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Abstract: The rapid pace of urbanization and the increasing concentration of populations in urban
areas have generated a substantial demand for architectural structures, resulting in a significant
increase in building stock and continuous material flows that interact with the environment. This
study emphasizes the importance of high-spatial-resolution mapping of residential building stock
for effective urban-construction resource management, planning, and waste management. Focusing
on Xi’an as a case study, the research develops a comprehensive framework for mapping urban
residential building stock by integrating diverse data dimensions, including temporal, spatial, net-
work, and multi-attribute aspects. The findings indicate that between 1990 and 2020, approximately
4758 residential communities were established in central Xi’an. The analysis of seven key resi-
dential construction materials revealed that the building stock escalated from 1.53 million tons to
731.12 million tons, with a steady spatial expansion of material distribution. The study attributes
this growth to factors such as population increase, economic advancement, and policy initiatives,
which, in turn, have driven the demand for residential building materials and reinforced the interde-
pendence between urban expansion and residential construction development. Remarkably, from
1990 to 2020, the population surged by 2.1-fold, the economy by 66-fold, and the stock of residential
building materials by 477-fold, indicating that the growth rate of material stock consistently outpaced
that of both population and economic growth. Over the past three decades, the rapid expansion of
residential buildings has led to the encroachment of urban ecological spaces by concrete structures.
The methodology proposed in this study for quantifying building material offers valuable insights
for policymakers and urban and environmental planners to foster responsible resource consumption
and supports component-level circularity in the built environment.

Keywords: material stock; multisource integration; sustainability; spatialization method

1. Introduction

Over the past 40 years, China has experienced unprecedented rapid urbanization,
with the urban population proportion increasing from 17.92% in 1978 to 63.89% in 2020
and the urban built-up area increasing by more than 8-fold (China Statistical Yearbook,
2020). In addition to the rapid concentration of populations, urbanization has also driven
an increased demand for urban housing and prompted a broad spectrum of urban renewal
activities [1–4].

By around 2012, China’s stockpile of materials had already surpassed that of all other
countries and was growing at an annual rate of approximately 8%. The consumption of
construction materials in China accounted for half of the global stockpile by 2015 [5]. Since
building stocks consume several materials and generate a large volume of construction
and demolition (C&D) waste during their life cycles, buildings and urban development
have been associated with environmental impacts [6–9]. In the process of sustaining pop-
ulation growth and meeting the rising demand for materials and energy during rapid
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urbanization [10–12], there have been increasing conflicts between resource supply and
demand, along with an accumulation of pollutants and a rise in waste emissions [13,14].
Additionally, solid waste accumulation has contributed to the deterioration of air and
water quality [15], and increased urbanization has further enhanced greenhouse gas emis-
sions [16]. Environmental damage will hinder not only the economic development of
China’s cities but also their sustainable development [17,18]. In such situations, there is
an urgent need to characterize the overall stocks of the construction sector and to find a
refinement development model for cities, particularly for metropolises [19].

Mapping the spatial distribution of urban building stock through a certain method
can provide building-data gridding, effectively improving the spatial resolution of building
data and elucidating accurate information on the spatial distribution of buildings [20,21].
At present, the evolution of urban space has been studied by many scholars using building
bottom projections [22], but different buildings are located at different locations, have
different heights, and have different intensities of land use. Therefore, this study converts
building bottom projections into a unified material accumulation and uses material quan-
tities to study the evolution of space, guiding the study of urban space expansion. It is a
theoretical supplement to urban space research and helps to better understand the potential
of the circular economy, and it is key to informing low-carbon sustainable development [23].
The acquisition of updatable building information in the rapid development of urban areas
is a challenge in current research [24]. This paper introduces a novel method for map-
ping urban housing stock that integrates multisource geographic data across temporal,
spatial, network, and attribute dimensions. Unlike previous methods, which primarily
focus on static data, this approach synthesizes diverse data streams to provide a dynamic,
high-resolution visualization of urban material stock. This method not only enhances the
granularity of building data but also offers an up-to-date framework for understanding
the dynamics of urban development, addressing the urgent need for sustainable urban
planning in rapidly growing cities.

The remaining paper is structured as follows: Section 2 provides a review of the
relevant literature. Section 3 addresses the study area, data sources, and research methods.
Section 4 presents the spatial distribution characteristics of the residential building stock.
Section 5 focuses on the formation mechanism, innovations, and deficiencies. Section 6
presents the main conclusions.

2. Literature Review

In recent years, the research community has widely conducted modeling of urban
building clusters to understand the flow and accumulation of resources in human soci-
eties [25]. The main research methods are divided into top-down and bottom-up approaches
and their combined expansions [26]. For different research objectives and spatial resolu-
tions, a variety of data sources are used, including remote sensing imagery, night-time light
data, online map information, and statistical data, to estimate the stock of urban buildings.

Statistical data is primarily used in the top-down approach and is the most readily
accessible source for estimating the stock of buildings. For instance, Bergsdal et al. (2007)
estimated the building stock and material flow regarding dwellings in Norway from
1900–2100 using demographic data (2006) and floor information (2001) retrieved from
Statistics Norway to determine the building area of houses, the average material intensity
(MI) per floor space, and the building period [27]. In China, based on the gross domestic
product (GDP) and housing floor area per capita, the building stock, material flows, and
amount of concrete and steel were estimated and projected for all of China from 1900–2100
as well as for the city of Beijing from 1949–2050 [28,29]. Additional information such as the
building age and the number of floors and structure is needed, which can be obtained by
sampling buildings from architectural archives [30].

