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Abstract: Ocean wave energy is a new type of clean energy. To improve the power generation and
wave energy conversion efficiency of the direct-drive wave power generation system, by addressing
the issue of large output errors and poor system stability commonly associated with the currently
used PID (proportional, integral, and derivative) control methods, this paper proposes a maximum
power control method based on BP (back propagation) neural network PID control. Combined
with Kalman filtering, this method not only achieves maximum power tracking but also reduces
output ripple and tracking error, thereby enhancing the system’s control quality. This study uses a
permanent magnet linear generator as the power generation device, establishes a system dynamics
model, and predicts the main frequency of irregular waves through the Fast Fourier Transform
method. It designs a desired current tracking curve that meets the maximum power strategy. On
this basis, a comparative analysis of the control accuracy and stability of three control methods is
conducted. The simulation results show that the BP neural network PID control method improves
power generation and exhibits better accuracy and stability.

Keywords: BP neural network PID control; Kalman filtering; PMLG; maximum power

1. Introduction

Currently, oceans occupy 71% of the Earth’s surface area and contain vast reserves of
renewable energy [1]. Among these, wave energy in the ocean is a clean and pollution-free
renewable energy source. Compared to solar and wind energy, it has the advantages of
high energy density, wide distribution, and a large storage capacity, making it one of the
most readily exploitable and inexhaustible sources of renewable energy [2]. Therefore,
researching wave energy generation systems is of significant importance. For a long time,
China has been committed to the research of swing, oscillating water column, floating
body type, and small-scale wave power generation devices [3]. Generally, the conversion
of wave energy into electrical energy involves three stages of conversion. The first step of
capturing the kinetic and potential energy of waves and the last step of converting it into
electrical energy are roughly the same in existing power generation devices, differing in
the second-stage conversion device. Different devices lead to different forms of secondary
energy [4]. The direct-drive wave energy generation system can directly convert captured
wave energy into electrical energy, significantly reducing the complexity of design and
manufacturing costs [5]. Foreign scholar Henk Polinder [6] has studied and shown that
among different types of linear motors, permanent magnet linear motors have higher
efficiency and are more suitable for wave power generation systems.

When the generation system achieves resonance, the wave conversion device can
obtain the maximum wave energy. In [7], by adjusting the electromagnetic force of the
generator, the wave power generation system can achieve the resonance effect, so that the
coordinated dynamic relationship between the float and the wave can be formed. In [8],
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the dynamic equation of the wave device is equivalent to an RLC circuit, and the inverse
electromagnetic force parameters of the generator are controlled by the circuit resonance
principle to achieve resonance. In the control of wave power generation systems, traditional
PID control strategies are widely used due to their simple structure, such as in [9] where
traditional PID control methods are used to achieve maximum power control. However,
due to the nonlinear characteristics of wave power generation systems, PID control may
worsen system stability. The study in [10] uses equivalent sliding mode control to track
the reference current in real time and adds a robust control term to suppress disturbances,
which is effective and has strong robustness. However, sliding mode control itself has
chattering issues, and the output signal has large ripples. The study in [11] analyzes
unknown frequency excitation forces through Fast Fourier Transform (FFT), a common
method for signal main frequency prediction, identifying unknown frequency excitation
forces as a composition of sinusoidal waves of different amplitudes and frequencies. BP
neural networks have good adaptive capabilities, suitable for many nonlinear situations,
and neural network control can be combined with other control algorithms to improve
control performance [12]. Kalman filtering can perform online filtering of system states,
calculate optimal estimates in real time, and improve the tracking accuracy of signals. This
paper combines BP neural networks with traditional PID control algorithms, adjusting PID
parameters in real time during system operation to improve system performance.

This paper designs maximum power tracking control for a direct-drive wave power
generation system based on BP neural network PID control. Under regular wave excitation,
it analytically solves the buoy dynamics equation and the permanent magnet linear gener-
ator equation, starting from aspects like the back electromotive force of the generator to
derive the q-axis reference current, thereby achieving maximum power tracking control.
Under irregular wave excitation, it uses Fast Fourier Transform to analyze the irregular
excitation force, obtaining the different frequencies and amplitudes that constitute the irreg-
ular excitation force, and then uses the superposition principle to achieve maximum power
tracking control. This paper employs the BP neural network PID control method to track
the reference current and integrates Kalman filtering to reduce errors and improve capture
efficiency. It compares other control methods and combines space vector control to realize
the system’s model and verify its accuracy. The simulation results show that the proposed
scheme can reduce current tracking errors and improve the system’s output power.

