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Abstract: This study presents a rigorous investigation into the mathematical and physical properties
inherent in the Fourier phase spectrum of earthquake ground motions. This exploration includes
a detailed examination of the probability distribution of phase angles and differences, elucidated
through two novel numerical experiments utilizing the reduction ad absurdum approach. Moreover,
the study scrutinizes the physical attributes of earthquake ground motion’s phase spectrum, employ-
ing the circular frequency-dependent phase derivative as a key analytical factor. In a novel approach,
the research delves into the relationship between circular frequency-dependent phase derivatives
and Fourier amplitudes, shedding light on essential connections within earthquake phenomena,
particularly addressing non-stationarity. Expanding the scope, the study comprehensively examines
the influence of source, propagation path, and site on both the phase spectrum and accelerogram.
Employing the control variate technique facilitates this analysis, providing valuable insights into the
underlying physical mechanisms governing earthquake wave behavior. The findings highlight the
temporal properties of the phase spectrum, attributing its complexity to the temporal heterogeneity
in energy release during the fault rupture and dispersion of earthquake waves. This novel approach
not only enhances the understanding of earthquake dynamics, but also underscores the significance
of considering temporal variations in earthquake events.

Keywords: earthquake ground motions; phase spectrum; mathematical characteristics; physical
characteristics; envelope delay

1. Introduction

The Fourier transform is very useful in the study of the characteristics of earthquake
waves [1–3]. A real acceleration time history of the earthquake is transformed into an am-
plitude spectrum and a phase spectrum by applying the Fourier transform. The amplitude
spectrum describes the distribution of the energy of the earthquake ground motion with
frequency, whose shape is always regular. The models of the amplitude spectrum [4–6], as
well as the famous models of the power spectrum, such as the Kanai–Tajimi spectrum [7,8]
and the Clough–Penzien spectrum [9], seem to be adequate for the generation of earthquake
ground motions. In contrast, the phase spectrum is more irregular owing to the periodicity
of the phase angles.

Although significant attention has been paid to the importance of phase in some fields,
e.g., in signal processing, image processing, and human speech recognition, even some
research reveals that, in some situations, many of the important features of a signal are
preserved if only the phase is retained [10–15]. Despite this, the phase spectrum appears
to be undervalued within the realm of earthquake engineering. Progress in studying the
phase spectrum in earthquake engineering has been sluggish. Typically, the phase angles
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of earthquake ground motions are usually assumed to be independent and uniformly
distributed random variables in the domain [0, 2π] [16–20], a presumption drawn from
statistical analyses of real accelerograms. However, this assumption of independent and
uniformly distributed random phase angles results in time-stationary earthquake ground
motions, which may not accurately reflect the true behavior of phase angles.

After Ohsaki [21] indicated that the phase difference appears to be normal or appar-
ently normal, and its probability density function (PDF) is closely related to the wave shape
of the earthquake ground motion, other studies focused on the probability distribution of
the phase difference [22–28]. Furthermore, a specific distributed phase difference was used
to simulate earthquake ground motions [29–36]. However, employing phase differences
governed by specific distributions (such as normal and lognormal distributions) yields sim-
ulations with similar temporal shapes. Consequently, the stochastic nature of earthquake
ground motion waveforms remains inadequately captured. This highlights the challenge of
describing the intricate characteristics of the phase spectrum solely through mathematical
formulations, disregarding their physical interpretations.

Furthermore, the relationship between the Fourier phase spectrum and the Fourier
amplitude spectrum is of interest to earthquake engineering researchers. In a pioneering
study conducted by Thráinsson and Kiremidjian, the phase difference was found to be
contingent upon the Fourier amplitude [25]. On this basis, Boore introduced a circular
frequency-dependent phase derivative (measured in time units) instead of the phase differ-
ence to investigate the relationship between the phase derivative and the Fourier amplitude,
which revealed that the largest amplitudes occurred over a relatively narrow time range,
whereas smaller amplitudes were spread out over the entire time range [37]. However, this
outcome proved perplexing because the circular frequency-dependent phase derivative
calculated by Boore [37] using continuous Fourier transform yielded a vastly different range
compared to the duration of the accelerogram, including some negative values. In this
regard, Ding et al. proposed a new method to calculate the circular frequency-dependent
phase derivative based on the discrete Fourier transform to obtain the same range as the
duration of the accelerogram and avoid negative values [38]. In this method, wave groups
with larger amplitudes arrived at the same time when a strong shock occurred. Thus, from
the brief outline of some major contributions to the relation of the phase spectrum and
the Fourier amplitude, the time property of the phase spectrum was indicated. While
recent studies have endeavored to model the phase characteristics of accelerograms using
envelope delay [39,40] and group velocity dispersion curves [41], they have overlooked the
relationship between phase and amplitude.

