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Abstract: Deployable structures based on origami are widely used in the application of actuators. In
this paper, we present a novel family of origami-based deployable structures with constant curvature.
Two categories of non-flat-foldable and non-developable degree-4 vertices (NFND degree-4 vertices)
are introduced. Pyramid structures are constructed based on the NFND degree-4 vertices. Doubly
symmetric and singly symmetric spherical origami tubular cells (SOTCs) are established based
on pyramid structures. To construct deployable origami modules using SOTCs, linking units are
introduced. The mobility of the SOTCs and origami modules is analyzed using constraint screws. To
realize the construction and simulation of deployable structures, kinematic and geometric analyses
of the doubly symmetric and singly symmetric SOTCs are performed. Finally, we introduce four
cases for deployable structures in spherical actuators based on the combination of multiple origami
modules. These case studies demonstrate the potential of these deployable origami structures in the
design of spherical actuators.

Keywords: spherical deployable origami structures; constant curvature; non-flat-foldable;
non-developable degree-4 vertex; mobility analysis; kinematic analysis

1. Introduction

Deployable structures have the ability to fold compactly for convenient storage and
transportation and then expand into specific configurations, effectively achieving a large
working space [1,2]. In recent years, deployable structures have been studied and applied
in the field of actuators for robotics [3,4], aerospace [5–7], and medical devices [8,9], where
tasks require accurate positioning and adaptability.

Many researchers have dedicated their efforts to the study of deployable structures,
focusing on their applications as actuators. Suthar et al. [10] introduced a multi-strand
parallel twisted-scissor deployable structure with linear expansion capability. This deploy-
able structure was utilized as an actuator for a deployable and foldable arm on a small
platform. Wu et al. [11] proposed a quadrangular truss-shaped deployable structure with
metamorphic mobility for a robotic manipulator, enabling both deployment and grasping
movements. Gao et al. [12] designed a three-fingered robotic grasper based on deployable
structures. The capability to grasp spherical objects and various shapes was demonstrated
through experimental validation. A large deployable structure with the capability to form
a spherical shape for actuator applications in the aerospace industry was proposed by
Chu et al. [13]. Huang et al. [14] developed a method for the design of a large, spherical
surface-deployable structure that can be utilized as an actuator for antennas. The proposed
deployable structure was constructed using irregularly shaped triangular prismoid units.
Based on two-layer and two-loop spatial linkage units with 4R coupling chains, a family of
novel umbrella-shaped deployable structures was introduced by Cao et al. [15]. The novel
deployable structures have the ability to form an umbrella-shaped surface when deployed,
making them suitable for actuator applications in various engineering fields.
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Origami, the traditional art of folding paper, can be applied to the design of deploy-
able structures, particularly for actuators [16–19]. Soft pneumatic actuators inspired by
the accordion pattern with linear motion were proposed by Zaghloul et al. [20]. The de-
sign, fabrication, and testing of origami-inspired soft pneumatic actuators were presented.
Zhang et al. [21] introduced the design, analysis, and experimental validation of a novel
pneumatic/cable-driven hybrid linear actuator based on the Kresling pattern. The pro-
posed linear actuators had several advantages over traditional actuators, such as extension
ratio and easily controlled position. Liu et al. [22] employed the folding technique of the
Kresling pattern to develop a linear actuator that exhibited several beneficial characteristics,
including low driving pressure, high deployable ratio, and fast response. Yu et al. [23]
developed pneumatic foldable actuators with the ability of linear and turning movements
based on Miura-ori. The novel actuator with bending motions was proposed by Seo
et al. [24] based on the Yoshimura pattern, which could be utilized to assist the upper limb
motion. Jeong et al. [25] presented an actuator with screw motion based on an origami
twisted tower, adopted for the three-finger robotic manipulator. The actuator inspired by
the Waterbomb pattern was developed by Li et al. [26] to be used as a soft robotic gripper.
The origami gripper with a hollow hemispherical shape was driven by inflation and offered
remarkable adaptability and robustness, enabling it to lift a wide range of objects efficiently.
Chen et al. [27–30] conducted extensive studies on deployable structures utilizing degree-4
vertices. Their investigation focused on the design of origami tubular structures based
on zero-thickness panels, as well as designs considering the thickness of the panels. The
proposed methods of deployable structures hold great potential for application in actuators.

Based on the research described above, it can be seen that many actuators have
been designed based on developable structures. Most of the current studies on actuators
concentrate on linear or planar motion. However, there is limited research on actuators
specifically designed to move on a spherical surface with a constant radius. In this paper, a
design method for obtaining the spherical origami tubular cells with a constant radius is
presented based on non-flat-foldable and non-developable degree-4 vertices. Furthermore,
we use these origami cells in the design of origami modules and introduce a family of design
models for spherical actuators. The main contributions of this paper are as follows: These
deployable structures with a constant radius offer versatility and adaptability, making them
applicable to a wide range of applications in different industries. The proposed spherical
actuators have significant potential for practical applications in various fields, including
antennae, solar arrays, robotic graspers, etc.

