punching shear resistance. Increasing d, Asw,d,
ρt, flc, and (c/b0) values result in an increase in SHAP values, while decreasing the (a/d)
value results in an increase in SHAP values.

Increasing the effective depth of a slab improves the punching shear resistance, partic-
ularly if the d exceeds 180 mm (Figure 12a). Experiments have also demonstrated the effect
of d on punching capacity [22,33]. Furthermore, ACI 318-19 and Eurocode 2-2004 provide
unconservative predictions for slabs with d wider than 200 mm, whereas they provide
improved prediction for slabs with d less than 200 mm, which should be improved [81]. A
change in the SHAP value was observed from (−0.25) to (+1.50), as the Asw,d grew between
0 and 100 cm2. Asw,d positively influences punching resistance if it is wider than 20 cm2.
According to a prior study [46], if ρt is too small, the slab will fail when the shear bars
are not fully worked, the slab will fail the shear bars that are being fully worked, which
should be avoided. Based on Figure 12c, the SHAP value will be greater than zero if ρt
exceeds 1%, which results in an increase in the punching shear resistance. Nevertheless,
the ACI 318 code often fails to take notice of this. EC2-2004 and ACI 318-19 do not take into
consideration both (a/d, c/b0) when calculating punching resistance. As can be seen in
Figure 12b, the SHAP value increased whereas (a/d) decreased from 10 to 2. In particular,
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an (a/d) less than 5 has a positive impact on punching resistance. It may be explained by
the development of arch mechanisms in slabs and the effects of friction at the support [82].
When (c/b0) increases on a slab, the SHAP value increases from (−0.15) to (+0.05) in
Figure 12f as (c/b0) exceeds 0.15, having a positive effect on punching resistance. The (c/b0)
value is critical in limiting the formation on the punching shear cone, however, current
design methods tend to ignore this factor. A reduction in the SHAP value occurs when
concrete compressive strength decreases (Figure 12e); it has a positive impact on punching
shear resistance when the value of flc exceeds 38 MPa. The size and width of concrete
cracks may increase with decreasing concrete strength under punching loads, due to the
reduced possibility of interlocking between aggregate gains on opposite sides of the crack.
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In conclusion, the feature importance analysis indicates that (d > 180 mm, Asw,d > 20 cm2,
ρt > 1%, c/b0 > 0.15, flc > 38 MPa, a/d < 5), all of which are positively correlated with
punching shear resistance in slab-column connections with shear reinforcement.

4.4. Limitations

This study has improved the accuracy of predicting punching shear resistance and
failure modes using ML models; however, there are some limitations that deserve further
attention. Depending on the characteristics of the collected datasets, the classification
and regression results of this study could be limited in their generalizability to broader
scenarios. Including a larger range of databases that represent a variety of structural
configurations, geometric characteristics, and material properties could provide a more
comprehensive outcome. Despite the fact that the model performs well in terms of punching
shear resistance, much work remains to be performed in order to better identify the failure
modes of many slab-column connections, to lead to a decrease in the model’s reliability.
The authors expect to conduct future research in this area.

5. Conclusions

Since the force transmission mechanism of the slab-column connection with shear
reinforcement is complex, it has always been challenging to predict the failure mode in
advance. An interpretable data-driven model has been developed for analyzing the fail-
ure modes using three typical ML models, RF, LightGBM, XGBoost, and compared to
develop a robust classification technique. Additionally, a prediction method for punching
shear resistance that considers slab failure modes was proposed using two hybrid algo-
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rithms (GWO-XGBoost and WOA-XGBoost). This study revealed a number of interesting
findings, including:

1. In failure mode classification, the XGBoost classifier achieves the highest accuracy
rate of almost 81.8%, thus filling the gap caused by the lack of empirical formulae.

2. There is a significant impact of fy the on the failure mode Pmax, while the failure
mode Pout is significantly influenced by d. These two parameters can also be used to
determine a simple indicator of different failure modes.

3. In the punching shear resistance prediction, the proposed WOA-XGBoost produced
the most effective results in testing, due to the fact that the effect of the failure modes
has been taken into consideration.

4. The performance of hyperparameter determination can be improved by using hybrid
algorithms (GWO and WOA).

5. The feature importance analysis indicates that (d > 180 mm, Asw,d > 20 cm2, ρt > 1%,
c/b0 > 0.15, flc > 38 MPa, a/d < 5) are positively correlated with punching shear
resistance.

6. As a result of SHAP explanations, a number of parameters that influence failure
modes and punching resistance have been identified, and by altering these parameters
punching resistance can be improved while brittle collapse is reduced.
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