2. Direct-Drive Wave Power Generation System’s Working Principle

The structure of the conversion device in a direct-drive wave power generation system
mainly consists of a floater and a permanent magnet linear generator. The floater captures
wave energy, driving the mover of the permanent magnet linear generator to perform
reciprocating linear motion. This motion induces an electromotive force (EMF) as the coils
cut through the magnetic flux lines, converting mechanical energy into electrical energy.
The induced EMF is then rectified through a rectification circuit for use, storage, etc. [13]. A
schematic diagram of the direct-drive wave power generation system is shown in Figure 1.
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Figure 1. Principle diagram of direct-drive wave power system. 
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Figure 1. Principle diagram of direct-drive wave power system.

2.1. Dynamics Model of Power Generation Device

Under regular waves (this is a simplification of the modeling of an irregular wave
environment), the floater moves reciprocally in the vertical direction, driving the generator’s
mover to move along with it. Thus, the motion of the mover in the vertical direction can
be simplified for analysis [14]. This paper simplifies the analysis of the floater’s motion
characteristics. Based on the small-amplitude wave theory and Newton’s second law, the
motion equation of the power generation device’s mover can be obtained as follows:

M
..
x = Fl + Fr + Fb + Fe − G (1)

where M represents the total mass of the moving parts;
..
x is the vertical acceleration of the

moving parts; Fl is the wave excitation force; Fr is the radiation force on the floater by the
waves; Fb is the buoyancy of the floater in the waves; Fe is the electromagnetic force from
the generator; G is the weight of the system.

Under regular waves, the wave excitation force can be simplified as a sine function in
the vertical direction with frequency “ω”, expressed as follows:

Fl = Fm· sin ωt (2)

where Fm is the amplitude of the wave excitation force; ω is the wave frequency.
Through theoretical analysis of Equation (1), the dynamics equation of the power

generation device under regular wave excitation force can be obtained as follows [15]:

(M + m)
..
x + R1

.
x + K1x = Fl + Fe (3)

where m is the added mass from the radiation force; R1 is the damping coefficient produced
by the radiation force; K1 is the buoyancy coefficient.

2.2. Mathematical Model of the Permanent Magnet Linear Generator

The mover of the permanent magnet linear generator performs reciprocating motion
under the drive of the floater, generating an induced electromotive force (EMF) as the coils
cut through the magnetic flux lines [16].



Actuators 2024, 13, 159 4 of 16

The voltage equation of the permanent magnet linear generator in the dq coordinate
system is as follows [17]: {

Ud = −rid − Ld
did
dt + ωmLdiq + Ed

Uq = −riq − Lq
diq
dt − ωmLqid + Eq

(4)

where Ud and Uq are the stator dq-axis voltages; id and iq are the stator dq-axis currents; Ld
and Lq are the stator dq-axis inductances; Ed and Eq are the stator dq-axis electromotive
forces; ωm is the electrical angular velocity of the motor; Ld = Lq = Ls, Ls is the stator
inductance; r is the stator resistance.

The relationship of the dq-axis electromotive forces is given by the following:{
Ed = 0

Eq = ωm φ f
(5)

where φ f is the magnetic flux linkage of the permanent magnet.
Since the permanent magnet linear generator can be regarded as an unrolled version

of a rotary motor, the velocity of the linear generator’s mover can be converted to the rotary
motor’s rotational speed [18], with the relationship given by the following:

ωm =
n·π

τ
v (6)

where n is the number of pole pairs of the motor; τ is the pole pitch of the motor; v is the
velocity of the mover.