The organization of this paper is structured as follows: Section 2 presents the design
of deployable spherical origami tubular cells and modules, followed by a comprehensive
analysis of their mobility. The kinematics and geometry of spherical origami tubular cells
are analyzed in Section 3. In Section 4, four cases are studied to validate the design of
deployable structures in spherical actuators based on the combination of multiple origami
modules. Conclusions are presented in the Section 5.

2. Design of Deployable Spherical Origami Tubular Cells and Modules

In this section, a novel spherical origami tubular cell (SOTC) is presented based on
the non-flat-foldable and non-developable degree-4 vertex (NFND degree-4 vertex). To
develop a novel family of deployable structures with constant curvature during the folding
motion, many origami modules are presented by assembling the origami tubular cell. The
mobility analysis of SOTCs and origami modules is performed.

2.1. Origami-Based Tubular Cells

The degree-4 vertex consists of four panels and four creases that intersect at a single
vertex, as shown in Figure 1. The sector angle of a panel between two creases is commonly
denoted by αij. The folding angle of the i-th crease is denoted by θi(i = 1, 2, . . . 4). For
the mountain crease, the range of folding angle is within [0,π]. For the valley crease, the
range of folding angle is within [−π, 0]. All folding angles are equal to ±π in the fully
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folded state. A degree-4 vertex is considered flat-foldable when the folding angle of each
crease is transformed into the fully folded state. When the folding angle of each crease
is 0 simultaneously in the unfolded state, the degree-4 vertex is developable [31]. The
conditions for flat-foldability and developability are [32,33]: (a) Maekawa Theorem: the
difference between the number of mountain creases and valley creases is equal to ±2, that is,
M − V = ±2; (b) Kawasaki Theorem 1: the sum of sector angles of opposite panels is π, i.e.,
α12 + α34 = α23 + α41 = π. Based on whether the crease can be unfolded into the flat state
(θi = 0) and folded into the fully folded state (θi = ±π), there are four categories of degree-4
vertices: flat-foldable and developable degree-4 vertex, non-flat-foldable and developable
degree-4 vertex, flat-foldable and non-developable degree-4 vertex, and non-flat-foldable
and non-developable degree-4 vertex.

Actuators 2024, 13, 156 3 of 19 
 

 

2.1. Origami-Based Tubular Cells 

The degree-4 vertex consists of four panels and four creases that intersect at a single 

vertex, as shown in Figure 1. The sector angle of a panel between two creases is commonly 

denoted by  ij . The folding angle of the i-th crease is denoted by ( ) = 1,2, 4
i

i . For the 

mountain crease, the range of folding angle is within 0,π   . For the valley crease, the 

range of folding angle is within 0π,−   . All folding angles are equal to ±π  in the fully 

folded state. A degree-4 vertex is considered flat-foldable when the folding angle of each 

crease is transformed into the fully folded state. When the folding angle of each crease is 

0 simultaneously in the unfolded state, the degree-4 vertex is developable [31]. The con-

ditions for flat-foldability and developability are [32,33]: (a) Maekawa Theorem: the dif-

ference between the number of mountain creases and valley creases is equal to  2, that 

is, M − V =  2; (b) Kawasaki Theorem 1: the sum of sector angles of opposite panels is 
π , i.e.,    + = + =

12 34 23 41
π . Based on whether the crease can be unfolded into the flat 

state ( = 0
i

) and folded into the fully folded state ( = π
i

), there are four categories of 

degree-4 vertices: flat-foldable and developable degree-4 vertex, non-flat-foldable and de-

velopable degree-4 vertex, flat-foldable and non-developable degree-4 vertex, and non-

flat-foldable and non-developable degree-4 vertex. 

1

2

3
4

12

23

34

41

 

Figure 1. Degree-4 vertex, 1–4 represent the numbering of creases. 

When the sector angles of the degree-4 vertex are satisfied   = =
12 41

 , 

  = =
23 34

, and    + + +  
12 34 23 41

2  (  0 ), the degree-4 vertex is non-flat-fold-

able and non-developable, with all the creases being mountain creases, as indicated in 

Figure 2. During the folding motion, the four creases consistently move on a spherical 

surface with a constant radius, forming a symmetric convex configuration. Due to this 

property, the NFND degree-4 vertex is utilized to design a novel origami tubular cell for 

constructing deployable structures with constant curvature. Based on their symmetry, the 

NFND degree-4 vertices are categorized as doubly symmetric NFND degree-4 vertex and 

singly symmetric NFND degree-4 vertex. In the doubly symmetric NFND degree-4 vertex, 

 = , i.e.,    = = =
12 23 34 41

. The doubly symmetric NFND degree-4 vertex exhibits 

symmetry in both plane 1, formed by creases 1 and 3, and plane 2, formed by creases 2 

and 4. When   , the NFND degree-4 vertex is singly symmetric. The singly symmet-

ric NFND degree-4 vertex exhibits symmetry only within plane 1 defined by creases 1 and 