In this study, the mathematical characteristics of the phase angle and phase difference
and the physical characteristics of the phase spectrum were studied. The subsequent
sections of this paper are structured to unfold our investigation comprehensively. Section 2
delves into an exploration of the probability distributions governing phase angles and
phase differences. Moving forward, Section 3 delves deeper into the physical interpretation
of the phase spectrum, particularly through an analysis of the circular frequency-dependent
phase derivative. This exploration lays the groundwork for understanding the relation-
ship between the phase spectrum, amplitude, and duration, which is further expounded
upon. In Section 4, we delve into elucidating the impact of various factors, such as source
characteristics, propagation path, and site conditions, on the phase spectrum. Finally, in
the concluding section, we synthesize our findings and offer conclusive remarks. This
sequential arrangement not only facilitates a structured understanding of our research,
but also underscores the interconnectedness of the various aspects explored throughout
the study.
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2. Mathematical Characteristics of the Phase Angles and Phase Differences
2.1. Probability Distribution of the Phase Angles

The discrete acceleration time history of earthquake ground motion, a(t), can be
expressed by a finite Fourier series:

a(t) =
n

∑
k=0

Ak · cos(ωkt + φk) (1)

where Ak is the Fourier amplitude, φk is the Fourier phase angle corresponding to ωk,
ωk = 2πk/T is the circular frequency of the kth harmonic, T is the duration of the time
history, n = T/(2∆t), and ∆t is the time increment of the time history. The phase difference
angle, ∆φk, is defined by Ohsaki [21] as follows:

∆φk = φk+1 − φk, (k = 1, 2, 3, · · ·, n − 1) (2)

It is generally believed that the phase angle is uniformly distributed when all phase
angles are in the domain [0, 2π), as shown in Figure 1, and the phase difference follows a
normal distribution, as shown in Figure 2. A wealth of earthquake ground motions support
this conviction.
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The Fourier phase angles of earthquake ground motions are assumed to be indepen-
dent and uniformly distributed random variables in the domain [0, 2π), that is, φk∼ U[0, 2π),
φk+1∼ U[0, 2π). PDFs fφk (α) and fφk+1(β) of φk and φk+1, respectively, are:

fφk (α) = fφk+1(β) =

{ 1
2π 0 ≤ α < 2π; 0 ≤ β < 2π
0 otherwise

(3)
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where α and β represent the values of φk and φk+1, respectively. The joint PDF of φk and
φk+1 is easily determined as follows:

fφk φk+1(α, β) = fφk (α) · fφk+1(β) =

{ 1
4π2 0 ≤ α < 2π and 0 ≤ β < 2π

0 otherwise
(4)

The cumulative distribution function (CDF) F∆φk (θ) of the phase difference ∆φk can
be derived by the following integration (θ represents the value of ∆φk):

F∆φk (θ) = P(∆φk ≤ θ) =
x

β − α ≤ θ
0 ≤ α < 2π
0 ≤ β < 2π

fφk φk+1(α, β)dαdβ =
x

β − α ≤ θ
0 ≤ α < 2π
0 ≤ β < 2π

1
4π2 dαdβ (5)

The integral areas for −2π < θ ≤ 0 and 0 < θ < 2π are shown in Figure 3a,b,
respectively. When −2π < θ ≤ 0, the integral area takes the form of a triangle, whereas for
0 < θ < 2π, it manifests as a pentagon. In the case of −2π < θ ≤ 0, the CDF is derived by
solving Equation (5) with the integral area shown in Figure 3a.