Combining Equations (4)–(6), the mathematical model of the permanent magnet linear
generator can be derived as follows:{

Ud = −rid − Ld
did
dt + n·π

τ vLdiq

Uq = −riq − Lq
diq
dt − n·π

τ vLqid + ωm φ f
(7)

Additionally, the back electromotive force equation of the generator is expressed as
follows [19]:

Fe = −3π·n
2τ

[
φ f iq −

(
Lq − Ld

)
idiq

]
(8)

3. Power Tracking Control Strategy
3.1. Regular Wave Analysis

The electromagnetic force can also be expressed as follows [20]:

Fe = −R2
.
x (9)

where R2 is the equivalent damping coefficient.
Combining Equation (9) with Equation (3), we obtain the following:

(M + m)
..
x + (R1 + R2)

.
x + K1x = Fl (10)

Equation (10) can be regarded as an RLC equivalent circuit, as shown in Figure 2,
where Fl can be considered the power source and

.
x can be considered the current. This

allows the problem of obtaining maximum power to be transformed into finding the
maximum power across resistance R2. According to basic circuit principles, the power
across resistance R2 is calculated as follows:

Pe =
Fl

2R2

(R1 + R2)
2 +

[
ω(M + m)− K1

ω

]2 (11)
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In the equation, only R2 is variable. Deriving Pe for maximum power, the condition
for R2 to achieve maximum value is as follows:

R2 =

√
R1

2 +

[
ω(M + m)− K1

ω

]2
(12)
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When R2 is set according to the condition in Equation (12), the wave power generation
system can capture the maximum energy. Combining Equations (8) and (9), the q-axis
reference current value under maximum power can be obtained as follows:

iqre f =
2τ

3π·nφ f
R2

.
x (13)

Therefore, by tracking the q-axis current and controlling the back electromotive force,
the maximum wave energy can be obtained [21].

3.2. Irregular Wave Analysis

Under sinusoidal regular waves, maximum power tracking control can be achieved
using the control strategy mentioned above. However, in reality, waves are of an irregular
waveform. An irregular waveform can be considered a superposition of an unknown,
infinitely long sine and cosine signal with a disturbance signal. Therefore, irregular wave-
forms can undergo mathematical analysis, breaking them down into irregular signals
composed of sine signals of different amplitudes and frequencies. The FFT method can an-
alyze the amplitude and frequency of irregular waveforms. Based on the maximum power
control strategy for regular waves and the principle of superposition [22], the maximum
power control conditions for irregular waves can be implemented. The excitation force of
irregular waves is shown in Equation (14).

Frand = F1 sin(ω1t + φ1) + F2 sin(ω2t + φ2) + F3 sin(ω3t + φn) + · · ·+ randn(t) (14)

Combining Equation (10) with Equation (14), we can obtain the following:
(M + m)

..
x1 +

(
R1 + R2

1
) .

x1 + K1x1 = Fl
1

(M + m)
..
x2 +

(
R1 + R2

2
) .

x2 + K1x2 = Fl
2

...
(M + m)

..
xn + (R1 + R2

n)
.
xn + K1xn = Fl

n

(15)
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The condition for maximum power tracking is as follows:

Fe = −R2
1 .
x1 − R2

2 .
x2 − · · · R2

n .
xn (16)

By combining Equations (8) and (16), the q-axis tracking current required under
maximum power can be obtained, as shown in Equation (17).

iqre f =
2τ

3π•nφ f

(
R2

1 .
x1 + R2

2 .
x2 + · · · R2

n .
xn

)
(17)

4. Controller Analysis and Design
4.1. BP Neural Network Controller Design

In actual ocean waves, due to changes in wave conditions and parameters, the system’s
performance can be affected. By combining the BP neural network control algorithm with
the PID controller for application in the system, the BP neural network can adjust the
parameters of the PID controller according to the operating state of the system, stabilizing
the output power of the generation system and improving the accuracy of signal tracking.

The BP neural network PID controller utilizes the powerful self-learning capability of
the BP neural network to adjust the PID control parameters in real time online based on the
operating state of the controlled system [23], achieving adaptive control of the controlled
object.

The structure of the BP neural network primarily consists of an input layer, hidden
layers, and an output layer, adopting a 3-5-3 structure, as shown in Figure 3.
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The input to the neural network’s input layer is as follows:{
Oi

(1)(k) = x(i) i = 1, 2, 3
x(i) =

[
iqre f , iq, eq

] (18)

Oi
(1)(k) is the input to the neural network’s input layer; eq is the tracking error.