In addition, Kohler et al. (2002, 2007) adopted the population size and specific sur-
face/network ratio per person as variables in studying material stocks [31,32]. The model
originally developed by Müller, considering the population size and useful floor area per
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capita and involving two exogenous variables, was applied to estimate the housing de-
mand, namely, the household size (the number of persons per family, which approximates
the number of persons per housing unit) and the average floor area of housing units [33,34].
Sandberg et al. (2014) used the number of housing units as a parameter because they
believed that the average building area data for each housing unit was highly uncertain.
Therefore, it is assumed that housing demand depends on the population and housing
occupancy rate [35]. Aided by Eurostat data, European housing statistical reports, and other
national data sources (2003–2009), the time series of the annual completion and demolition
of houses and the total house stock were analyzed by Wiedenhofer et al., and a dynamic
method was then developed for the evaluation and impact assessment of the European
construction flow [36]. Another study quantified the materials used in floors, roofs, and
other components of single-family homes, multi-family residences, and apartment build-
ings from different construction periods, utilizing data provided by the H2020 European
projects Hotmaps and AmBIENCe for each EU27 country [37]. However, statistical data are
usually reported and documented by administrative regions (e.g., countries and provinces),
which have very coarse spatial and temporal resolutions, particularly for urban areas [38].
This results in limitations for the more detailed quantification of the spatial distribution of
material inventories.

With the development of urban information technology, the points of interest (POIs)
from online maps such as Gaode and Baidu in China provide another route for extracting
building information, which can be used to invert the in-use stock of urban buildings.
Urban research has been carried out by referring to the GIS data of buildings in the central
areas of major Chinese cities provided by Gaode maps (https://www.amap.com/), which
include the shape, location, and number of buildings [39]. Such POI data are very useful
for classifying buildings; for instance, Liu employed OpenStreetMap (OSM) road networks
to identify parcel geometry and POI data to infer parcel characteristics. A vector-based
cellular automata model and POIs were adopted to select urban parcels [40]. Nevertheless,
this kind of data exhibits the characteristics of a difficult acquisition process, low update
frequency, and a complicated processing method.

Night-time lighting (NTL) data serve as a significant source for extracting building
information [41]. Since 1992, global NTL products have been provided by the Defense
Meteorological Satellite Program’s Operational Line-scan System (DMSP-OLS) [42–44].
Land-cover data from the International Steering Committee for Global Mapping (ISCGM)
have been used to extract urban NTL data [45]. A notable application of NTL data was
to estimate the steel stock in civil buildings across 102 countries [46]. Additionally, data
from the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer
Suite (S-NPP VIIRS) have been used to estimate the steel stock of urban infrastructure
worldwide [47]. There is growing consensus that NTL data are particularly suitable for
estimating steel and infrastructure material stocks at the national level. NTL data features
include wide coverage, high update frequency, and simple processing methods, making it
ideal for capturing spatial data over extensive areas with frequent updates. However, a
significant issue with NTL data is the light saturation in urban centers with intense lighting,
where the digital number (DN) value stops increasing despite higher ground-light intensity.
Another limitation is the low data resolution resulting in the regulation of complex urban
built environments, as well as the lack of observation capabilities in rural areas [48].

The datasets commonly employed in most studies do not permit the precise localiza-
tion of material stocks. GIS data, utilizing building vector data, provide detailed spatial
distribution information for individual buildings, thereby overcoming this limitation [49].
The use of materials and the subsequent flow of construction and demolition waste from
the residential building stock in the city of Rio de Janeiro were assessed using GIS data [50].
The total material stock and demolition waste flow were estimated by a spatially explicit
analysis in Padua, a medium-sized Italian city, over the period from 1902 to 2007 [51]. A
study utilized a high-resolution decomposition method to model the geometry of buildings
and was used to derive the building stock of all buildings in Melbourne, Australia [52].

https://www.amap.com/
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Additionally, Tanikawa and Hashimoto developed a 4D-GIS, enhancing the accuracy of
the building-stock model by incorporating time-series and geographic reference informa-
tion [53]. A 4D-GIS model of Longwu Village in Shenzhen city was also established, and
material flow and stock analysis (MFSA) and GIS methods were combined to reveal the
spatiotemporal pattern and material consumption evolution of its buildings [19]. However,
the lack of historical and high-resolution digitized maps complicates the determination of
spatiotemporal patterns for specific buildings.

As noted, mapping the spatial distribution of urban buildings is a critical area of
research in urban remote sensing. This mapping aids in assessing resource-related and en-
vironmental impacts, as well as indicating levels of urban economic development. Although
building distribution statistics provide ongoing insights into the spatial characteristics of
urban housing, demonstrating authority and sustainability, the process of determining
building distributions is time-consuming, labor-intensive, and requires significant human
intervention. Consequently, research on fine-scale architectural spatialization is substan-
tially limited. The focus of domestic research primarily lies in developed cities such as
Beijing and Shanghai, with limited attention given to underdeveloped western cities. Con-
sequently, there remains a lack of comprehensive understanding regarding the current
state of urban construction in our cities. An increasing number of authors are studying the
spatialization of material stocks [54,55].