F∆φk (θ) =
∫ 2π+θ

0

∫ 2π

β−θ

1
4π2 dαdβ =

(2π + θ)2

8π2 (6)
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Similarly, in the case of 0 < θ < 2π, considering Figure 3b, the CDF is:

F∆φk (θ) =
∫ θ

0

∫ 2π

0

1
4π2 dαdβ +

∫ 2π

θ

∫ 2π

β−θ

1
4π2 dαdβ =

θ

2π
+

4π2 − θ2

8π2 (7)

The CDF of the phase difference ∆φk is:

F∆φk (θ) =

{
(2π+θ)2

8π2 − 2π < θ ≤ 0
θ

2π + 4π2−θ2

8π2 0 < θ < 2π
(8)

Differentiating both sides of Equation (8) with regard to θ yields the PDF of ∆φk:

f∆φk (θ) =

{
1

2π + θ
4π2 − 2π < θ ≤ 0

1
2π − θ

4π2 0 < θ < 2π
(9)

Equation (9) shows the PDF of the difference between two independent and uni-
formly distributed random variables. Evidently, the phase difference, ∆φk, is triangularly
distributed, as shown in Figure 4.
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Furthermore, considering the periodicity of the phase differences (i.e., the fact that
∆φk changes in integer multiples of 2π has no influence), by adding 2π to each phase
difference in the domain of [−2π, 0), the phase difference can be changed to the domain of
[0, 2π). Thus, the PDF of the phase difference is simplified, as shown in Figure 5. The PDF
of [−2π, 0) translates 2π horizontally to the right. The sum of the translated and original
PDFs of [0, 2π), which are both indicated by solid lines in Figure 5a, is the final PDF of
the phase difference, as shown by the solid line in Figure 5b. Thus, the PDF of the phase
difference ∆φk in one period is:

f∆φk (θ) =
1

2π
0 ≤ θ < 2π (10)
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As indicated by Equation (10), the phase difference ∆φk is uniformly distributed, which
is contrary to the general knowledge that the phase difference follows a normal distribution.
Therefore, the assumption that the phase angles are independent and uniformly distributed
is not correct. Nevertheless, the probability distributions of the phase angles contained in
the accelerograms of real earthquake ground motions seem to be uniform. Therefore, it
can be deduced that the phase angles of real earthquake ground motions are uniformly
distributed and correlated with each other.

The dependence of the phase angles indicates that they are dependent on the frequency
or the Fourier amplitude. The first numerical experiment was conducted to further verify
this dependence. The basic idea of the experiment was as follows.

If the phase angles are independent of each other, when they are in a different order,
the time history will not change. In contrast, if a different time history is constructed
when the phase angles are in a different order, the phase angles will be dependent on the
frequency (or the Fourier amplitude), that is, the phase angles will correlate to each other.

In the first numerical experiment, a new phase spectrum was generated by changing
only the order of the phase angles of the Parkfield-02,CA accelerogram. The new phase
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spectrum and the original amplitude spectrum of the Parkfield-02,CA accelerogram were
used to construct a new acceleration time history.

As shown in Figure 6, the newly constructed acceleration time history with out-of-
order phase angles exhibits notable discrepancies compared to the original waveform,
affecting various aspects such as the overall wave shape, detail of vibration, peak accelera-
tion, and more. Notably, the non-stationarity of the earthquake ground motion underwent
significant alterations, even when employing the same phase angles but in different orders,
highlighting the interdependence of phase angles within real acceleration time histories.
Furthermore, the findings from the numerical experiment underscore the profound im-
pact of the phase spectrum on both the temporal shape and the time non-stationarity of
ground motion.
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2.2. Probability Distribution of the Phase Differences

Because the phase angles of earthquake ground motion were correlated to each other,
the phase differences of one accelerogram were deduced to be correlated to each other as
well, based on Equation (2). Therefore, assuming that the phase differences are independent,
normally distributed, or lognormally distributed is unreasonable. The second numerical
experiment was conducted for further verification, whose basic idea was the same as that
of the second numerical experiment.

