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Abstract: Gut microbiota are involved in both host health and disease and can be stratified based on
bacteriological composition. However, gut microbiota clustering data are limited for Asians. In this
study, fecal microbiota of 1803 Japanese subjects, including 283 healthy individuals, were analyzed by
16S rRNA sequencing and clustered using two models. The association of various diseases with each
community type was also assessed. Five and fifteen communities were identified using partitioning
around medoids (PAM) and the Dirichlet multinominal mixtures model, respectively. Bacteria
exhibiting characteristically high abundance among the PAM-identified types were of the family
Ruminococcaceae (Type A) and genera Bacteroides, Blautia, and Faecalibacterium (Type B); Bacteroides,
Fusobacterium, and Proteus (Type C); and Bifidobacterium (Type D), and Prevotella (Type E). The most
noteworthy community found in the Japanese subjects was the Bifidobacterium-rich community. The
odds ratio based on type E, which had the largest population of healthy subjects, revealed that
other types (especially types A, C, and D) were highly associated with various diseases, including
inflammatory bowel disease, functional gastrointestinal disorder, and lifestyle-related diseases. Gut
microbiota community typing reproducibly identified organisms that may represent enterotypes
peculiar to Japanese individuals and that are partly different from those of indivuals from Western
countries.

Keywords: gut microbiota community; partitioning around medoids (PAM) model; Dirichlet multi-
nominal mixtures (DMM) model; Bifidobacterium; enterotype

1. Introduction

Recently accumulated information regarding human gut microbiota has revealed that
their composition is linked to host health and various diseases, including inflammatory
bowel disease (IBD), irritable bowel syndrome (IBS), and allergies, as well as lifestyle-related
diseases, such as obesity and nonalcoholic fatty liver disease (NAFLD) [1–4]. Arumugam
et al. demonstrated that human gut microbiota can be classified into three clusters (en-
terotypes) based on their bacteriological composition using partitioning around medoids
(PAM) [5]. Three traditional enterotypes are characterized by high levels of Bacteroides

Microorganisms 2022, 10, 664. https://doi.org/10.3390/microorganisms10030664 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10030664
https://doi.org/10.3390/microorganisms10030664
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-6119-4828
https://orcid.org/0000-0002-7233-366X
https://orcid.org/0000-0001-5210-167X
https://orcid.org/0000-0001-9890-3635
https://orcid.org/0000-0001-5443-788X
https://doi.org/10.3390/microorganisms10030664
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10030664?type=check_update&version=1


Microorganisms 2022, 10, 664 2 of 13

(enterotype 1), Prevotella (enterotype 2), and Ruminococcus (enterotype 3). These enterotypes
have been shown to be independent of age, gender, cultural background, and geography
but are associated with long-term diet. For instance, Prevotella is strongly associated with a
carbohydrate-rich diet, whereas the Bacteroides enterotype is associated with consumption
of protein and animal fat, such as that common in a Western diet [6].

Community-type clustering of stool samples has also been proposed [7,8]. These
reports describe the use of a Dirichlet multinomial mixtures (DMM) modeling approach to
stratify stool into four clustered types: Ruminococcaceae (R), Prevotella (P), Bacteroides 1 (B1),
and Bacteroides 2 (B2) enterotypes. The R enterotype is prevalent in hard stools, whereas
the P enterotype is associated with loose stool [9]. The B1 enterotype is the most common
enterotype in healthy populations adopting a Western diet, whereas the B2 enterotype is
characterized by a high proportion of Bacteroides and a low proportion of Faecalibacterium
and is more prevalent with systemic inflammation levels and IBD [10,11]. This suggests that
the B2 enterotype may be indicative of an unhealthy microbiome constellation. Clustering
of the human gut microbiota using Western cohorts seems to be useful in the assessment
of their association with various diseases and to evaluate alterations in gut microbiota
resulting from therapeutic intervention. However, it is also well known that the profile and
structure of gut microbiota differ among residents of a particular region and based on ethnic
differences. Nishijima et al. [12] confirmed that the gut microbiome of a Japanese population
differs considerably from that of other populations. Accordingly, the stratification of gut
microbiota on the dataset used by Nishijima et al. [12] revealed that the distribution of
enterotypes was also characteristic in Japanese population compared to that of other
countries [13]. This difference cannot be explained by diet alone. Meanwhile, an analysis
of gut microbiota from school-age children in Asian regions revealed two enterotype-like
clusters that were identified by variations of Prevotella or Bifidobacterium/Bacteroides [14].
Therefore, the gut microbiota structure is highly reflective of the country and region of
residence of individuals, as well as their dietary habits and lifestyles. However, few
studies regarding the compositional microbial profiles of Japanese populations have been
conducted.

In the present study, we investigated the gut microbiota profiles of Japanese subjects.
To the best of our knowledge, this is the first report regarding gut microbiota profiles based
on a large number of Japanese subjects, including both healthy individuals and those with
various diseases.