This research utilizes multisource geographic data encompassing temporal, spatial,
network, and multi-attribute dimensions. Methods employed include data crawling, the
acquisition of remote sensing data, the cleaning of duplicate and incorrect data, analysis of
zoning statistical yearbooks, and verification through mathematical methods and on-site
sampling. These processes enable the use of a variety of high-precision data as auxiliary
sources. The study focuses on developing a spatialization method that achieves high
accuracy across various grid scales while also allowing for the sustainable updating of
spatialization results.

3. Materials and Methods
3.1. Case Study Description

As the capital city of Shaanxi province, Xi’an is a sub-provincial city on the Guanzhong
Plain in Northwest China (34◦16′ N 108◦56′ E) and is rated as one of the top ten ancient
capitals in the world by the American Life Science magazine. Like other cities in China,
Xian has experienced rapid urbanization, with massive dynamics of material flow and
stock associated with residential building construction and rehabilitation. In the late
1990s, Xi’an entered a phase of “mass demolition and renovation”, with the transformation
of shantytowns and urban villages prompting a rapid shift in the city’s spatial layout.
With the introduction of the national “Western Development” strategy in the 21st century,
along with the establishment of various socioeconomic development plans like the Greater
Xi’an Plan, Xi’an’s urban status has continuously risen, and the city’s scale has expanded
accordingly. Considering the periodic nature of data collection and statistical reporting
in China, along with comprehensive and consistent data records for the accurate analysis
of urban development trends and material flow dynamics, this study selected the period
from 1990 to 2020 as the research timeframe. The system boundary of this study is based on
the delimitation of the central urban area in the Xi’an City Master Plan (2008–2020), which
includes seven districts and 52 subdistrict offices in a total area of 690.8 square kilometers
(Figure 1).

As stated before, the central focus of this study is only residential buildings and
does not involve other building types such as commercial or industrial buildings. The
residential building material stock is calculated, and its temporal and spatial evolution
laws and characteristics are analyzed. The relationship between this analysis and urban
development is considered, and then corresponding optimization strategies are proposed
in the hope of achieving healthy and orderly city development from the perspective of
material stock and avoiding waste and the unreasonable use of resources.
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3.2. Data Sources and the Processing Method

We obtained different data from diversified sources with rich types and a high degree
of refinement. The central task was to merge different source data, such as building base
data, residential area data and residential building strength data, and then develop a
high-resolution database of urban residential material stock, which lays the foundation
for the follow-up study of temporal and spatial evolution characteristics. The data were
based on the acquisition of residential construction information from the internet and
statistical yearbooks, and we used geographic information systems to establish a database
of residential building inventories. In addition, satellite data were also used to study
the relationship between the material stock of residential buildings and urban expansion.
Therefore, in future research, it will be easier to update the construction and demolition
status of buildings in real time.

3.2.1. Multisource Geographic Data

Specifically, the data used in the central research consist of building base data, res-
idential area data, residential building strength data, street office population data and
administrative division boundary data (Table 1). Necessary data mining procedures are
needed to clean and calibrate the original data. The workflow of database processing and
fusion is shown in Figure 2. Building contour data were acquired through OSM maps,
and building attribute data were acquired through POI data. Then, we cleaned up the
data, conducted spatial checks, and verified the maps on-site. At the same time, statistical
data were used to determine the residential building material intensity, and a bottom-up
material flow analysis method was used to calculate the inventory of building materials
and to establish high-resolution data.

(1) Building contour data: Building contour data were obtained through OSM, which
was founded by Steve Kester. OSM data mainly include the building contour area
and the height, land area, roads, subways, etc. This database has been proven to be
accurate and is widely applied in urban planning. A total of 139,874 valid surface
data points of Xi’an building data were obtained through OSM (Figure 3).
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Table 1. Data types, content, and sources employed in mapping urban building stock dynamics.

Type of Data Data Content Data Sources (Accessed on 23 March
2024)

Building contour data Longitude and latitude: contour, story
height

OSM (www.openstreetmap.com);
www.gscloud.cn; “The historical atlas of

Xi’an”; “Xi’an Statistical Yearbook”

POI (point of interest) Longitude and latitude of the building:
age, areas, structure.

https://xa.lianjia.com;
https://xa.anjuke.com;

https://xa.58.com;
https://xian.fang.com

Residential building material intensity Steel, cement, lime, gravel, glass, good,
brick, et al. from 1990 to 2020

“Xi’an Statistical Yearbook” (1990–2020);
database of Guanglianda

Demographic and economic data Population data of community; gross
domestic product et al. from 1990 to 2020

Statistical departments of each
subdistrict office

Administrative division map of Xi’an Administrative district boundary and
street office boundary “Urban master plan in Xi’an (2008–2020)”

Remote sensing image data Used for extracting information on urban
built-up areas http://www.gscloud.cn
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(2) POI data: POI data were obtained through the LocoySpider collector. The LocoySpider
collector was employed to retrieve data from various websites, such as Soufun, Lianjia,
58TongCheng, and Anjuke. Taking Lianjia as an example, by identifying the web
structure and entering the included URL (uniform resource locator) and variables dur-
ing website acquisition, the URL was tested, and data were obtained. In this way, POI
data such as residential area, number of households, latitude and longitude, building
age, and building structure can be obtained. Building spatialization information was
acquired based on OSM data (Figure 4).

www.openstreetmap.com
www.gscloud.cn
https://xa.lianjia.com
https://xa.anjuke.com
https://xa.58.com
https://xian.fang.com
http://www.gscloud.cn
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Through data statistics and the preliminary deletion of duplicate, abnormal, and
incorrect data, 6238 valid residential community data points in Xi’an from 1990 to 2020
were obtained.