The second numerical experiment: The out-of-order phase differences were obtained
by changing the order of the phase differences of the Parkfield-02,CA accelerogram, while
keeping the values unchanged. In sequence, the new phase spectrum was constructed
utilizing the same initial phase angle of the Parkfield-02,CA accelerogram and out-of-order
phase differences. The new phase spectrum and the original amplitude spectrum of the
Parkfield-02,CA accelerogram were used to construct a new acceleration time history.

As shown in Figure 7, the newly constructed acceleration time history with the out-
of-order phase differences was similar to the original Parkfield-02,CA accelerogram in the
entire wave shape, but exhibited a large difference in the detail of vibration (particularly
in the large pulse) and peak acceleration. The relative difference in the peak acceleration
between the original and new acceleration time histories was as high as 17.65%. Thus,
the phase differences of the real acceleration time history were correlated with each other.
Furthermore, by comparing Figures 6 and 7, the out-of-order phase angles resulted in a
larger difference to the acceleration time history than the out-of-order phase differences. It
can be speculated that the dependence of the phase differences causes weaker differences
in the acceleration time history than the dependence of the phase angles.

Based on the analysis of the probability distributions of the phase angles and the
phase differences, as well as the results of the two numerical experiments, the preliminary
conclusion was that the phase angles and phase differences were all dependent on the
frequency (or the Fourier amplitude) and correlated to each other. Therefore, the genera-
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tion of earthquake ground motions with independent and identically distributed phase
differences without considering the dependences of phase differences is unreasonable.
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Figure 7. Original and newly constructed Parkfield-02,CA acceleration time histories with the
out-of-order phase differences.

3. Physical Characteristics of the Phase Spectrum

The negative of the circular frequency-dependent phase derivative is called the en-
velope delay in physics and represents the delay time of the wave group at a certain
frequency. In view of this envelope delay, the physical characteristics of the phase spectrum
were studied.

3.1. Circular Frequency-Dependent Phase Derivative

A simple wave group is obtained when two waves with the same amplitude, but
different frequencies (ω1, ω2) and phases (φ1, φ2), are superimposed, resulting in:

ψ = A · cos(ω1t + φ1) + A · cos(ω2t + φ2)
= 2A cos(∆ωt + ∆φ) cos(ωt + φ)

(11)

where
ω =

ω1 + ω2

2
; φ =

φ1 + φ2

2
; ∆ω =

ω2 − ω1

2
; ∆φ =

φ2 − φ1

2
(12)

Equation (11) represents a carrier with frequency ω and an envelope with frequency
∆ω, as shown in Figure 8. The wave may be described as a succession of wave groups (or
wave packets).
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Figure 8. Superposition of two simple harmonic waves with the same amplitude.

Moreover, a more practical wave group, a(t), is obtained when the simple harmonic
waves in a narrow frequency band, [ω0, ω0 + ∆ω], are superimposed, giving:

a(t) =
∫ ω0+∆ω

ω0

A(ω) cos[ωt + φ(ω)]dω (13)

To simplify Equation (13), two assumptions were considered:

(1) The amplitude A(ω) is a constant A0 in [ω0, ω0 + ∆ω], giving:

A(ω) = A0 (14)
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(2) The phase angle φ(ω) is approximated using Taylor’s expansion in the neighborhood
of ω0, in which only the first two terms are maintained, giving:

φ(ω) = φ(ω0) + (ω − ω0)
dφ

dω

∣∣∣∣
ω=ω0

= φ0 + (ω − ω0)
dφ

dω

∣∣∣∣
ω=ω0

(15)

Substituting Equations (14) and (15) into Equation (13) and evaluating the integral yields:

a(t) = A sin ξ
ξ ∆ω cos(ω0t + φ0 + ξ)

= F(ξ) cos(ω0t + φ0 + ξ)
(16)

where:
F(ξ) = A∆ω

sin ξ

ξ
(17)

ξ =
∆ω

2

(
t +

dφ

dω

∣∣∣∣
ω=ω0

)
(18)

