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Abstract: In micro-LED chip repair, a nanopositioner is commonly used to adjust the positioning of
the LED chip. However, during the bonding process, the heat generated can cause the positioning
system to deform, leading to inaccurate alignment and poor-quality chip repair. To solve this issue, a
novel flexible connection structure has been proposed that can eliminate thermal deformation. The
principle of this novel flexible connection structure is that the thermal distortion self-elimination
performance is achieved via three flexible connection modules (FCM) so that the thermal stress is
automatically eliminated. First, the paper introduces the principle of thermal deformation elimination,
and then the design and modeling process of the proposed structure are described. A heat transfer
model is then developed to determine how temperature is distributed within the structure. A thermal
deformation model is established, and the size of the FCM is optimized using a genetic algorithm
(GA) to minimize the thermal deformation. Finite element analysis (FEA) is used to simulate and
evaluate the thermal distortion self-elimination performance of the optimized mechanism. Finally,
experiments are conducted to verify the reliability and accuracy of the simulation results. The
simulations and experiments show that the proposed structure can eliminate more than 38% of the
thermal deformation, indicating an excellent thermal deformation self-eliminating capability.

Keywords: flexible connection; thermal distortion self-elimination; thermal resistance network;
micro-LED chip repairing

1. Introduction

The advent of electronic display screens has transformed the way we experience the
world around us. These displays will be critical in future intelligent information transfer,
enabling various applications in national defense, military, and other fields [1–4]. However,
the conventional LCD, OLED, and mini/micro-LED displays exhibit varying performance
characteristics [5]. LCDs are widely used in daily life due to their cost-effectiveness.
However, they rely on backlight light-emitting processes and require the adjustment of
liquid crystal molecules in the electric field for modulation. This results in displays that
can only achieve milliseconds of response speed, relatively low luminous efficiency, and
contrast [6]. OLED displays utilize organic light-emitting diodes for self-illumination,
offering excellent bending performance, increased display viewing angles, and brighter
adjustments. However, such displays are limited by the drawbacks of their organic light-
emitting material, which significantly reduces their service life [7–9].

The mini/micro-LED displays are a new and improved technology that uses tiny
LED chips to create individual pixels. These displays are very efficient, use less power,
have better contrast and response times, and are more durable. Because of these benefits,
they are expected to become the standard for the next generation of displays [10–12].
These mini/micro-LED displays are still in the development phase, and there are some
technical challenges to overcome, such as chip preparation, mass transfer, detection, and
repair [10,12].
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Mass transfer is a necessary process in the fabrication of micro-LED panels. There
are two main methods for micro-LED mass transfer: direct monolithic integration and
indirect pick-and-place [13,14]. Once the chips are grown on a source substrate, they must
be detached and relocated to the target substrate or driver circuit board using precision
equipment [15]. For 4K HDTV, which contains approximately 25 million chips ranging
from 3 to 10 mm in size, precise chip placement is crucial. The placement accuracy must
reach 1 mm, and the throughput must exceed 100 million units per hour(UPH) to achieve
a yield exceeding 99.9999% [16]. For 8K displays, the chip count escalates to 100 million,
making it even more challenging to transfer and assemble the micro-LED chips. To ensure
a robust bond between the chips, the substrate must undergo heating [5,6].

During long-term high-temperature operation, the rigid bolt-connected platform expe-
riences self-heating and expansion, resulting in platform warping, depression, and reduced
positioning accuracy during mass transfer [17,18]. Therefore, eliminating the warping and
depression caused by heating the nanopositioner and improving the positioning accuracy
during the mass transfer is an urgent problem that needs to be solved.