The inputs and outputs of the hidden layer are as follows: net(2)i (k) =
3
∑
i

w(2)
ji O(1)

i (k) j = 1, 2, ∼, 5

O(2)
j (k) = f

[
net(2)j (k)

] (19)

net(2)i (k) is the input of the hidden layer, w(2)
ji represents the weights from the input

layer to the hidden layer, and O(2)
j (k) is the output of the hidden layer.
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The output of the output layer is as follows:
net(3)l (k) =

5
∑
j

w(3)
l j O(2)

j (k) l = 1, 2, 3

O(3)
l (k) = g

[
net(3)l (k)

]
O(3)

l (k) = [∆KP, ∆KI , ∆KD]

(20)

w(3)
l j represents the weights from the hidden layer to the output layer, and O(3)

l (k) is
the output of the output layer.

Combining the BP neural network algorithm with the PID control algorithm, its
structure diagram is as shown in Figure 4.

Actuators 2024, 13, x FOR PEER REVIEW 7 of 17 
 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )


= =


  =

 


3

2 2 1

2 2

 1, 2, ~, 5
i ji i

i

j j

net k w O k j

O k f net k

 (19) 

( ) ( )2

i
net k  is the input of the hidden layer, 

( )2

ji
w  represents the weights from the in-

put layer to the hidden layer, and 
( ) ( )2

j
O k  is the output of the hidden layer. 

The output of the output layer is as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )


= =


  =  

 =     




5

3 3 2

3 3

3

 1, 2, 3

 

, ,

l lj j
j

l l

l P I D

net k w O k l

O k g net k

O k K K K

 (20) 

( )3

lj
w  represents the weights from the hidden layer to the output layer, and ( ) ( )3

l
O k  

is the output of the output layer. 

Combining the BP neural network algorithm with the PID control algorithm, its 

structure diagram is as shown in Figure 4. 

BP neural network

PID controller Control object
iqref +

 

P
D

iqUqeq

I

 

Figure 4. Structure diagram of BP neural network PID controller. 

The workflow of the BP neural network PID controller is shown in Figure 5. 

Figure 4. Structure diagram of BP neural network PID controller.

The workflow of the BP neural network PID controller is shown in Figure 5.
Actuators 2024, 13, x FOR PEER REVIEW 8 of 17 
 

 

The initial value of weights is 

given and the learning rate and 

inertia coefficient are determined

Adjust the weights

Get given input

The variation of PID 

parameters is calculated by 

neural network

Determine the number of input layer 

and hidden layer nodes

Whether the error 

meets the requirements

Calculate PID controller output

Yes

No

 

Figure 5. Controller flow chart. 

4.2. Kalman Filter Design 

The Kalman filter is an optimal estimation algorithm that can calculate the optimal 

estimation in real time of system states, using the state space method to design filters in 

the time domain [24]. Due to the ripple generated by the operation of the thyristor 

switches in the system rectifier, which significantly affects the accuracy of signal tracking, 

the Kalman filter is introduced. It can provide optimal estimates for the system, thereby 

improving the control effect of the motor. 

The design of the Kalman filter can be divided into two steps: prediction and update. 

Prediction is based on the posterior estimate of the previous moment to estimate the cur-

rent state, obtaining the prior estimate for the current moment. Update uses the current 

measurement to update the estimated value from the prediction phase, obtaining the pos-

terior estimate for the current moment. According to Equation (7), the Kalman filter for-

mula is as shown in Equation (21): 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

−

  − = − + − + 
  − = − − + − − +

 
  = − − +  


 = − + − −
 


  = − − 

1

1 1 1

1 1 1 1 1

1 1

1 1

1

T

T T

X k k X k T FX k BU k

P k k P k k TF P k k T Q

K k P k k H HP k k H R

X k k X k k K k Y k Y k k

P k k I K k H P k k

 (21) 

Figure 5. Controller flow chart.



Actuators 2024, 13, 159 8 of 16

4.2. Kalman Filter Design

The Kalman filter is an optimal estimation algorithm that can calculate the optimal
estimation in real time of system states, using the state space method to design filters in the
time domain [24]. Due to the ripple generated by the operation of the thyristor switches in
the system rectifier, which significantly affects the accuracy of signal tracking, the Kalman
filter is introduced. It can provide optimal estimates for the system, thereby improving the
control effect of the motor.