(3) Over time, residential structures have evolved, transitioning from multistorey build-
ings to small high-rise and high-rise structures. Consequently, the proportion of
materials used in different structures varies, leading to variations in both the material
stock per unit area and the material strength coefficient. To obtain a more accurate
estimation, it is necessary to identify houses with different ages and to calculate the
strength coefficient of residential buildings regarding periods.

MI refers to the average mass per unit of the building volume. By consulting the Xi’an
Statistical Yearbook and related references, the advantages and disadvantages of various
research methods were compared. After communicating with experienced scholars, the
MI was determined according to the actual use of residential materials in Xi’an. The main
components of the residential building system were steel, cement, lime, gravel, glass, wood,
and brick. According to the different ages of residential buildings, the study period was
divided into six periods: 1990–1995, 1996–2000, 2001–2005, 2006–2010, 2011–2015, and
2016–2020. The MI of the residential buildings in Xi’an in the different years was obtained
(Table 2).
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Table 2. Material intensity of residential buildings considering age.

Year/Material Steel Cement Lime Gravel Glass Wood Brick

1990–1995 12.5 200 100 600 1.9 16.7 220
1996–2000 12.9 180 90 600 1.9 15.9 140
2001–2005 23 360 145.43 700 2 15.4 88
2006–2010 28 360 145.43 700 2.1 14.9 88
2011–2015 33 360 145.43 700 2.2 14.4 88
2016–2020 37 360 145.43 700 2.3 13.9 88

(4) Population and economic data: Population and economic scales determine the growth
trend of urban development and building material stock. In this study, a field survey
of the seven districts was conducted, and the registered residence population and
permanent population, the completed housing area, and the data of various materials
and GDP were collected for approximately 52 communities in Xi’an from 1990 to 2020.

(5) Remote sensing image data: The remote sensing images used for the extraction of
information on urban built-up areas in this article were from the Landsat series of
the United States, and all remote sensing image data had a spatial resolution of 30 m.
Based on the time scale of residential material inventory research and the clarity of
the remote sensing data, a 5-year time span was used to select remote sensing images
of the central urban area of Xi’an in 1995, 2000, 2005, 2010, 2015, and 2020 as the main
research objects. At the same time, to ensure the accuracy of the data, relevant remote
sensing image data with similar times and less than 10% cloud cover were selected
for the remote sensing image data over the years. Before extracting the information
on urban built-up areas, preprocessing operations such as image correction, cropping,
radiometric calibration, and atmospheric correction were performed on the selected
Landsat remote sensing images. To make the research more targeted, this study
extracted only information on urban built-up areas within the research scope and
cropped remote sensing image data based on the research scope.

3.2.2. Data Cleaning and Checking

Data cleaning: To ensure the accuracy and completeness of the data, multiple sources
were explored; for instance, Lianjia, Anjuke, and Fangtianxia were searched for POI in-
formation. The acquired multisource data were compared and reorganized, and obvious
erroneous or duplicated data were removed. The data were repeatedly screened with
different similar sounding terms to ensure that the data pertaining to the same residential
area appeared only once, thus guaranteeing the unity and accuracy of the data. Any resi-
dential area lacking data was supplemented; namely, Baidu or other search engines were
employed to fill residential area data gaps. After data cleaning, a total of 4998 data points
were obtained.

Data checking: After data cleaning, there may still be many errors associated with
residential building attributes. To further ensure the data quality, the crawled residential
data must be evaluated at individual point and spatial levels.

(1) Mathematical model check: The boxplot option in the R language model was adopted
to evaluate the building-stock data of each residential area in Xi’an from 1990 to 2020.
Boxplots (box–whisker plots) are generally used to intuitively determine whether data
exhibit symmetry and to obtain the data dispersion degree. The time and material
stock are defined as the horizontal and vertical coordinates, and then boxplots of the
obtained residential stock data are obtained. Residential areas occurring far above
the average are denoted as outliers, which need to be further assessed by locating
their position using the Baidu map. Then, the total building stock is recalculated
and compared to the crawled data. The ratio of the corrected data to the total data
is considered when evaluating the accuracy of the data and determining whether
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the data can be used. The total number of abnormal data points obtained was 215
(Figure 5).
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(2) Spatial check and calculation: Accurate spatial location plays an important role in
analyzing the spatial development characteristics of residential material stock. As
mentioned above, the building contour data and POI point data were integrated to
compile a high-resolution dataset with spatial dimensions. The Gaode map was used
to check the point data and building contours and to accurately check the spatial
position of the POI. As shown in Figure 6, the position of the “Weifeng garden villa” is
in an abnormal location, and the spatial check returns it to the correct position. After
the spatial verification of the obtained data, 215 incorrect data points were found;
therefore, the data error is less than 5%.
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(3) On-site investigation and verification: After the above data and spatial verification,
our team was divided into 6 groups, 200 residential areas were randomly selected
for manual investigation and verification, and the base area and height of residential
buildings were measured. At the same time, supplementary surveys were conducted
on residential buildings that lacked area data in the early stages. In addition, the
building age and structure of a given residential area were determined through
communication with the property owners. During the verification process, the base
area data were shown to be highly accurate and could be used directly, while a small
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deviation occurred in the building completion data. The difficulty and workload of
this work were much higher than those required for the data and spatial evaluation
steps. The obtained data were considered effective and could be used.