Equation (16) includes two parts that are similar to Equation (11). This equation also
represents a carrier wave with frequency ω0 and an envelope, F(ξ). A typical envelope is
illustrated in Figure 9, in which the negative of the circular frequency-dependent phase
derivative is the time delay of the amplitude of the envelope, namely the envelope delay,
as follows:

te = − dφ

dω
(19)
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Specifically, the envelope delay of earthquake ground motion is the time delay of the
amplitude envelopes of the various cosine components of a time history recorded at a
specified site and is a function of frequency for each component. Because the envelope delay
represents the time delay of each component of the time history, it is easily determined that:

te = − dφ

dω
∈ [0, T] (20)

where T is the total duration of the time history.
By introducing the concept of equivalent group velocity and assuming that the source

of the earthquake is a point, Jin and Liao [24] deduced that the negative of the circular
frequency-dependent phase derivative denotes the envelope delay of the wave group with
a certain circular frequency to the site with respect to the fastest wave group. In view of this,
the time delay corresponding to the amplitude of the narrowband wave group (envelope
delay) is defined as the arrival time of the wave group. Thus, the time history of the
earthquake ground motion is a result of the superposition of the wave groups arriving at
different times. This conclusion was drawn based on the two abovementioned assumptions.
Because the assumptions hold only when the bandwidth, ∆ω, is sufficiently small, the
stable wave group can be generated only in a sufficiently narrow frequency band.
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Wave propagation is the propagation of energy by nature, and the propagation of
energy is the propagation of the amplitude of a wave with a fixed frequency [42]. Therefore,
the envelope delay of any stable wave group in the frequency band is sufficiently narrow
and is the arrival time of the amplitude as well as the energy.

For the discrete time history of earthquake ground motions, the envelope delay is:

te(ωk) = −∆φ(ωk)

∆ω
(21)

where ∆ω = 2π/T. When ∆φ ∈ (−2π, 0], te ∈ (0, T] satisfies the definition of the envelope
delay of the wave group. Consequently, the phase difference in this study has a range:

∆φ ∈ (−2π, 0] (22)

3.2. Relation of the Envelope Delay and Fourier Amplitudes

Because the envelope delay, te, is linear to the phase difference, ∆φ, according to
Equation (21), the relation between the Fourier amplitudes and the envelope delays is
similar to that of the Fourier amplitudes and the phase differences. Three accelerograms
were chosen to analyze the relation between the Fourier amplitudes and the envelope
delays. Detailed information on the three accelerograms is presented in Table 1. The scatter
diagrams of the envelope delays and Fourier amplitudes are shown in Figure 10.

Table 1. Information of the accelerograms used in the numerical cases in Section 3.2.

No. Earthquake Date Magnitude Station Name/Code Azimuth

1 Chi-Chi 20 September 1999 7.62 HWA041 EW
2 Big Bear-01 28 June 1992 6.46 LA-1955 1/2 Purdue Ave. Bsmt 235◦

3 Wenchuan 12 May 2008 8.0 051AXT NS

The envelope delays spread out over different ranges corresponding to different
Fourier amplitudes, which is similar to the relation of the phase differences and Fourier
amplitudes [22]. In contrast to the scatter diagram of phase differences and the Fourier
amplitudes, the envelope delays have units of time between zero and the duration of the
earthquake ground motion. As shown in Figure 10, the three selected accelerations differ
in duration and exhibit distinct occurrence times of strong shocks. However, despite these
differences, wave groups with larger amplitudes arrived at approximately the same time at
which a strong shock occurred for all three accelerations. For instance, the strong shock of
the Chi-Chi accelerogram occurred at approximately 50 s, and the wave groups with large
amplitudes arrived around the same time. Conversely, the amplitudes of wave groups
during the initial and attenuation stages are considerably smaller. Similarly, in the Big
Bear-01 accelerogram, a pronounced shock can be observed between 20 s and 30 s, during
which wave groups with larger amplitudes arrive within the same time range. Moreover,
amplitudes of wave groups outside this time range are notably smaller. In contrast to the
aforementioned earthquakes, the Wenchuan earthquake had two strong shocks due to its
unique source mechanism: the stronger one occurred around 50 s and the weaker one
between 100 s and 150 s. According to the scatter diagram of the Wenchuan accelerogram,
wave groups with large amplitudes arrived at approximately 50 s and 125 s. Similarly,
amplitudes of wave groups outside these time ranges are notably smaller. The envelope
delays for tens of thousands of accelerograms were analyzed and showed this tendency.