3. 
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When the sector angles of the degree-4 vertex are satisfied α12 = α41 = β, α23 = α34 = γ,
and α12 + α34 + α23 + α41 < 2π (ε > 0), the degree-4 vertex is non-flat-foldable and
non-developable, with all the creases being mountain creases, as indicated in Figure 2.
During the folding motion, the four creases consistently move on a spherical surface with
a constant radius, forming a symmetric convex configuration. Due to this property, the
NFND degree-4 vertex is utilized to design a novel origami tubular cell for constructing
deployable structures with constant curvature. Based on their symmetry, the NFND
degree-4 vertices are categorized as doubly symmetric NFND degree-4 vertex and singly
symmetric NFND degree-4 vertex. In the doubly symmetric NFND degree-4 vertex, β = γ,
i.e., α12 = α23 = α34 = α41. The doubly symmetric NFND degree-4 vertex exhibits
symmetry in both plane 1, formed by creases 1 and 3, and plane 2, formed by creases 2
and 4. When β ̸= γ, the NFND degree-4 vertex is singly symmetric. The singly symmetric
NFND degree-4 vertex exhibits symmetry only within plane 1 defined by creases 1 and 3.
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Isosceles triangular panels are selected as constituent panels in two categories of
NFND degree-4 vertices to form pyramid structures. As illustrated in Figure 3, the doubly
symmetric pyramid is presented when the geometric parameters of all isosceles triangular
panels are the same, i.e., α12 = α23 = α34 = α41 = β, lOC = lOD = lOE = lOF = R, and
lCD = lDE = lEF = lFC = b = 2R sin(β/2). The singly symmetric pyramid is composed of
two types of isosceles triangular panels, as shown in Figure 4. The first and fourth panels
are panel T1, and the second and third panels are panel T2. The geometric parameters of the
singly symmetric pyramid are α12 = α23 = β, α34 = α41 = γ, lOC = lOD = lOE = lOF = R,
lCD = lDE = b1 = 2R sin(β/2), and lEF = lFC = b2 = 2R sin(γ/2). The folding motion of
the pyramid is shown in Figure 5.
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of the doubly symmetric pyramid; (c) geometric parameters of the doubly symmetric pyramid.
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Figure 5. The folding motion of the pyramid structure.

To present the SOTC, we remove specific sections of the four panels from the two types
of pyramid structures. The removed sections are four isosceles triangular panels with the
same length of sides, i.e., lOC′ = lOD′ = lOE′ = lOF′ = r. The initial constituent panels are
transformed into isosceles trapezoidal panels. Doubly symmetric and singly symmetric
SOTCs are shown in Figure 6. During the folding motion, upper points C, D, E, and F
always move on a sphere with radius R1, and lower points C’, D’, E’, and F’ always move
on a sphere with radius R2 = R1−r.
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2.2. Construction of Deployable Origami Modules

To achieve the modular design of deployable structures, origami modules are proposed
through the combination of SOTCs using a kind of linking unit (LU). In the linking unit,
two components, C1 and C2, are connected by one rotational joint. The component is
constructed by rigidly connecting several isosceles trapezoidal panels. The number of
isosceles trapezoidal panels in C1 and C2 is determined by the number and combination of
SOTCs. Considering the requirements for combination, each component can be individually
customized in design. With this design principle as a foundation, the design of a wide
range of LUs can be realized.

Figure 7 illustrates three types of linking units: LU1, LU2, and LU3. As shown in
Figure 7a, during the motion process, there are four distinct regions between two com-
ponents in LU1. Due to the constraint between the components of LU1, the range of the
folding angle is limited to [0, π]. There are six regions between two components in LU2,
as indicated in Figure 7b. Similarly, the constraint between the components of LU2 limits
the range of the folding angle to the interval [0, 2π/3]. In LU3, eight regions are formed
between the two components in Figure 7c. Likewise, for LU3, the range of folding angle
is [0, π/2] due to the constraint between its components. All the formed regions can be
connected to the basic cells to create novel modules.
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SOTCs are assembled by the linking unit. The panels of SOTCs connected by the
same component of the LU always maintain synchronized motion throughout the entire
motion process.

As depicted in Figure 8, it is possible to construct two deployable origami modules
using LU1. One module, called OM1_L1, is designed by assembling two SOTCs. In
OM1_L1, the folding angle of the shared crease in the first cell and the second cell remains
consistent. Additionally, assembling four SOTCs allows for the creation of another origami
module, referred to as OM1_L2. The folding angle of the shared crease in the first cell and
the second cell remains equal to each other, as does the folding angle in the third cell and
the fourth cell. Moreover, the folding angle of the shared crease in the first cell and the
third cell are always complementary to each other, as are the angles of the shared crease in
the second cell and the fourth cell.
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Figure 8. Deployable origami modules constructed by LU1: (a) OM1_L1; (b) OM1_L2. 1–4 represent
the numbering of SOTCs.

As shown in Figure 9, LU2 is used to assemble three SOTCs, resulting in the origami
module OM3. The folding angle of the shared crease remains consistent across the three
SOTCs and falls within the interval of [π/3, π]. LU3 is utilized to assemble four SOTCs,
creating the origami module OM4. The folding angle of the shared crease remains consistent
across the four SOTCs, and it ranges from π/2 to π.
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Figure 9. Deployable origami modules constructed by LU2 and LU3: (a) OM3; (b) OM4. 1–4 represent
the numbering of SOTCs.