In recent years, concepts similar to thermal deformation self-elimination have mostly
appeared in the field of precision equipment [19–22], and optics [23–25]. In precision
equipment, Lee presented an air-bearing stage that utilizes a four-bar linkage flexure to
compensate for yaw motion while maintaining both the high structural stiffness of the stage
and the extremely low rotational stiffness of the flexure [19]. Jia et al. [20] proposed a novel
decoupled flexure nanopositioner with a thermal distortion self-elimination function. They
were the first to propose applying the principle of thermal deformation self-elimination
to nanopositioners. Chun presented a novel approach to mitigate the thermal effects in
flexure mechanism-based nanopositioning systems by introducing fluid flow (air or water)
through the internal fluidic channels of the compliant structure [21]. Wang provided a
new design strategy for the sandwiched metastructure with zero thermal-induced warping,
high load-bearing capability, and high resonant frequency, exhibiting a negligible out-
of-plane thermal-induced warping, reduced by 99.8% [22]. High-quality optical devices
used in space require precise manufacturing to minimize thermal deformation caused
by prolonged exposure to light. Liu applied mesh deformation to optimize the flexure
for high force–thermal stability in a space mirror. The surface shape error is reduced
by 22% [23]. Guo et al. [24] proposed a hybrid ball-hinged secondary mirror assembly
(HSMA) to achieve thermal adaptation over a wide temperature range. Based on exact
constraint principles, Huo proposed a novel kinematic flexure mount comprising three
identical chains [25]. However, the thermal characteristics of the flexure mechanism applied
in precision equipment still need to be studied further.

To achieve a better thermal deformation self-elimination heat ability, a thermal de-
formation self-eliminating flexible connection module(FCM) is proposed in this study,
replacing the rigid bolt connection and utilizing elastic deformation to eliminate thermal
deformation. The performance of the FCM is investigated through temperature field analy-
sis, thermal deformation modeling analysis, and experimental tests. Finally, the simulations
and experiments show that the proposed structure can eliminate more than 38% of the
thermal deformation.

2. Flexible Connection Mechanism
2.1. Thermal Distortion Self-Elimination Principle

During the process of bonding micro-LED, it is necessary to heat the substrate. How-
ever, this high-temperature process can cause thermal errors in the rigid bolt connection
mechanism. The mechanism might self-heat and expand, leading to the warping or denting
of the nanopositioner [20]. The overall structure of FCM is shown in Figure 1a, which is
symmetrical and has a threaded hole. In this paper, elastic deformation of FCM is used to
eliminate heat deformation. Its principle is shown in Figure 1b. Thermal stress and thermal
deformation of the nanopositioner are represented by red arrows and red dots. Three sets
of FCMs can be installed rotationally symmetrically—two sets of FCMs cannot balance the
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thermal stress in all directions, while three sets of FCMs can achieve a better balance of
thermal stress with the least amount of material—to keep the center of the nanopositioner
in an almost constant position. Ft1, Ft2, and Ft3 are the forces produced by the three sets of
FCMs counteracting the thermal stress in their direction. The distribution of FCMs in the
nanopositioner and the overall view of the nanopositioner are shown in Figure 1c.

Figure 1. Thermal deformation self-elimination principle and FCM structure design. (a) the 3D model
of an FCM. (b) principle of 3 FCMs. (c) overall view.

2.2. Design of FCM

The FCM module is specifically designed to eliminate thermal deformation. The
module features an 18 mm diameter, and three FCMs are positioned around the center
of the platform at an optimal angle and radius to ensure that thermal deformation only
occurs in the FCMs, as shown in Figure 1a. The module has a symmetrical top-bottom
structure consisting of four sets of hyperbolic beam-type flexure hinges, each with a length
of 3.5 mm, a width of 5.6 mm, and a thickness of 32 mm. The material of FCM must meet
the small deformation when heated, so the thermal expansion rate of the material is small.
In addition, FCM requires high flexibility. The aluminum alloy described above is a suitable
material for the manufacture of FCM.

3. Heat Transfer Model of FCM

It is important to conduct a thorough study on the heat transfer within the FCM
module as its performance relies heavily on temperature. This can be achieved using a
thermal resistance network model to investigate its heat transfer at various temperature
levels. By replacing the FCM with multiple thermal resistances, as shown in Figure 2a, we
can effectively analyze its heat transfer characteristics.

To simplify the model-solving process, the thermal resistance network model has been
divided into three parts (see Figure 2b). This simplifies the analysis and reduces the model’s
complexity.