After data cleaning, mathematical method verification, spatial verification and manual
verification, the results show that a total of 4758 residential areas were built in the central
urban area of Xi’an from 1990 to 2020.

3.2.3. Building Material Stock Estimation

At present, there are two different methods of material flow analysis for estimating the
material stock in buildings: the top-down method and the bottom-up method. In this study,
a bottom-up approach is used to calculate the material stock in residential buildings within
the study area. The calculation of the residential building stock requires two parameters,
namely the area of residential buildings and the coefficient for material strength. This
estimation can be achieved by utilizing Equation (1).

Mzq = ∑n
i=1 Xq × Yq (1)

where Mzq is the total residential area in Xi’an, q denotes the buildings in the district, n
is the total number of buildings, Xq is the base area of building q, and Yq is the height of
building q.

Mj = Σn
Mz (2)

where Mj is the total residential area of Xi’an, n denotes all communities in the study area,
and Mz is the total residential area in Xi’an.

Mso,T,q = ∑p
q=1 Mzq ,t × Co,t,q (3)

where Mso,T,q is the aggregate stock of residential building materials in Xi’an for a given
year T. T is the construction year of a given building, t is the construction year for residential
building q, p is the amount of materials, o is the residential building MI coefficient for
materials including steel, wood, lime, gravel, cement, glass, and brick, Mzq ,t is the total
residential area of all communities in Xi’an city in year t, and Co,t,q is the MI coefficient of
residential building o in a certain year.

MsT = ∑p
q=1 Mso,T,q (4)

where MsT is the total quality of the residential buildings in year T.
We apply the above equation to calculate the housing stock of Xi’an city during the

different periods and then sum the calculated data to obtain the total housing stock of Xi’an
city.

3.2.4. High-Resolution Data Results

After obtaining the vector data of the aircraft and point data, we utilized the fishnet
and connection tools within the ArcToolbox of ArcGIS Desktop 10.8 (Esri, Redlands, CA,
USA) to integrate these datasets. Consequently, a material stock dataset with a resolution
of 250 × 250 m was established. The color intensity in this map increases proportionally
with the growth in the inventory, enabling us to discern the spatiotemporal evolution of
residential material stock by sequentially overlaying vector diagrams from different years
(Figure 7).
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3.2.5. Extraction of Urban Built-Up Areas

This study adopts the supervised classification method of the support vector machine
(SVM). SVM is a machine learning method based on statistical learning theory. It can auto-
matically find a support vector with a great discrimination ability for classification and then
construct a classifier, which can maximize the difference interval between various samples
and has high classification accuracy. We selected a certain number of training samples for
each land type based on meeting the classification requirements of each subcategory. Then,
we used the training decision function to classify other data to complete the classification
of the entire image.

We mainly refer to the corresponding relationship between the Kappa coefficient and
classification accuracy and use a confusion matrix to verify the classification accuracy. In
supervised classification problems, the most common evaluation indicator is accuracy (acc),
but in practical problems, the sample size of each category is often uneven. Acc results
often tend to lean toward large categories and cannot display accuracy for small categories.
The Kappa coefficient corrects “bias” in measuring classification accuracy: 0.8–1.0 signifies
highest accuracy, 0.6–0.8 high, 0.4–0.6 moderate, 0.2–0.4 average, and 0.0–0.2 extremely low.
This study refers to high-resolution images and image classification results and constructs
a confusion matrix calculation to study the accuracy of classification. In the classification
results of 1995, 2000, 2005, 2010, 2015, and 2020, the Kappa coefficients were all greater
than 0.8, with values of 0.9547, 0.8272, 0.8657, 0.8284, 0.8148, and 0.8326, respectively.
This indicates that the classification accuracy is high and the final classification results are
relatively reliable. The final interpretation result is shown in Table 3.

Table 3. Historical urban built-up area of Xi’an’s city center.