2.3. Mobility Analysis Using Constraint Screws
2.3.1. Mobility of the SOTC

As illustrated in Figure 10, the axes of the SOTC’s four creases intersect at a common
point O. The panels of the SOTC are described as P1i, i = 1, 2, . . . 4. In rigid origami, the
creases and panels can be treated as revolute joints and linkages [34]. The equivalent kine-
matic mechanism of the SOTC is a spherical 4R linkage. The topology of this mechanism is
a closed single-loop chain. S1, S2, S3, and S4 are the twists of the four creases of the SOTC.
To analyze the mobility of this linkage, the coordinate frame attached at point O is set as the
global frame. The z-axis is along the axis of S1, and the y-axis is perpendicular to the z-axis
and coplanar with the axis of S3. The x-axis is determined using the right-handed rule.
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nism; (c) topology diagram.

The motion screws of the SOTC’s equivalent mechanism, expressed in the global
frame, are represented as follows:

S1 =
[

0 0 1 0 0 0
]T

S2 =
[

x2 y2 z2 0 0 0
]T

S3 =
[

x3 y3 z3 0 0 0
]T

S4 =
[

x4 y4 z4 0 0 0
]T

(1)

Based on the screw theory, it can be concluded that there are three constraint screws in
the SOTC. They can be expressed as follows:

Sr
1 =

[
1 0 0 0 0 0

]T

Sr
2 =

[
0 1 0 0 0 0

]T

Sr
3 =

[
0 0 1 0 0 0

]T
(2)

According to the modified Kutzbach–Grübler mobility formula [35], the degree of
freedom is calculated as follows:

DoF = d(n − g − 1) +
g

∑
i=1

fi + ν − ζ (3)

where DoF is the degree of freedom of mechanism, d is the rank of the mechanism, n
represents the number of links in the mechanism, g represents the number of joints, fi is
the degree of freedom of the i-th crease, ν is the number of redundant constraints, and ζ
represents the local degree of freedom.

According to Equations (2) and (3), the rank of the mechanism is d = 6 − 3 = 3. Based
on the given information of having four links and four joints and no redundant constraints
or local mobility, the degree of freedom of SOTC is calculated as follows:

DoF = 3(4 − 4 − 1) + 4 + 0 − 0 = 1 (4)

This means that the SOTC has only one degree of freedom.
The constraint screws indicate that forces along the x-axis restrict movement in that

direction, while forces along the y-axis and z-axis limit movement accordingly in those
respective directions. Therefore, the SOTC has only one rotational degree of freedom
around an axis passing through the center of the sphere. The endpoints C, D, E, and F
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on the SOTC move on the surface of the outer sphere with a radius of R1. Similarly, the
points C’, D’, E’, and F’ on the SOTC move on the surface of the inner sphere with a radius
of R2. The variation in distances between points on the cell enables the SOTC to have the
functionality of contraction and expansion while maintaining a constant curvature.

2.3.2. Mobility Analysis of Deployable Origami Modules

As shown in Figure 11, OM1_L1 is a multi-closed-loop mechanism. There are seven
motion screws in OM1_L1. The motion screws of OM1_L1, expressed in the global frame,
is represented as follows: 

S11 =
[

0 0 1 0 0 0
]T

S12 =
[

x2 y2 z2 0 0 0
]T

S13 =
[

x3 y3 z3 0 0 0
]T

S14 =
[

x4 y4 z4 0 0 0
]T

S22 =
[

x5 y5 z5 0 0 0
]T

S23 =
[

x6 y6 z6 0 0 0
]T

S24 =
[

x7 y7 z7 0 0 0
]T

(5)

Actuators 2024, 13, 156 9 of 19 
 

 

S11

P14

P11

S12

S13

S14 S22

S23

S24

O

x

y

z

P21

P22

P23

P24

S11

P13 P22

P12 P23

S23

S24

S22

S13

S12 S14

P11

P14

P12

P13 (P21)

(P24)

 

(a) (b) 

Figure 11. Mobility analysis of OM1_L1: (a) model of OM1_L1; (b) topology diagram. 

The rank of OM1_L1 is d = 6 − 3 = 3. Based on the information of having six links and 

seven joints and no redundant constraints or local mobility, the degree of freedom of 

OM1_L1 is calculated as follows: 

( )= − − −3 6 7 1 +7 + 0 0 = 1DoF   (7) 

It is evident that the constraint screw system of OM1_L1, comprising two combined 

SOTCs, is identical to that of a single SOTC. They possess the same degree of freedom, 

exhibiting the same spherical motion. Consequently, if more OM1_L1s are assembled by 

LU1, the proposed deployable origami structures retain a single degree of freedom. 