According to the principle of heat transfer, when the temperature difference between
the front and back of a single thermal resistance is ∆T (the change in ∆T takes ∆t (s) time),
the heat Q flowing through this thermal resistance is:

Q = λS/δ ·
(
T′

1 − T′
2
)
= λS/δ · ∆T = G · ∆T = ∆T/R (1)

parameter description: λ (W/(m· K)): the thermal conductivity, S (m2): thermal conduc-
tivity area, δ (m): thermal conductivity wall thickness, G (W/K): equivalent thermal
conductivity, R (K/W): thermal resistance, ∆T (K): temperature difference of a single
thermal resistance.
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Figure 2. Thermal network models. (a) thermal network model of the FCM. (b) simplified thermal
network models.

The amount of heat absorbed within a single thermal resistance over a period of time
∆t can be calculated using the following formula:

Q = ρc∆V
Tt

2 − T0
2

∆t
(2)

The establishment of the thermal resistance network model is based on the conserva-
tion of energy. In the absence of heat loss, a single thermal resistance transfers as much heat
as it absorbs. However, for a single thermal resistance to transfer the same amount of energy
as it absorbs, it needs to pass through the same amount of time. So Equations (1) and (2)
both experience time ∆t (s). So, according to the energy conservation theorem, it can be
expressed as:

G · ∆T = ρc∆V
Tt

2 − T0
2

∆t
(3)

please note the following variables: Tt
2 (K) represent the temperature of wall 2 at t seconds,

T0
2 (K) represent the initial temperature of wall 2, ρ (kg/m3) represent density of thermal

resistance, c (J/(kg · K)) represent specific heat capacity of thermal resistance, ∆V (m3)
represent the volume of a single thermal resistance.

Using Equation (3), the objective function of the simplified thermal resistance model
of FCM has been established.

∑4
n=1 Gn

(
Tt

n − Tt
n+1

)
= ρc ∑4

n=1 ∆Vn
Tt

n+1−T0
n+1

∆t

G6(G5+G7)
G5+G6+G7

·
(
Tt

5 − Tt
6
)
= ρc∆V6

Tt
6−T0

6
∆t

∑9
n=6 Gn

(
Tt

n − Tt
n+1

)
= ρc ∑9

n=6 ∆Vn
Tt

n+1−T0
n+1

∆t

(4)

parameter conditions: T1 = 370 K, ρ = 2770 kg/m3 and c = 880 J/(kg · K), Gn: equivalent
thermal conductivity of the nth thermal resistance, Vn: the volume of the nth thermal
resistance. The result of the solution is shown in Figure 3.
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Figure 3. Thermal resistance network model-solving results. (a) T1–T5. (b) T6–T10.

4. FCM Mechanism Optimization and FEA

In this section, the relationship between the deformation of FCM and the center dis-
placement of the nanopositioner is established. Then, the FCM size is optimized by taking
the minimum displacement of the center of the nanopositioner as the objective function.

4.1. Modeling of FCM with Thermal Distortion Self-Elimination

As the temperature of the nanopositioner increases, the thermal stress on the FCMs
increases. The FCM will then deform. A deformation trend of the FCM is shown in
Figure 4a. The flexure endpoint Dij is connected to the exterior through a straight beam,
and the relationship between force and displacement at this point can be expressed as
follows [26]: 

∆xij
∆yij
∆zij

∆θx,ij
∆θy,ij
∆θz,ij


=



c11 0 0 0 0 0
0 c22 0 0 0 c25
0 0 c33 0 c35 0
0 0 0 c44 0 0
0 0 c53 0 c55 0
0 c62 0 0 0 c66





Fx,ij
Fy,ij
Fz,ij
Mx
My
Mz

 (5)

parameter description: ∆xij (mm): the tension and compression displacement, ∆yij (mm):
shear displacement, ∆θij (°): rotation angle, Ft,ij (N): tension force, Fs,ij (N): shear force,
Mij (Nm): torque, ci: the flexibility coefficient of straight beam deflection.