The relation between the Fourier amplitudes and the envelope delays provides strong
evidence of the definition of the envelope delay, which denotes the arrival time of the wave
group, and proves that ∆ω = 2π/T is reasonable. The non-stationary characteristics of
ground motion in the time domain stem from variations in the arrival times of wave groups
with different amplitudes. This variability primarily results from the nonuniformity of
fault rupture.
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As indicated in Sections 3.1 and 3.2, the time property, which is the essential charac-
teristic of the phase spectrum, was revealed. The arrival times of the wave groups were
included in the phase spectrum, which was the reason for the generation of different time
histories when the order of the phase differences was changed, as indicated by the results
of the second numerical experiment. The arrival times of the wave groups changed when
the order of the phase differences was changed, which resulted in a different time history
of the earthquake ground motion.

4. Influence of the Source, Propagation Path, and Site on the Phase Spectrum

The significant influence of earthquake acceleration by the source, propagation path,
and site has been demonstrated [43,44]. In this study, the wave groups versus different
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frequencies arrive at different times. This is because the occurrence time and propagation
velocities of the wave groups are different, which is related to the fault rupture and
propagation of earthquake waves. In this section, the influence of the source, propagation
path, and site on the phase spectrum is analyzed to investigate the mechanism of the time
property of the phase spectrum.

4.1. Data

Five earthquake accelerograms (see Data and Resources Section) were chosen to
illustrate the influence of the source, propagation path, and site on the phase spectrum. The
locations of the epicenters and stations are shown in Figure 11, and the detailed information
of the five accelerograms is listed in Table 2. Accelerograms No. 1 and No. 2 were both
from the Chi-Chi earthquake and recorded in ILA067 and TAP081 stations, respectively. As
shown in Figure 11, the epicenters of the Chi-Chi earthquake, ILA067 station, and TAP081
station were approximately in a straight line. The vs30 of accelerogram No. 1 was the same
as that of accelerogram No. 3; the epicentral distance of the accelerogram No. 2 was twice
that of accelerogram No. 1. Hence, accelerograms Nos. 1 and 2 were used to analyze the
influence of the propagation path because they were almost the same in both the source
and site. Accelerograms Nos. 1 and 3 were recorded from the Chi-Chi earthquake and its
aftershock, respectively; therefore, their sources were very close to each other. Because
they were recorded at the same station, they were almost the same in the propagation path
and site. Therefore, accelerograms Nos. 1 and 3 were used for the analysis of the source.
Accelerograms Nos. 4 and 5 were both from the Wenchuan earthquake; their observation
stations had the same longitude and latitude but different elevations: one was on the
bedrock and the other was on the ground. Therefore, they were the same in the source and
propagation paths and were used for the analysis of the site.
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Table 2. Information of earthquake accelerograms used in Section 4.

No. Earthquake Magnitude Date
Epicenter Station

Azimuth
Epicentral
Distance

(km)

Site
Condition

vs30
(m/s)Latitude Longitude No. Latitude Longitude

1 Chi-Chi 7.62 20 September 1999 23.86 120.80 ILA067 24.44 121.37 EW 86.38 Soil 553.4

2 Chi-Chi 7.62 20 September 1999 23.86 120.80 TAP081 25.02 121.98 EW 175.3 Soil 553.4

3 Chi-Chi
(aftershock) 6.2 20 September 1999 23.81 120.85 ILA067 24.44 121.37 EW 87.94 Soil 553.4

4 Wenchuan 8.0 12 May 2008 31.00 103.40 51BXZ 30.50 102.90 EW -- Rock --

5 Wenchuan 8.0 12 May 2008 31.00 103.40 51BXY 30.50 102.90 EW -- Soil --
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4.2. Influence of the Source