Similarly, the mobility analysis of OM1_L2, OM3, and OM4 are presented. The con-

straint screw systems of OM1_L2, OM3, and OM4 are identical to that of OM1_L1. The 

rank of OM1_L2, OM3, and OM4 is d = 6 − 3 = 3. In Figure 12, there are 10 links and 13 

joints and no redundant constraints or local mobility. The degree of freedom of OM1_L2 

is calculated as follows: 

( )= − − −3 10 13 1 +13+ 0 0 = 1DoF   (8) 

S11

P23

P14 P13

P11

P22

P32

P31

P12

P44

P43

S12

S13

S14 S22

S41

S44

S43S31

S32

S33

S23

S24

S12

S13

S14

S22

S23

S24

S44

O

x

y

z
S11

P14

P11

P23
P22

P32

P31

P43

P44

P12

P13

S31
S41

S43

S33

S32

P21 P24

(P21,P33,P41)

(P24,P34,P42)

 

(a) (b) 

Figure 12. Mobility analysis of OM1_L2: (a) model of OM1_L2; (b) topology diagram. 

Figure 11. Mobility analysis of OM1_L1: (a) model of OM1_L1; (b) topology diagram.

There are three constraint screws as follows:
Sr

1 =
[

1 0 0 0 0 0
]T

Sr
2 =

[
0 1 0 0 0 0

]T

Sr
3 =

[
0 0 1 0 0 0

]T
(6)

The rank of OM1_L1 is d = 6 − 3 = 3. Based on the information of having six links
and seven joints and no redundant constraints or local mobility, the degree of freedom of
OM1_L1 is calculated as follows:

DoF = 3(6 − 7 − 1) + 7 + 0 − 0 = 1 (7)

It is evident that the constraint screw system of OM1_L1, comprising two combined
SOTCs, is identical to that of a single SOTC. They possess the same degree of freedom,
exhibiting the same spherical motion. Consequently, if more OM1_L1s are assembled by
LU1, the proposed deployable origami structures retain a single degree of freedom.
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Similarly, the mobility analysis of OM1_L2, OM3, and OM4 are presented. The
constraint screw systems of OM1_L2, OM3, and OM4 are identical to that of OM1_L1. The
rank of OM1_L2, OM3, and OM4 is d = 6 − 3 = 3. In Figure 12, there are 10 links and
13 joints and no redundant constraints or local mobility. The degree of freedom of OM1_L2
is calculated as follows:

DoF = 3(10 − 13 − 1) + 13 + 0 − 0 = 1 (8)
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In Figure 13a, there are eight links and ten joints and no redundant constraints or local
mobility. The degree of freedom of OM3 is calculated as follows:

DoF = 3(8 − 10 − 1) + 10 + 0 − 0 = 1 (9)
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3. Kinematic Analysis and Geometry of SOTCs 

To facilitate the design of various deployable structures, the kinematics of SOTCs are 

analyzed. The relationships between the folding angles of two SOTCs are derived, allow-

ing for a description of the geometry of these SOTCs based on their respective folding 

angles. 
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The kinematic input–output equation of the doubly symmetric SOTC is 
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=3 31 1 2 2 4 4

ˆˆ ˆ ˆ
e e e eSS S S I   (11) 

where 
i  is the folding angle of the i-th crease, and I  is the unit matrix. 

Substituting Equation (10) into Equation (11), the following equations are obtained: 
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Figure 13. Topology diagrams of (a) OM3; (b) OM4.

In Figure 13b, the topology diagram of OM4 is similar to that of OM1_L2. The degree
of freedom of OM4 is 1.

3. Kinematic Analysis and Geometry of SOTCs

To facilitate the design of various deployable structures, the kinematics of SOTCs are
analyzed. The relationships between the folding angles of two SOTCs are derived, allowing
for a description of the geometry of these SOTCs based on their respective folding angles.
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3.1. The Explicit Solutions to Input–Output Equations of SOTC

The equivalent mechanism of the SOTC is utilized for kinematic analysis. The twist
system of the SOTC is proposed using Equation (1). In the doubly symmetric, it is expressed
as follows: 

S1 = [1 0 0 0 0 0]T

S2 = [cos β sin β 0 0 0 0]T

S3 = [cos(2β) sin(2β) 0 0 0 0]T

S4 = [cos β sin β 0 0 0 0]T

(10)

The kinematic input–output equation of the doubly symmetric SOTC is

eθ1Ŝ1 eθ2Ŝ2 eθ3Ŝ3 eθ4Ŝ4 = I (11)

where θi is the folding angle of the i-th crease, and I is the unit matrix.
Substituting Equation (10) into Equation (11), the following equations are obtained:{

θ1 = θ3, θ2 = θ4

tan(θ1/2) = cos β
tan(θ2/2)

(12)

The range of folding angles of four creases in the doubly symmetric SOTC is [0,π].
The relationships between folding angles in the singly symmetric SOTC are given

as follows: 
θ2 = θ4
θ1 = 2arctan((sin β cot γ + cos β cos θ2)/ sin θ2)
θ3 = 2arctan((sin γ cot β + cos γ cos θ2)/ sin θ2)
θ1 = 2arccos(sin γ cos(θ3/2)/ sin β)

(13)

When β > γ, it is deduced that θ3 ∈ [0,π], θ1 ∈ [2arccos(sin γ/ sin β),π], θ2, and θ4
cannot be equal to π. The singly symmetric SOTC achieves a stable configuration when
θ3 = 0, as indicated in Figure 14. The two panels are flat, and θ1 reaches the minimum.
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Figure 14. The stable configuration of the singly symmetric SOTC.