Figure 4. (a) deformation tendency of flexible mechanism under stress. (b) distribution of FCM points.
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Temperature change causes elastic deformation of the straight beam, and therefore,
the flexibility coefficient matrix can be listed as follows [26]:

c11 =
l1

kEbt

c22 =
4l3

1
Eb3kt

+
3l1

2kGbt

c33 =
4l3

1
kEbt3 +

3l1
2kGbt

c44 =
bl1

k2Gbt3

c55 =
12l1

k3Ebt3

c66 =
12l1

k3Eb3t

c26 = c62 =
6l2

1
k2Eb3t

c35 = c53 = −
6l2

1
kEbt3

(6)

please note the following variables: E = 72 GPa, b (thickness of FCM) = 50 mm, l1 (mm):
the length of DijBij, t(mm): the width of the straight beam DijBij.

According to the knowledge related to thermodynamics, k can be expressed as:

k = (1 + α∆T) (7)

where α is the coefficient of thermal expansion, and ∆T is the change in temperature.
The flexure hinge inside the FCM is connected to a straight beam EijRij, and the force

and displacement relationships at the endpoints Eij of the straight beam are as follows: ∆t′im
∆s′im
∆θ′im

 =

c′x,FX
0 0

0 c′y,FY
c′y,MZ

0 c′θ,FY
c′θ,MZ


 F′

t,im
F′

s,im
M′

im

 (8)

parameter description: ∆x′im (mm): the tension and compression displacement, ∆y′im (mm):
shear displacement, ∆θ′im (°): rotation angle, F′

t,im (N): tension force, F′
s,im (N): shear force,

M′
im (N·m): torque, c′i: the flexibility coefficient of straight beam deflection.

The compliance coefficients c of the circular flexure hinged straight beam under
thermal stress can be listed as [27]:

c′x,FX
= 1

Ew f4

c′y,FY
= 12

Ew
(
t2 f1 − 2t f2 + f3

)
c′θ,FY

= c′y,MZ
= 12

Ew (t f1 − f2)

c′θ,MZ
= 12

Ew f1

(9)

where E and w are Young’s modulus and the length of the free end. f1, f2, f3, f4 are
calculated as follows [27]:
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f1 = f10 + f11

f2 = f20 + f21

f3 = f30 + f31

f4 = f40 + f41

(10)



f10 =
∫ 0
− π

2

r′ sin φ+r cos φ

(2b+t′−2r cos φ)3 dφ

f11 =
∫ π

2
0

r′ sin φ+r cos φ

(2b+t′−2r cos φ)3 dφ

f20 =
∫ 0
− π

2

r sin φ(r′ sin φ+r cos φ)
(2b+t′−2r cos φ)3 dφ

f21 =
∫ π

2
0

r sin φ(r′ sin φ+r cos φ)
(2b+t′−2r cos φ)3 dφ

f30 =
∫ 0
− π

2

r2 sin2 φ(r′ sin φ+r cos φ)
(2b+t′−2r cos φ)3 dφ

f31 =
∫ π

2
0

r2 sin φ(r′ sin φ+r cos φ)
(2b+t′−2r cos φ)3 dφ

f40 =
∫ 0
− π

2

r′ sin φ+r cos φ
2b+t′−2r cos φ dφ

f41 =
∫ π

2
0

r′ sin φ+r cos φ
2b+t′−2r cos φ dφ

(11)

Finally, the position coordinates have been established, and the thermal drift model is
determined by finding the relationship between the coordinates of each node. In Figure 4b,
the locations of the points D, B, E, and R are shown. Let the center point of the FCM be
represented by Ai, and the center point of the nano-displacement platform be represented
by Oo. Due to the deformation of the flexure and the change in position, the constraint
point Dij moves to D′

ij, and the free points Bij, Eim, and Rim move to B′
ij, E′

im, and R′
im.