The design of the Kalman filter can be divided into two steps: prediction and update.
Prediction is based on the posterior estimate of the previous moment to estimate the
current state, obtaining the prior estimate for the current moment. Update uses the current
measurement to update the estimated value from the prediction phase, obtaining the
posterior estimate for the current moment. According to Equation (7), the Kalman filter
formula is as shown in Equation (21):

X(k|k − 1 ) = X(k − 1) + T[FX(k − 1) + BU(k)]
P(k|k − 1 ) = P(k − 1|k − 1 ) + TF[P(k − 1|k − 1 )]TT + Q
K(k) = P(k|k − 1 )HT[HP(k|k − 1 )HT + R

]−1

X(k|k ) = X(k|k − 1 ) + K(k)[Y(k)− Y(k|k − 1 )]
P(k|k ) = [I − K(k)H]P(k|k − 1 )

(21)

where X =
[
id, iq

]T ; F = diag
([
−r/Ld,−r/Lq

])
; B = diag

([
1/Ld, 1/Lq

])
; T is the sam-

pling period; U =
[
Ud, Uq

]T ; Q is the system noise; H = diag([1, 1]); R is the variance of
the state variable; I = diag([1, 1]).

5. Simulation Analysis
5.1. Simulation Analysis Comparison

To verify the accuracy of the control strategy, a simulation model of the direct-drive
wave power generation system was constructed (the simulation model was built with mat-
labR2022b/simulink software), and the results were validated. The simulation parameters
are shown in Table 1. The structure of the generator system simulation model is illustrated
in Figure 6. Based on the structural diagram, the model was built using software.

Table 1. Simulation parameter settings.

Variable Value Variable Value

Ld 0.0114 H M 100 kg
Lq 0.0114 H m 50 kg
r 1 Ω R1 210
n 4 K1 61.5
τ 0.05 m Fm 300 N
φ f 0.52 Wb ω 0.5 π

The system model was compared using three different control methods: PID control,
sliding mode control, and BP neural network PID control. The simulation time was set to
20 s. The simulation compared the ripple size of the waveform and the tracking error to
evaluate the control effect and analyzed the fluctuation in instantaneous power to judge
the system’s stability.

Figure 7 shows the wave excitation force and the waveform at 300 times speed under
BP neural network PID control. It can be observed from the figure that the two wave-
forms maintain the same frequency and are in phase, meeting the resonance condition
of the wave power generation system, allowing the power generation device to achieve
maximum power.
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Figure 7. Regular wave excitation force and 300 times speed.

Figure 8 shows the q-axis tracking current under three types of control, and Figure 9
shows the q-axis current tracking error under three types of control. It can be seen that
under PID control, the q-axis current waveform has larger ripples, and the error is also
relatively large, approximately around 0.6 A. Under sliding mode control, the q-axis
tracking current and tracking error show some improvement compared to PID control,
with an error of about 0.5 A. However, due to the chattering issue present in sliding mode
control, the error does not significantly improve. Compared to PID and sliding mode
control [25], it is evident that under BP neural network PID control, the waveform ripple
significantly decreases, and the tracking error substantially reduces, with the error reduced
to approximately 0.2 A, improving the accuracy of the system’s current tracking.

Figure 10 shows the instantaneous power under different controllers. It can be ob-
served that under PID control and sliding mode control, the chattering issue with the q-axis
current causes serious fluctuations in instantaneous power, indicating poor system stability.
In contrast, the instantaneous power fluctuations are smaller under BP neural network PID
control, indicating better system stability. By comparing the q-axis current tracking error
under three controllers, it is evident that the q-axis current tracking error is smaller and the
accuracy is better under BP neural network PID control.
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Figure 8. Q-axis tracking current under three controllers.

Figure 9. Q-axis current tracking error under three controllers.

Figure 10. Diagram of instantaneous power under different controllers.

Figure 11 shows the system’s average power under different controllers. As seen in
Figure 11, the system’s average output power under BP neural network PID control is
approximately 10 W higher than that under the other two controls, which, due to the choice
of relatively small parameter values, represents an increase of about 6%.
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Figure 11. Diagram of average power under different controllers.