3.2. Geometry of SOTCs
3.2.1. Geometry of Doubly Symmetric SOTC

The doubly symmetric SOTC is composed of four identical isosceles trapezoid panels,
as shown in Figure 15a. The geometric parameters of the isosceles trapezoid panel are
a, b, and β. The kinematic parameters are input θ3 and output θ2. With three geometric
parameters and two kinematic parameters, the configuration of the doubly symmetric
SOTC is completely determined. In Figure 15b, two edge angles, φ1 and φ2, now exist,
which are related to the folding angles θ2 and θ3. The following three relationships are
established between folding and edge angles [36]:

cos
φ1

2
cos

φ2

2
= cos β (14)

cos φ1 = − sin2 β cos θ2 + cos2 β (15)

cos φ2 = − sin2 β cos θ3 + cos2 β (16)
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Figure 15. The geometry of the doubly symmetric SOTC: (a) the geometric parameters of isosceles
trapezoid panels; (b) the coordinate of doubly symmetric SOTC.

As shown in Figure 15, the radii of the singly symmetric SOTC’s motion trajectories
are as follows:

R1 = b/2 sin(β/2)
R2 = a/2 sin(β/2)

(17)

The coordinates of each point of doubly symmetric SOTC are expressed as follows:
C =

[
x11 y11 z11

]
, C′ =

[
x21 y21 z21

]
D =

[
x12 y12 z12

]
, D′ =

[
x22 y22 z22

]
E =

[
x13 y13 z13

]
, E′ =

[
x23 y23 z23

]
F =

[
x14 y14 z14

]
, F′ =

[
x24 y24 z24

] (18)

It is derived that

x11 = −R1 sin φ2
2 , x13 = −x11, y11 = y13 = R1 cos φ2

2 sin φ1
2 , z11 = z13 = R1 cos φ2

2 cos φ1
2

x12 = 0, y12 = 0, z12 = R1
x14 = 0, y14 = R1 sin φ1, z14 = R1 cos φ1
x21 = −R2 sin φ2

2 , x23 = −x21, y21 = y23 = R2 cos φ2
2 sin φ1

2 , z21 = z23 = R2 cos φ2
2 cos φ1

2
x22 = 0, y22 = 0, z22 = R2
x24 = 0, y24 = R2 sin φ1, z24 = R2 cos φ1

(19)

3.2.2. Geometry of Singly Symmetric Origami Tubular Cell

The singly symmetric SOTC is composed of two types of isosceles trapezoid panels, as
shown in Figure 16a. The geometric parameters of the first isosceles trapezoid panel are a1,
b1, and β. The geometric parameters of the second isosceles trapezoid panel are a2, b2, and
γ. To ensure that points C, D, E, and F move on a sphere with a radius of R1, and points C’,
D’, E’, and F’ move on a sphere with a radius of R2, the geometric parameters of two types
of panels need to satisfy the following relationship:

b1 − a1

2 sin(β/2)
=

b2 − a2

2 sin(γ/2)
= R1 − R2 (20)
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Figure 16. The geometry of the singly symmetric SOTC: (a) the geometric parameters of two types of
isosceles trapezoid panels; (b) the coordinate of doubly symmetric SOTC.

With geometric parameters a1, b1, β, and γ; input folding angle θ3; and output folding
angle θ2, the configuration of the singly symmetric SOTC is completely determined. As
shown in Figure 16b, two edge angles, φ1 and φ2, now exist, which are related to the
folding angles θ2 and θ3. The following relationships are established between folding and
edge angles: 

cos(φ11/2) cos(φ2/2) = cos β
cos(φ21/2) cos(φ2/2) = cos γ
φ1 = φ11 + φ21

(21)

cos φ2 = − sin2 β cos θ3 + cos2 β (22)

As depicted in Figure 16, the radii of the motion trajectories are as follows:

R1 = b1/2 sin(β/2)
R2 = a1/2 sin(β/2)

(23)

The coordinates of four points of the singly symmetric SOTC are described in
Equation (18). It is derived that

x11 = −R1 sin φ2
2 , x13 = −x11, y11 = y13 = R1 cos φ2

2 sin φ11
2 , z11 = z13 = R1 cos φ2

2 cos φ11
2

x12 = 0, y12 = 0, z12 = R1
x14 = 0, y14 = R1 sin φ1, z14 = R1 cos φ1
x21 = −R2 sin φ2

2 , x23 = −x21, y21 = y23 = R2 cos φ2
2 sin φ11

2 , z21 = z23 = R2 cos φ2
2 cos φ11

2
x22 = 0, y22 = 0, z22 = R2
x24 = 0, y24 = R2 sin φ1, z24 = R2 cos φ1

(24)

Based on the kinematics and geometry of SOTCs, it is known that the upper and lower
endpoints of SOTCs are capable of moving along two spherical surfaces that share the same
center. The radii of two spheres are determined using the geometric parameters of the
constituent panels. According to the provided coordinates, constructions and simulations
can be carried out for a variety of deployable structures in any desired configuration.