Year 1995 2000 2005 2010 2015 2020

built-up area (km2) 138.70 203.40 266.94 394.90 506.57 631.32

4. Results
4.1. High-Resolution Material Stock Maps

According to the map of residential material stocks in Xi’an, the darker the color is,
the greater the stocks and the higher the spatial material strength. In contrast, the lighter
the color, the smaller the stocks and the lower the strength of the space materials (Figure 8).
Before 2000, the number of building grids was small and was mainly concentrated in the
central region of Xi’an. The color was mostly light, and the residential material stocks
were generally less than 50,000 tons. By the end of 2005, with the rapid development of
the city, the density of the central area and the stock intensity of residential materials in
the grid had increased, and the grid distribution began to expand to the north–south and
east–west, showing an irregular enclave expansion and development. Due to the existence
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of historical sites, there is no residential material stock in the northwest of the city. By the
end of 2010, the growth rate of residential material stocks in the central urban area was
stable; there were many areas with a high intensity of residential material stocks in the city,
mainly concentrated in the south and east, and no obvious residential material stocks in
the west and north. By the end of 2015, dark grids appeared in the north and south of the
city, forming a regional distribution, and the residential density distribution and intensity
distribution in the central area of the city were lower than those in the peripheral areas. By
the end of 2020, the strength of urban residential building materials had further increased.
Compared with 2015, the residential distribution had further expanded, the expansion
trend in the north and south was obvious, the peripheral material strength was higher than
that in the central area, and the urban residential distribution tended to be saturated.
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In general, the aggregation of material stock can reveal the center and correspond-
ing scale of human activities and socioeconomic development. From the perspective of
environmental sustainability, material storage agglomeration areas tend to consume more
material resources and emit more greenhouse gases, resulting in urban-heat-island effects.
Based on the obtained residential material stock information in the central urban area
of Xi’an, the study area was divided into a grid of 500 m × 500 m, and the cumulative
total amount of residential material stock in the grid area was counted to generate the
intensity distribution map of residential material stock (Figure 9). At the level of urban
space, it is possible to visually display the areas with high development intensity and the
material accumulation of residential buildings. Identifying these areas with high material
accumulation intensity will provide accurate quantities and spatial locations of material
materials for the recycling and utilization of future material stocks. At the same time, this
process provides the necessary research basis for resource managers and urban ecologists
to study urban resource consumption, solve urban environmental problems such as the
urban-heat-island effect, and realize the sustainable management of the urban building
environment and the sustainable development of cities.
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4.2. Dynamics of Urban Residential Building Material Stock

The consumption of different types of building materials and the total material stocks
of Xian city from 1990 to 2020 are presented in Figure 10. The residential building material
stocks reached 7.31 × 108 t in 2020. During the period of concern, all the kinds of materials
used exhibited a rising trend but at different rates. Among the seven main building
materials, gravel is the largest, reaching 388 million tons, followed by cement, with glass
exhibiting the smallest portion of 0.012 million tons and bricks exhibiting a relatively
stable portion.

Overall, a total of 4758 residential areas were built in the central urban area of Xi’an
during the considered period from 1990 to 2020, and the growth rate of residential material
stocks initially grew and then stabilized (Figure 10). With regard to different time intervals,
the first period from 1990 to 1995 witnessed relatively small housing-material consumption,
with a cumulative housing input of 7.263 million tons. At that time, collective housing with
2–3 floors was the dominant residential building type, and the per capita housing area was
relatively small. The value of the cumulative housing input changed to 23.5 million from
1996 to 2000. During this period, Xian’s housing was gradually developing from family
building units to commercial housing. The number of newly built communities increased
gradually, but the city was still small in size. Rapid development of urban housing occurred
in the period of 2001–2005, when the residential material input was 75.73 million tons,
which was 3.22 times that in the last period, and the commercial housing market developed
further. Between 2006 to 2010, Xi’an’s residential material input reached 141.23 million
tons, an increase of 1.86 times that of 2001–2005. From 2011–2015, the residential material
input reached 21.20 million tons, an average annual increase of more than 40 million tons,
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representing an increase of 15.41 times that of 2004–2008. From 2016–2020, residential
material input reached its peak, with an increase of 264.1 million tons per year. The increase
by more than 50 million tons every year was mainly due to the rapid increase in the
urbanization rate, which increased the demand for housing, and the introduction of a series
of policies that promoted housing development in Xi’an.
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4.3. Residential Building Stock and Urban Expansion

To demonstrate the direction and intensity of the expansion of the built-up area in
the central urban area of Xi’an more intuitively, this study focuses on the Bell Tower in
Xi’an, with a buffer distance of 2 km, and generates 9 circles. Starting from 22.5◦ due north
by east, it is divided into 8 directions at 45◦ intervals, for a total of 72 regions. The urban
built-up areas in 72 regions in each period were counted, and a radar chart was drawn
(Figure 11a). At the same time, the newly added urban built-up areas in different directions
and circles within each period were counted. Based on the proportion of newly added areas
in each circle to the total areas of circles in each direction, a circle chart of urban built-up
area expansion was drawn (Figure 11b–f), which can clearly show the main directions and
areas of the newly added urban built-up area.
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Overall, the expansion direction of the central urban area of Xi’an has undergone a
transition from mainly expanding in the east-west direction to gradually expanding in the
north-south direction. The expansion degree in the north, south, and southwest directions
is much greater than that in other directions. The expansion speed of the built-up area in
the central urban area gradually accelerated from 1995 to 2010, with particularly significant
expansion in the north and southwest directions. However, after 2010, the expansion
speed of the built-up area in the central urban area gradually slowed. By comparing the
expansion of urban built-up areas and the growth of residential material stock in the central
urban area of Xi’an at the spatial level, the study found that from 1995 to 2020, the outer
edge of the central urban area of Xi’an had been in a high-speed development period,
while the internal development was in a slow development period, which parallels the
development law of residential material stock. This indicates that in recent years, Xi’an
has focused on the expansion of the outer suburbs and the integration and reconstruction
of the internal central urban area. Currently, the development of the city is still in the
stage of expanding to the periphery. The development speed in the north and southwest
directions of the urban built-up area in the central urban area of Xi’an is much faster than
that in other directions, which is basically consistent with the expansion trend of residential
material stock in the northeast–southwest direction. The expansion of the built-up area
in the northeast direction of the research area is limited by the geographical factors of the
Ba River; thus, the expansion intensity of the built-up area in the northeast direction is
relatively weak. The expansion of urban built-up areas in the central urban area is basically
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consistent with the spatial expansion characteristics of the growth of residential material
stock, indicating that there is a mutually promoting effect between the growth of residential
material stock and urban expansion.