Accelerograms Nos. 1 and 3 are shown in Figure 12, along with their frequency distri-
bution histograms and scatter diagrams of the envelope delays. Comparing Figure 12a,b, a
considerable difference in the duration and wave shape between the two accelerograms
can be observed; the envelope delays of accelerogram No. 3 are distributed more dispers-
edly than those of accelerogram No. 1. As shown in the scatter diagram of the envelope
delays, the envelop delays of accelerogram No. 1 versus frequencies lower than 50 Hz are
considerably more concentrated than those for frequencies higher than 50 Hz, whereas the
envelope delays are dispersedly distributed at all frequencies for accelerogram No. 3. The
envelope delays exhibited a significant difference when the two accelerograms were almost
the same in the propagation path and in the site soil. This means that the source had a
significant influence on the phase spectrum.
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Figure 12. Accelerograms, frequency distribution histograms, and scatter diagrams of the envelope
delays of Nos. 1 and 3 in Table 2.

Evidently, the arrival time of the wave group was partly determined by the occurrence
time, which was determined by the size of the fault and velocity of the rupture. Therefore,
the envelope delay was influenced by the fault rupture process. Thus, to summarize, the
time heterogeneity of the energy release of the fault rupture was one of the key reasons for
the complex distribution of envelope delays.

4.3. Influence of the Propagation Path

Accelerograms Nos. 1 and 2 are shown in Figure 13, along with their frequency distri-
bution histograms and scatter diagrams of the envelope delays. Comparing Figure 13a,b, it
can be observed that the duration of accelerogram No. 1 is close to that of accelerogram
No. 2, and they have similar wave shapes; however, there is a large difference in the distri-
bution of the envelope delays. The envelope delays of accelerogram No. 2 are dispersedly
distributed at all frequencies, as well as those of accelerogram No. 3. The envelope delays
of the two records show a significant difference when the two accelerograms are almost
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the same in the source and in the site soil. This means that the propagation path had a
significant influence on the phase spectrum.
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Figure 13. Accelerograms, frequency distribution histograms, and scatter diagrams of the envelope
delays of Nos. 1 and 2 in Table 2.

As shown in Figure 11, the earthquake wave of the Chi-Chi earthquake started from
the source and propagated to station ILA067, and accelerogram No. 1 was first recorded.
The earthquake wave moved ahead toward station TAP081. In this process, the earthquake
waves with different frequencies propagated at different velocities, caused by the dispersion
of earthquake waves and resulting in different propagation time delays, even at the same
distance. One extreme case is that all the wave groups arrived at station ILA067 at the
same time, and the wave groups were dispersed when reached station TAP081 as a result
of the dispersion of the earthquake waves. It is inferred that the longer the propagation
distance, the more dispersed the wave groups for an earthquake wave. Therefore, we
can conclude that the dispersion of the earthquake wave was the other key reason for the
complex distribution of envelope delays.

4.4. Influence of the Site

Accelerograms Nos. 4 and 5 are shown in Figure 14, along with their frequency
distribution histograms and scatter diagrams of the envelope delays. As shown in Figure 14,
these accelerograms have almost the same duration. Although the frequency distribution
histograms of the envelope delays show some differences, their shapes are similar to each
other. The wave groups of high frequency recorded in the rock (No. 4) arrived at three
times, whereas the arrival time of that recorded in the soil (No. 5) was considerably more
dispersed. This indicates that the soil influenced the phase spectrum. That is, the dispersion
of the earthquake wave at the site had an influence on the phase spectrum. However, the
influence of the site on the phase spectrum was smaller with respect to the source and path
because the propagation distance at the site was much smaller.



Buildings 2024, 14, 1250 15 of 17
Buildings 2024, 14, x FOR PEER REVIEW 15 of 17 
 

  
(a) No. 4  (b) No. 5 

Figure 14. Accelerograms, frequency distribution histograms, and scatter diagrams of the envelope 
delays of Nos. 4 and 5 in Table 2. 

Finally, we can conclude that the phase spectrum of earthquake ground motion is 
mainly affected by the source and path, and the source has the most important role. The 
influence of the site is smaller and can be neglected to some extent. 