4. Case Studies for Deployable Structures in Spherical Actuators

In this section, four cases for deployable structures in spherical actuators are presented.
Deployable structures are designed based on four deployable origami modules. The
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designed deployable structures can expand and contract to form a sphere while maintaining
a consistent radius. The feasibility of creating spherical structures with constant curvature
based on SOTC is validated.

4.1. Case 1

As illustrated in Figure 17, doubly symmetric SOTCs are assembled into OM1_L1
first. OM1_L1 is always symmetric about the xoz and yoz planes. Assuming the geometric
parameters of the isosceles trapezoid panels in the doubly symmetric SOTC are as follows:
a = 80, b = 100, and β = π/9. A monolayer spherical deployable origami structure is
constructed using twelve doubly symmetric SOTCs, named MSDOS. It is proven that the
motion trajectory of the upper endpoints of this spherical deployable origami structure on
the yoz plane forms a circle with a constant radius, R1 = 287.94. The edge angle φ1 of each
SOTC is π/6 when two sides of the structure touch each other at the bottom in state (IV), as
shown in Figure 17. According to Equations (14)–(16), the kinematic parameters in each
SOTC are determined as θ1 = θ3 = 1.655 and θ2 = θ4 = 1.425. Moreover, this structure
exhibits versatility in its applications. Not only can it function as an actuator, but it can also
be integrated as a crucial component in the assembly of more intricate actuator systems.
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The motion trajectory of the upper endpoints of this BSDOS on the yoz plane also 

forms a circle with a constant radius, R1 = 287.94. The edge angle 
1  of the first and second 

Figure 17. Simulation of monolayer spherical deployable origami structure. (I) is the folded config-
uration of structure. (II,III) are the partially folded configuration of structure. (IV) is the desired
configuration of structure with two sides of the structure touch each other at the bottom.

4.2. Case 2

To enhance the stability of the deployable origami structure, we propose the combi-
nation of OM1_L2s to develop a bilayer spherical deployable origami structure, named
BSDOS, as shown in Figure 18. The BSDOS is composed of 28 identical doubly symmetric
SOTCs. The geometric parameters of the SOTCs in the BSDOS are the same as those of
the MSDOS. OM1_L2 is always symmetric about the xoz and yoz planes, as illustrated in
Figure 8b. The kinematic parameters of the first and second cells are always identical, as
well as the kinematic parameters of the third and fourth cells. The folding angle of the
j-th crease in the i-th cell of OM1_L2 is denoted as θij (i = 1, 2, . . . , 4; j = 1, 2, . . . , 4). The
relationship between the folding angles of four SOTCs in OM1_L2 can be represented
as follows: 

θ11 = θ13 = θ21 = θ23
θ12 = θ14 = θ22 = θ24
θ31 = θ33 = θ41 = θ43
θ32 = θ34 = θ42 = θ44
θ13= π− θ32
θ21= π− θ44

(25)
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To improve the folding ratio of SDOS3 and minimize its volume when folded, we can 

construct OM3 by connecting three singly symmetric SOTCs. This OM3 can be further 

assembled with three monolayer spherical deployable origami structures, resulting in the 

Figure 18. Simulation of bilayer spherical deployable origami structure. (I) is the folded configuration
of structure. (II,III) are the partially folded configuration of structure. (IV) is the desired configuration
of structure with two sides of the structure touch each other at the bottom.

The motion trajectory of the upper endpoints of this BSDOS on the yoz plane also forms
a circle with a constant radius, R1 = 287.94. The edge angle φ1 of the first and second cells in
each OM1_L2 is π/5 when two sides of the BSDOS touch each other at the bottom in state
(IV), as shown in Figure 18. According to Equations (14)–(16), the kinematic parameters in
each SOTC are determined as θ11 = θ13 = θ21 = θ23 = 2.207, θ12 = θ14 = θ22 = θ24 = 0.886,
θ31 = θ33 = θ41 = θ43 = 2.156, and θ32 = θ34 = θ42 = θ44 = 0.935.

The enveloping surface of this structure is larger compared to the MSDOS. This
increased size enables the deployable origami structures to cover a larger area or volume,
providing more space for deployment and functionality. By expanding the enveloping
surface, the bilayer spherical deployable origami structure can be utilized as an actuator to
accommodate larger objects or incorporate additional components within its structure.

4.3. Case 3

Based on OM3, a spherical deployable origami structure with three branches is pro-
posed, named SDOS3. With the increase in the folding angles θ1 and θ3, SDOS3 can be
deployed to approximate a spherical shape. If SDOS3 is constructed by the same doubly
symmetric SOTCs with geometric parameters a = 80, b = 100, and β = π/9, each branch
of this SDOS3 maintains a consistent curvature while unfolding and folding, ensuring
predictable deployment on a sphere with a fixed radius R1 = 287.94.