5.2. Irregular Wave Simulation Analysis

Firstly, a random irregular wave’s waveform is given, followed by the use of simulation
software to perform a Fast Fourier Transform (FFT) on the inputted random irregular wave,
with a sampling frequency of 2 Hz and a sample count of 200. The inputted irregular
wave’s waveform and the resulting FFT spectrum analysis are shown in Figure 12. It can
be seen that the irregular wave’s waveform in Figure 12 is composed of three sinusoidal
signals of different amplitudes and frequencies and a disturbance signal. The irregular
wave’s waveform in Figure 12 is approximately as follows:

Fl = 275 sin
2π

7
t + 225 sin

2π

5
t + 150 sin

π

3
t + randn(t) (22)
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Figure 12. Diagram of irregular wave’s waveform.

Figure 13 compares the given irregular wave’s waveform with the waveform obtained
from FFT analysis. The given irregular wave’s waveform cannot directly serve as the
input; in reality, the wave is a nonlinear excitation force. It requires a main frequency
estimation method to predict the main frequency of the irregular wave excitation force. The
amplitude and frequency obtained after FFT analysis must be compared with the original
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given irregular waveform to judge the reliability of the main frequency prediction method.
According to FFT analysis, the composition of the amplitude and frequency of the irregular
wave curve can be compared with the original irregular wave’s waveform. It is evident
that the waveform obtained from FFT analysis has a small error compared to the given
irregular waveform, making it suitable for analyzing irregular waveforms.
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Figure 13. Irregular wave’s waveform contrast.

By removing the disturbance signal from Equation (22), the equation for the input
excitation force can be obtained. Then, using the principle of superposition, the q-axis
reference current is calculated. Figure 14 shows the irregular wave excitation force and the
waveform at 300 times speed under BP neural network PID control. It can be observed from
the figure that the irregular wave excitation force and speed maintain the same frequency
and are essentially in phase, meeting the resonance condition, i.e., the power generation
device operates at maximum power.
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Figure 14. The irregular wave excitation force at 300 times the speed of the waveform.

Figures 15 and 16 show the q-axis tracking current and error under each control. It
can be seen that in irregular waves, BP neural network PID control still performs well
in tracking the q-axis current, with an error of about 0.2 A, reducing the error by 0.5 A
compared to PID control and sliding mode control.
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Figure 15. Three controlled Q-axis tracking currents for irregular waves.

Figure 16. Q-axis current tracking error of three kinds of controllers for irregular waves.

Figure 17 shows the instantaneous power under different controllers in the presence
of an irregular excitation force. It can be seen that under PID control and sliding mode
control, the instantaneous power has significant ripples in the presence of an irregular
excitation force, indicating poor system stability; under BP neural network PID control, the
fluctuations are smaller, indicating better stability.

Figure 17. Diagram of instantaneous power of irregular waves.
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Figure 18 shows the average power of irregular waves. From the figure, it can be
seen that the average power difference between PID control and sliding mode control is
very small, while BP neural network PID control improves the power compared to the
two control algorithms by about 20 W. This indicates that for irregular waves, BP neural
network PID control has a better effect on the system’s capture efficiency.
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In summary, Table 2 summarizes the advantages of the BP neural network PID control
algorithm.

Table 2. Comparison of control algorithm results.

Variable Control Algorithm Q-Axis Current Tracking Error Power Boost

Regular wave
PID 0.6 A --

Sliding mode 0.5 A 1.3%
BP—PID 0.2 A 6%

Irregular wave
PID 0.5 A --

Sliding mode 0.5 A 0.7%
BP-PID 0.2 A 2.5%

6. Conclusions

This paper proposes a maximum power control system for a direct-drive wave power
generation device based on BP neural network PID control combined with Kalman filtering.
It calculates the q-axis tracking current for maximum power tracking of the system and
conducts a simulation analysis under different controllers. The main research conclusions
are as follows:

1. Through the simulation analysis comparison, the instantaneous power ripple is signif-
icantly reduced under BP neural network PID control compared to PID control and
sliding mode control, indicating that the system has better stability under BP neural
network PID control.

2. Under BP neural network control, the q-axis tracking current error is smaller, reduced
by about 0.4 A, improving the system’s stability and accuracy.

3. For both regular and irregular waves, the system’s average power is higher under BP
neural network PID control, with an average power increase compared to PID and
sliding mode control of about 6%, indicating an improvement in the system’s energy
capture efficiency.
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