5. Discussion

High-resolution mapping is very useful for better describing the spatial distribution
of residential building material input in the city than single-material data (iron, bricks,
gravel, etc.) and can be used to study the spatial evolution of high-resolution spatial
residential building-stock data and material inventories [27]. In addition to its coupling
relationship with urban population expansion, land-use change, economic development,
and environmental impact, the data results are better able to explore the essence of urban
expansion. This research not only refines the acquisition of high-resolution spatial data but
also explores the process and mechanism of the spatial evolution of the urban residential
building stock, as well as the relationship with population expansion and economic devel-
opment. It provides a new research perspective for more reasonable resource allocation,
intensive and efficient land use, and compact urban development during the process of
urban construction.

5.1. Residential Building Stock and Population Expansion

By analyzing the data on population growth and the inventory of residential materials
from 1990 to 2020 (Figure 12), a significant upward trend is evident in both variables.
Notably, since the year 2000, the growth rate of the residential material inventory has
consistently exceeded that of population growth. The trend in population growth exhibits
a stable linear pattern, while the growth in the residential material inventory follows
an “S-shaped” curve, characterized by accelerated growth starting around the year 2000
and continuing until approximately 2015. This growth pattern reflects the direct impact
of population increases on housing demand, as a rising population necessitates more
living facilities, thereby driving the expansion of urban land and urban functions [56].
The complexity of cities increases with their size, which, in turn, drives the demand for
building materials. However, between 1990 and 2000, the growth in the residential material
inventory was markedly slow, failing to meet the housing demand spurred by rapid
urbanization. This lag is likely due to a delay in the expansion of population growth and
construction sites relative to economic development [57]. Since 2015, a rapid increase in
the residential material inventory has begun to balance this demand, gradually meeting
the housing needs driven by population growth. Overall, population growth has played
a lasting and profound role in driving the increase in the residential material inventory.
Furthermore, recent studies indicate that the overall and spatial coupling relationship
between urban expansion and population growth is becoming increasingly tight [58].

5.2. Residential Building Stock and Socioeconomic Factors

Socioeconomic factors exhibit a strong correlation with the material stock of urban
areas [59,60]. In this study, we employ the IPAT equation to scrutinize the growth of
driving factors. The IPAT model, widely employed in material flow research, is a tool for
decomposing environmental impacts and analyzing various permutations. The calculation
formula is presented as follows:

MS = P × A × T = POP × GDP
POP

× MS
GDP

(5)

MS represents the stock of residential materials, P (POP) denotes the resident pop-
ulation, A stands for per capita GDP (at constant prices in 1990), and T represents the
technological factor, which is the intensity of material use (GDP/POP ). T also indicates the
amount of material stock required to generate one unit of GDP and can be used to measure
the efficiency of current material utilization. A decrease in T indicates an improvement,
while an increase in T signifies a decline in efficiency.
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In this study, the LMDI method is employed to convert Equation (5) from a multi-
plicative form into an additive form, facilitating the analysis of the contributions made by
three driving variables toward variations in the residential material stock. According to
Equation (6), the contributions of population factors, economic factors, and technological
factors to changes in the residential material stock from 1990 were calculated as depicted in
Figure 13. A positive contribution enhances the growth of the residential material stock,
while a negative contribution hinders its growth.
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∆MS represents the change in MS from year t to t′ (t′ > t); ∆P, ∆A, and ∆T reflect the
contributions of changes in the resident population, economic factors, and technological
factors, respectively.

Overall, both population and economic factors have a positive impact on the growth
of the residential material stock, with their influence increasing alongside the growth
in the urban population and GDP (Figure 13). This trend is likely due to population
growth directly increasing the demand for housing, while economic growth enhances
the purchasing power of residents and the quality and efficiency of housing construction.
Additionally, urbanization accelerates the concentration of populations in urban areas,
facilitating the development of new residential zones and the renovation of old urban
districts [2,56]. However, the impact of material use intensity has varied significantly.
Prior to 2006, it contributed positively to stock growth, but in the past five years, it has
turned negative, indicating that improvements in material use efficiency are now starting
to constrain the growth of residential material stock. The decrease in material use intensity
also reflects a relative decoupling between economic growth and material stock growth as
cities develop and economies evolve.

Statistical analysis and calculation of the driving effects of different influencing fac-
tors on residential material stock across six time periods are conducted (Figure 14). The
contribution of population factors to residential material stock was relatively low from
1991 to 2010, but since 2011, their role in promoting the growth of residential material
stock has significantly increased. The intensity of material use had a suppressive effect on
the growth in residential material stock during the periods 2006–2010 and 2016–2020, and
since 2001, the impact of material use intensity (in absolute terms) on residential material
stock has gradually intensified. In downtown Xi’an, the expansion of residential material
stock is primarily fueled by economic development, with population growth being a sec-
ondary driver. Additionally, advancements in material efficiency or decreases in material
utilization intensity have somewhat counterbalanced the rise in residential material stock.
Related research also confirms the impact of material efficiency in residential construction
on the building stock [61].
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5.3. Residential Building Stock and Housing Policy