Because of the shape of LU2’s components, the range of dihedral angles ρL between
two components is [0, 2π/3]. When ρL reaches its maximum, the branches of SDOS3 cannot
be folded compactly. As depicted in Figure 19. The SDOS3 comprised by the same doubly
symmetric SOTCs is a stable structure when θ1 = π− ρL= π/3.
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To improve the folding ratio of SDOS3 and minimize its volume when folded, we can
construct OM3 by connecting three singly symmetric SOTCs. This OM3 can be further
assembled with three monolayer spherical deployable origami structures, resulting in the
creation of SDOS3 with a high folding ratio. There are one singly symmetric SOTC and
five doubly symmetric SOTCs in each branch. The parameters of singly symmetric SOTCs
are derived based on Equations (20) and (23). Let the geometric parameters of SDOS3 be
a1 = 105.66, b1 = 132.08, β = 0.463, a2 = 80, b2 = 100, and γ = π/9, its kinematic simulation is
illustrated in Figure 20. The edge angle φ1 of singly symmetric SOTC is the sum of φ11 and
φ21. The edge angle φ1 of doubly symmetric SOTC is equal to 2φ21. The angles φ11 and φ21
satisfy φ11 + 11φ21 = π when three branches of the structure touch each other at the bottom
in state (IV), as shown in Figure 20. The kinematic parameters in singly symmetric SOTC
are determined as θ11 = 2.354, θ13 = 1.994, θ12 = θ14 = 0.895. The kinematic parameters
in each doubly symmetric SOTC are θ21 = θ23 = 1.994 and θ22 = θ24 = 1.092. The ability
of SDOS3 to deploy and collapse along a spherical surface enables accurate movements,
offering the potential for diverse applications in spherical actuators.
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Figure 20. The simulation of SDOS3 (Supplementary Materials) comprising singly symmetric SOTCs
and MSDOS. (I) is the folded configuration of structure. (II,III) are the partially folded configuration
of structure. (IV) is the desired configuration of structure with three branches of the structure touch
each other at the bottom in state.

4.4. Case 4

In Figure 21, a spherical deployable origami structure with four branches is proposed,
named SDOS4. OM4 is constructed by connecting four singly symmetric SOTCs at first.
OM4 is further assembled with four monolayer spherical deployable origami structures,
resulting in the creation of the SDOS4 with a high folding ratio. There are one singly
symmetric SOTC and four doubly symmetric SOTCs in each branch. With the increase in
the folding angles θ1 and θ3, SDOS4 can also be deployed to approximate a spherical shape.
In this SDOS4, a1 = 115.06, b1 = 143.83, β = 0.505, a2 = 80, b2 = 100, and γ = π/9. The angles
φ11 and φ21 satisfy φ11 + 9φ21 = π when four branches of the structure touch each other
at the bottom in state (IV), as shown in Figure 21. According to Equations (21) and (22),
the kinematic parameters in the singly symmetric SOTC are θ11 = 2.354, θ13 = 1.994,
and θ12 = θ14 = 0.895. The kinematic parameters in each doubly symmetric SOTC are
θ21 = θ23 = 1.994 and θ22 = θ24 = 1.092. SDOS4 is similar to SDOS3 and can be utilized in
the design of spherical actuators.

By designing individual linking units, it is possible to construct deployable origami
structures with numerous branches. These structures can be deployed with a consistent
curvature, making them suitable for creating intricate and adaptable origami-based struc-
tures. They have the ability to achieve specific movements to perform various tasks. The
proposed structures have the potential to be used in the design of spherical actuators.
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Figure 21. The simulation of SDOS4 comprising singly symmetric SOTCs and MSDOS. (I) is the
folded configuration of structure. (II,III) are the partially folded configuration of structure. (IV) is the
desired configuration of structure with four branches of the structure touch each other at the bottom
in state.

5. Conclusions

The design and analysis of a novel family of origami-based spherical deployable
structures were systematically investigated in this paper. A NFND degree-4 vertex was
introduced to satisfy the requirement of curve surface configurations with constant cur-
vature. Four isosceles triangular panels were used as constituent panels in two categories
of NFND degree-4 vertices to form pyramid structures. By removing specific sections
of these pyramid structures, doubly symmetric and singly symmetric SOTCs were pre-
sented. Three linking units were proposed to assemble SOTCs. Four cases of spherical
origami modules were introduced by assembling SOTCs using three linking units. The
mobility analysis of SOTCs and four origami modules was developed, showing that both
the SOTCs and the origami modules had a degree of freedom of one. It can be deduced
that the mobility of the proposed spherical deployable structures is one. The kinematic
and geometric analyses of doubly symmetric and singly symmetric SOTC were performed.
Based on the combination of multiple origami modules, the design of spherical structures
with consistent curvature was realized. Finally, four cases were presented for deployable
structures in spherical actuators. Monolayer and bilayer spherical deployable origami
structures were generated. Utilizing monolayer spherical deployable origami structures
and OM3 and OM4, two case studies were proposed, demonstrating spherical deployable
origami structures with varying numbers of branches. The unique ability of these SDOSs
to move along a spherical surface with a constant radius is a key characteristic that enables
them to effectively adapt to diverse application requirements, particularly in the design of
spherical actuators.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/act13040156/s1, Video S1: The simulation of MSDOS; Video S2: The
simulation of BSDOS; Video S3: The simulation of SDOS3; Video S4: The simulation of SDOS4.
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