5. Conclusions and Discussions 
Through an examination of the mathematical characteristics of phase angles and 

phase differences of earthquake ground acceleration time history, this study provides in-
sights into the phase spectrum. Contrary to previous assumptions, phase angles cannot 
be considered uniformly and independently distributed random variables. Our analysis 
reveals that phase angles of earthquake ground acceleration time history exhibit correla-
tion and approximate a uniform distribution over one period. Similarly, phase differences 
of earthquake ground acceleration time history display a correlation and appear to follow 
a normal distribution within one period. Consequently, generating ground motions based 
on independently distributed phase differences is deemed unreasonable. The identifica-
tion of correlations among phase angles and phase differences represents a noteworthy 
discovery in this investigation. It introduces a novel perspective for comprehending the 
mathematical characteristics of the phase spectrum of earthquake ground motions. 

The physical attributes of the phase spectrum of earthquake ground motions were 
determined using the envelope delay, which signifies the arrival time of wave groups. The 
fundamental physical characteristic of the phase spectrum, namely its temporal proper-
ties, was demonstrated. Further investigation into the influence of source, propagation 
path, and site on the phase spectrum reveals that the temporal heterogeneity in the energy 
release during the fault rupture and dispersion of earthquake waves are the primary con-
tributors to the complex temporal properties of the phase spectrum. 

The results of this study indicate that the dependences of phase angles, as well as 
phase differences, result from the physical process of the occurrence and propagation of 
earthquake waves. The time heterogeneity of the fault rupture and the dispersion in prop-
agation result in specific distributed envelope delays and complex characteristics of the 

0 50 100 150 200 250 300 350
Time/(s)

-2

0

2

0 50 100 150 200 250 300 350
Envelope delay /(s)

0

0.005

0.01

0.015

-0 50 100 150 200 250 300 350
Envelope delay /(s)

0

50

100

0 50 100 150 200 250 300 350
Time/(s)

-2

0

2

0 50 100 150 200 250 300 350
Envelope delay /(s)

0

0.01

0.02

0.03

-0 50 100 150 200 250 300 350
Envelope delay /(s)

0

50

100

Figure 14. Accelerograms, frequency distribution histograms, and scatter diagrams of the envelope
delays of Nos. 4 and 5 in Table 2.

Finally, we can conclude that the phase spectrum of earthquake ground motion is
mainly affected by the source and path, and the source has the most important role. The
influence of the site is smaller and can be neglected to some extent.

5. Conclusions and Discussion

Through an examination of the mathematical characteristics of phase angles and
phase differences of earthquake ground acceleration time history, this study provides
insights into the phase spectrum. Contrary to previous assumptions, phase angles cannot
be considered uniformly and independently distributed random variables. Our analysis
reveals that phase angles of earthquake ground acceleration time history exhibit correlation
and approximate a uniform distribution over one period. Similarly, phase differences of
earthquake ground acceleration time history display a correlation and appear to follow a
normal distribution within one period. Consequently, generating ground motions based on
independently distributed phase differences is deemed unreasonable. The identification of
correlations among phase angles and phase differences represents a noteworthy discovery
in this investigation. It introduces a novel perspective for comprehending the mathematical
characteristics of the phase spectrum of earthquake ground motions.

The physical attributes of the phase spectrum of earthquake ground motions were
determined using the envelope delay, which signifies the arrival time of wave groups. The
fundamental physical characteristic of the phase spectrum, namely its temporal properties,
was demonstrated. Further investigation into the influence of source, propagation path,
and site on the phase spectrum reveals that the temporal heterogeneity in the energy release
during the fault rupture and dispersion of earthquake waves are the primary contributors
to the complex temporal properties of the phase spectrum.

The results of this study indicate that the dependences of phase angles, as well as
phase differences, result from the physical process of the occurrence and propagation
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of earthquake waves. The time heterogeneity of the fault rupture and the dispersion in
propagation result in specific distributed envelope delays and complex characteristics of
the phase spectrum. The presented research introduces a novel concept for simulating the
phase spectrum of ground motion. It is anticipated that this innovation will pave the way
for the development of a time-frequency non-stationary ground motion simulation method
rooted in the phase spectrum rather than a time modulation function.
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