The distances |DijBij| = l1, |RimEim| = l3, |DijOo| = ri, and |Di1Di3| = m. According to
the linear expansion model of solid matter, the position relationship can be expressed as
follows [20]: xB′

ij
− xD′

ij

yB′
ij
− yD′

ij

 = k

[
xBij − xDij

yBij − yDij

]
+

[
∆xij
∆yij

]
(12)

[
xE′

im
− xB′

im
yE′

im
− yB′

ij

]
= k

[
xEim − xBij

yEim − yBij

]
(13)

[
xR′

im
− xE′

im

yR′
im
− yE′

im

]
=

(
k +

∆t′im
l3

)[
xRim − xEim

yRim − yEim

]
+

∆s′im
m

[
xRi1 − xRi2

yRi1 − yRi2

]
(14)

[
xR′

im
− xA′

i
yR′

im
− yA′

i

]
= k

[
xBim − xAi
yBim − yAi

]
(15)

The thermal deformation equation is used to describe how the center position of
flexure-free endpoints changes. This change happens after a temperature change and is
measured relative to the center of the nanopositioner in the global coordinate system [20]:
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[
xD′

ij
− ∆x

yD′
ij
− ∆y

]
= k

[
cos ∆θ − sin ∆θ
sin ∆θ cos ∆θ

][
xDij

yDij

]
(16)

the parameter ∆x represents the displacement of the nanopositioner center along the X-
axis, ∆y represents the displacement of the nanopositioner center along the Y-axis, and
∆θ represents the deflection angle at the center of the nanopositioner [20]. When the
variation in angle ∆θ is minimal, it can be denoted by a linear expression. To achieve a
harmonious ratio between the equations and parameters, the static equilibrium equations
of the nanopositioner within FCMs are as follows [20]:

3

∑
i=1

4

∑
j=1

(Ft,ij + Fs,ij) = 0 (17)

3

∑
i=1

4

∑
j=1

(Ft,ij + Fs,ij)×
−−→
ODij +

3

∑
i=1

12

∑
j=1

Mij = 0 (18)

8

∑
m=1

(F′
t,im + F′

s,im + Ft,ij + Fs,ij) = 0, i = 1, 2, 3 (19)

8

∑
m=1

(
F′

t,im + F′
s,im

)
×−−−−→

RimEim +
8

∑
m=1

M′
im = 0, i = 1, 2, 3 (20)

Finally, the thermal distortion model of the nanopositioner has been established. The
position matrix parameters xDij , yDij , ∆xij, ∆yij, Ft,ij, Fs,ij and Mij (i = 1, 2, 3; j = 1, 2, 3, 4)
are selected as unknown. It can be obtained from the above linear equations that the other
parameters are the design sizes of the nanopositioner.

4.2. Parameters Optimization

The position sizes of the FCM are r1, r2, r3, θ and m, as shown in Figure 1b. The FCM
structure sizes are l1, l2, l3, b, r, w, t′ and t, as shown in Figure 5. The above size parameters
need to be optimized to improve thermal distortion elimination performance and ensure
the position accuracy of the nanopositioner. Considering the size of the nanopositioner
and the convenience of calculation, we set b = 20 mm and the value range of r1, r2, and r3
to 40–50 mm. FCM uses a 3D printing process. Therefore, the range of FCM parameters
must meet the processing range. In addition, the parameter range needs to match the
design of the nanopositioner. After meeting the above parameter requirements, finite
element simulation is carried out on the preliminarily established nanopositioner. By
constantly adjusting the parameters, the better parameter range of thermal deformation
self-elimination is determined. So, the value ranges of m, l1, l2, l3, r, w, t′ and t are
determined by the preliminary finite element simulation analysis. The nanopositioner’s
displacement and rotation angle may be affected by thermal distortion. The center position
displacement can be represented by ∆x and ∆y, while the rotation angle displacement is
∆θ. To eliminate the effects of thermal distortion, here we take the total linear displacement
∆Lxy as the optimization goal. Therefore, the optimization problem can be stated as:

min ∆Lxy =
√

∆x2 + ∆y2 (21)

optimization parameters: ri , θ′ , m , li , w , t , t′.
According to the preliminary finite element simulation, the parameters obtained are:

0◦ ≤ θ′ ≤ 20◦ , 50 mm ≤ ri ≤ 70 mm , 4 mm ≤ m ≤ 8 mm , 2 mm ≤ li ≤ 5 mm,
2 mm ≤ w ≤ 5 mm , 0.4 mm ≤ t ≤ 0.8 mm , 0.3 mm ≤ t′ ≤ 0.6 mm. Other constraints
that help in the calculation are: bending strength condition of flexure hinge: Sσij,max ≤ σy,
condition of nanopositioner center angle under temperature load: ∆θ ≤ 0.5◦.
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MATLAB GA toolbox was used to complete the optimization task. In the process of
GA, the number of iterations is set to 50 steps. The optimal sizes of the nanopositioner are
shown in Table 1.

Figure 5. Parameters of FCM.

Table 1. Determination of the optimal sizes of the FCM.

Optimized Parameters Ranges of Values Optimal Solution Selection

θ′ [0◦, 20◦] 10◦

r1 [50 mm, 70 mm] 64 mm
r2 [50 mm, 70 mm] 64 mm
r3 [50 mm, 70 mm] 64 mm
m [4 mm, 8 mm] 6.4 mm
l1 [2 mm, 5 mm] 3 mm
l2 [2 mm, 5 mm] 2.8 mm
l3 [2 mm, 5 mm] 2.8 mm
w [2 mm, 5 mm] 2.8 mm
t [0.4 mm, 0.8 mm] 0.7 mm
t′ [0.3 mm, 0.6 mm] 0.5 mm

4.3. Simulation Analysis of FCM Thermal Distortion Self-Elimination Performance

ANSYS Workbench 2022 R1 was used to analyze the thermal distortion self-elimination
performance of FCM. The simulation process and results are described below. The initial
temperature for the simulation was set to 293 K, and the temperature loads on the base of
the nanopositioner were set to 333 K and 373 K, respectively.

Two simulation models were developed: (a) a static positioning platform fixed with
FCM (which did not take into account when the platform was in motion); and (b) static
positioning platforms fixed with rigid bolts. The boundary conditions for simulation were
set, including a convection coefficient between the mechanism and the air of 10 W/(m2 ·K),
a thermal radiation coefficient of 0.55, and temperature loads of 333 K and 373 K on
the positioning platform. The simulation yielded the thermal deformation of the two
models under different thermal loads (see Figure 6c,d,g,h). Finally, the positioning platform
warpage of the two models was calculated (see Figure 6a,b,e,f).
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Figure 6. Thermal deformation of the two models under different thermal loads. (a) thermal warping
with FCM under 333 K. (b) thermal warping with FCM under 373 K. (c) thermal warping without
FCM under 333 K. (d) thermal warping without FCM under 373 K. (e) temperature distribution with
FCM under 333 K. (f) temperature distribution with FCM under 373 K. (g) temperature distribution
without FCM under 333 K. (h) temperature distribution without FCM under 373 K.

From the simulation results, it can be seen that the warpage of the positioning platform
fixed with rigid bolts was 50%, while the warpage of the positioning platform fixed with
FCM was only 12%. Comparing the two, it shows that FCM was able to eliminate 38% of
the warpage of the positioning platform.

5. Experiments and Discussion

In this section, we first designed the deformation experiments of the positioning
platform under various thermal environments and comparatively verified that the thermal
distortions produced by the FCM at thermal loads of 323 K, 343 K, and 363 K are 56.8%,
32.0%, and 33.2% of those produced by the rigid connecting mechanism at the same
thermal loads.
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Then, the deformation experiment was simulated, and the corresponding simulation
data were obtained. Finally, the experimental data and the simulation data were compared,
and it was found that the error between them did not exceed 10%.