The study analyzed the evolution of urban residential construction within Xi’an,
utilizing a nuclear density map to elucidate the spatial distribution of residential building
materials as depicted in Figure 15. Prior to 2000, residential development in Xi’an focused
on historic urban centers and the National High-tech Industrial Development Zone. The
1992 “General Plan for Urban Housing System Reform in Shaanxi Province” aimed to
commercialize housing and boost the real estate market. Further propelled by a 1998
State Council notice and Shaanxi’s initiative to increase affordable housing, these reforms
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enhanced residential construction across Xi’an, markedly increasing the consumption of
building materials like concrete, steel, and glass.
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Between 2000 and 2005, the creation of University Town in Xi’an spurred the south-
ward migration of higher education institutions, increasing housing demand in the southern
districts. From 2005 to 2010, the development of the Qujiang New Area and Chanba Eco-
logical Area led to significant residential construction, necessitating a substantial supply
of urban infrastructure and building materials. In 2008, the opening of Xijing Hospital
and the northward move of the Xi’an Municipal Government significantly boosted the
housing supply in Weiyang District. Between 2010 and 2015, enhancements in rail transport
infrastructure stimulated residential growth along the north–south axis, and the approval
of the port area introduced a new development nucleus, diversifying the use of construction
materials across different districts.

Post-2015, the northward shift of Xi’an’s municipal government led to a surge in
residential development, creating multiple density centers. Simplified construction pro-
cesses, due to relaxed shantytown redevelopment and affordable housing policies, boosted
residential sector growth. However, 2017 policy adjustments in housing transactions, which
imposed waiting periods on property sales, curbed speculative activities, moderating price
inflation and industry growth. Additionally, a new residence registration policy in 2017
attracted more settlers to Xi’an, significantly increasing housing demand and expanding
the residential building stock.

Since 2020, the Xi’an government has implemented stricter regulations and control
measures on the real estate market, such as increasing down-payment ratios for commercial
loans used to purchase second homes, raising down-payment ratios for provident fund
loans, and improving access conditions for pre-sale permits of commercial housing. This has
effectively suppressed the demand for housing, particularly the investment and speculative
demand. By strategically regulating market dynamics, these policies have been pivotal
in controlling the rapid growth of the residential building stock, thereby averting excess
supply-induced market risks.

To promote responsible resource consumption and recycling in the construction envi-
ronment in the future, the study proposes the following targeted policy recommendations:
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introduce mandatory construction regulations that require the use of recycled materials;
provide incentives for developers using sustainable materials and for recycling enterprises
handling construction waste; implement stringent green building standards that require
new residential buildings to meet criteria for energy efficiency and low resource consump-
tion; adopt policies for a full lifecycle assessment of construction projects; and implement
strict regulatory measures on the real estate market to ensure sustainable development
practices.

5.4. Strengths and Limitations

The main limitation of this study lies in the investigation of the driving factors behind
housing material stock, which only focuses on relatively macrolevel factors. Therefore,
it is necessary to incorporate mesoscale and microscale urban spatial elements to further
explore other factors that influence the distribution of housing material stock.

Another limitation of the study is that only the input of housing material stock is con-
sidered. From the perspective of urban material metabolism, matter and energy encompass
both input and output processes within the city. The output refers to the quantity of waste
generated subsequent to building demolition. In future studies, incorporating the average
lifespan of buildings can be employed to estimate the overall volume of construction waste
and to enhance research on material stock outputs. Furthermore, the study of residential
building materials offers insights not only into urban sprawl but also waste generation,
environmental impacts, and land-use efficiency. Future research should thus encompass
material consumption patterns for new constructions and existing infrastructures to devise
sustainable urban development strategies.

Additionally, while this study provides valuable insights into the dynamics of urban
material stocks within Xi’an, its findings are primarily contextual to the local urban setting.
Recognizing the potential for broader applicability and generalizability, future research
should consider expanding the scope of investigation to include other cities and countries.
By examining diverse urban contexts, the study could offer a more comprehensive under-
standing of material consumption patterns and their implications for sustainable urban
development across different global settings. This expansion would not only enhance
the relevance of the findings but also contribute to the development of more universally
applicable urban planning strategies.

6. Conclusions

This study utilized multisource geographic data, encompassing temporal, spatial, and
network dimensions, and integrated a variety of complementary data collection methods,
including data scraping, the spatial acquisition of remote sensing data, and analysis of
statistical yearbook data, to establish a high-resolution visualization system for sustainably
updating the inventory of residential building materials in space. Taking into account the
strength coefficients of seven types of residential materials, the inventory of residential
building materials from 1990 to 2020 was calculated. The results showed that the material
inventory increased from 1.53 million tons to 731.12 million tons, with the spatial distribu-
tion of materials steadily expanding. Over the past 30 years, residential construction has
grown rapidly, with urban ecological spaces being occupied by reinforced concrete spaces.
By combining the spatial distribution characteristics of residential material inventories, the
study explored the relationship between the growth of residential material inventories and
urban expansion, showing a mutually reinforcing effect over time and space. Additionally,
the study innovatively analyzed the spatial distribution of building material inventories
in Xi’an in relation to population, economic development, and policy-making, revealing
that population growth, economic development, and policy formulation have promoted
the increase in residential building materials. These results endorse the monitoring of
building stock behavior with respect to material demand, energy consumption, and waste
generation, thereby promoting sustainability across various construction-related sectors.
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