5.1. Experimental Setup

During this experiment, a substrate platform was firmly established, and a heating
table was positioned underneath it to efficiently heat the surface, as shown in Figure 7a.
Three FCMs were evenly distributed on the substrate, supporting an aluminum plate with
a specific weight(see Figure 7b). The experimental protocol dictated that the heating table
raise the substrate’s temperature to a predetermined level, subsequently transferring the
heat to the FCMs, inducing thermal deformation. Subsequently, the displacement of the
aluminum plate at four designated points was meticulously gauged. Following this initial
measurement, the FCMs were replaced with a rigid connection mechanism that differed
slightly in overall dimensions(see Figure 7c), and the procedure was replicated to assess
the aluminum plate’s deformation displacement at the same four points under varying
temperature conditions.

Figure 7. Experimental Setup. (a) the experimental diagram. (b) the experimental rigid connection.
(c) the experimental FCM.

5.2. Experimental Instruments

The experimental tools employed in this study encompass eddy current sensors,
thermal imaging devices, and temperature-controlled heating tables. The specific types of
these instruments are detailed in Table 2.

Table 2. Type list of experimental instruments.

Laboratory
Instruments

Eddy Current
Sensors

Handheld Thermal
Imaging Camera Heating Platform

Instrument model ML33 HIKMICRO H10 CH9702

5.3. Experimental Procedure

The first step was to keep the temperature-controlled heating table still. After that,
the positioning platform was firmly fixed to the table with bolts. Next, the accuracy and
efficiency of the eddy current sensor were tested to meet the requirements of the experiment.
The sensor was then fixed to the workbench with a fixing bracket.

After fixing the eddy current sensor, position its probe in the positioning platform to
measure the position of point 1. Keep the probe parallel to its performance and maintain a
spacing of about 1 mm. Next, open the temperature control platform and set the heating
temperature to 323 K and 373 K, respectively. Once the measured surface temperature
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reaches 323 K and 373 K, respectively, record the readings on the voltmeter. Upon comple-
tion of the measurement at point 1, close the temperature control table and wait for the
whole platform to cool down naturally. Repeat the process described in Figure 8 to measure
points No. 2, No. 3, and No. 4 and record the experimental data.

Figure 8. Experimental manipulation. (a) experimental measurement point No. 1. (b) experimental
measurement point No. 2. (c) experimental measurement point No. 3. (d) experimental measurement
point No. 4.

5.4. Experimental Data Processing and Result Analysis

After the experiment was completed, the data were integrated as shown in Table 3.

Table 3. Comparison of experiments with and without FCM.

Mechanical Deformation Inspection
Point 1

Inspection
Point 2

Inspection
Point 3

Inspection
Point 4

50 ◦C With FCM 0.044 0.042 0.048 0.04
50 ◦C Without FCM 0.091 0.101 0.098 0.09

70 ◦C With FCM 0.112 0.122 0.106 0.123
70 ◦C Without FCM 0.191 0.173 0.188 0.180

90 ◦C With FCM 0.198 0.218 0.187 0.209
90 ◦C Without FCM 0.286 0.304 0.302 0.299

Upon careful consideration of the experimental data calculations, it is evident that
the FCM effectively eliminates thermal distortion-induced deformation displacement.
Specifically, when exposed to thermal loads of 323 K, 343 K, and 363 K, the thermal
distortion generated by the FCM mechanism is reduced to 56.8%, 32.0%, and 33.2% of
that observed in the rigid connection mechanism under identical thermal conditions. This
substantial reduction underscores the FCM’s potential in addressing thermal distortion,
further validating its reliability and utility in practical applications.

6. Conclusions

A novel self-eliminating mechanism for thermal deformation in nanopositioners was
designed, modeled, and optimized to address the challenges associated with thermal
distortion. The thermal resistance network model was established to analyze the internal
temperature variations within the FCM when exposed to heat. A genetic algorithm (GA)
was employed to refine the dimensions of the FCM. Through rigorous simulations, the
performance of the optimized FCM in eliminating thermal deformation was evaluated. The
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results demonstrated that the FCM exhibited a significant reduction in thermal deformation
compared to the rigid connection mechanism, achieving reductions of 56.8%, 32.0%, and
33.2% at thermal loads of 323 K, 343 K, and 363 K, respectively. Furthermore, the accuracy
of the simulations was verified through experiments, revealing a discrepancy of less
than 10%.
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