2. Materials and Methods
2.1. Study Subjects and Data Collection

A total of 1803 individuals of varying disease status were selected from our outpatient
clinic from November 2016 to April 2017. The eligible subjects included both male and
female subjects 14 years of age or older but younger than 101 years of age. The distribution
of the 1803 enrolled study subjects, including 283 healthy individuals, is summarized in
Table 1. The healthy subjects were considered to be in good health. The exclusion crite-
ria were as follows: administration of antibiotics, corticosteroids, immunosuppressants,
or acid-suppressing agents (proton pump inhibitors (PPIs) or histamine-type 2 receptor
blockers (H2 blockers)) within the 3 months prior to collection of fecal samples or a his-
tory of underlying malignant disease. In addition, we excluded patients with serious
metabolic, respiratory, cardiologic, renal, hepatic, hematologic, neurologic, or psychiatric
functions, such and those who regularly used medications affecting intestinal motility, such
as laxatives, antidepressants, opioid narcotic analgesics, anticholinergics, and prebiotic
or probiotics. Individuals who were pregnant or lactating were also excluded. Patients
with other factors, as evaluated by researchers, that could affect intestinal motility or gut
microbiota were also excluded.

Hypertension (HT) was defined as systolic blood pressure ≥140 mmHg, diastolic
blood pressure ≥90 mmHg, or the current use of antihypertensive medication. Hyper-
lipidemia (HL) was defined as a serum low-density lipoprotein cholesterol concentration
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≥140 mg/dL, high-density lipoprotein cholesterol concentration < 40 mg/dL, triglyceride
concentration ≥150 mg/dL, or the current use of cholesterol-lowering medication. Type
2 diabetes mellitus (T2D) was defined as a fasting plasma glucose level ≥126 mg/dL,
hemoglobin A1c level ≥6.5%, or the current use of diabetes medication. Obesity was
defined as a body mass index (BMI) ≥ 30 kg/m2.

Table 1. Distribution of the enrolled study subjects.

N Male (Age ± SD) Female (Age ± SD)

Total 1803 983 (63.2 ± 16.2) 820 (65.5 ± 13.4)
Healthy subjescts 283 177 (43.4 ± 11.1) 106 (49.2 ± 12.3)
Cardiovascular diseases 104 71 (74.6 ± 8.2) 33 (73.5 ± 6.9)
Hepatic diseases 168 89 (64.4 ± 12.7) 79 (69.0 ± 10.8)
Functional gastrointestinal
disorders 109 61 (68.5 ± 18.0) 48 (67.8 ± 13.5)

Endocrine diseases 57 26 (68.9 ± 8.3) 31 (68.8 ± 9.1)
Neurological diseases 15 7 (66.7 ± 15.1) 8 (65.3 ± 15.5)
Psychiatric diseases 38 19 (65.5 ± 13.7) 19 (71.3 ± 13.5)
Inflammatory Bowel Diseases
(IBD) 128 76 (48.4 ± 18.5) 52 (52.3 ± 15.6)

Autoimmune diseases 21 7 (72.1 ± 8.7) 14 (66.9 ± 12.3)
Malignant diseases (under
treatment) 123 81 (69.2 ± 9.6) 42 (69.7 ± 8.8)

Malignant diseases (after
treatment) 160 99 (71.1 ± 9.4) 61 (68.4 ± 9.5)

Hypertension 619 313 (70.2 ± 9.8) 306 (70.2 ± 9.1)
Dyslipidemia 819 422 (68.3 ± 11.4) 397 (69.1 ± 9.9)
Hyperuricemia 138 99 (68.5 ± 12.4) 39 (72.5 ± 7.9)
Diabetes 474 268 (67.4 ± 11.3) 206 (66.3 ± 10.7)
Obesities (BMI ≥ 30 kg/m2) 96 40 (51.2 ± 17.2) 56 (55.2 ± 15.3)

BMI; body mass index.

2.2. Sample Collection and DNA Extraction

Fecal samples were collected, and gut bacterial composition analysis was performed
according to previous reports [15–17]. Briefly, fecal samples the size of a grain of rice were
collected using guanidine thiocyanate solution available in a feces collection kit (Techno
Suruga Lab, Shizuoka, Japan). After vigorous mixing, the samples were stored at room
temperature for a maximum of 7 days until DNA extraction.

Genomic DNA was isolated using a NucleoSpin microbial DNA kit (Macherey-Nagel,
Düren, Germany). Approximately 500 µL of the stored fecal sample was placed in a
microcentrifuge tube containing 100 µL of Elution Buffer BE. The mixture was then placed
into a NucleoSpin beads tube with proteinase K and subjected to homgenization with
mechanical beads for 12 min at 30 Hz in a TissueLyzer LT small bead mill. The subsequent
extraction procedure was performed according to the manufacturer’s instructions. The
extracted DNA samples were purified using an Agencourt AMPure XP system (Beckman
Coulter, Brea, CA, USA).

2.3. Sequencing of the 16S rRNA Gene

Two-step polymerase chain reaction (PCR) was performed to generate sequence li-
braries of the purified DNA samples. The first PCR was performed to amplify the DNA
samples using a 16S (V3–V4) metagenomic library construction kit for NGS (Takara Bio
Inc, Kusatsu, Japan). The primer pair for the first PCR included the 341F forward primer
(5’-TCGTCGGCAG CGTCAGATGT GTATAAGAGA CAGCCTACGG GNGGCWGCAG-3’)
and 806R reverse primer (5’-GTCTCGTGGG CTCGGAGATG TGTATAAGAG ACAGGG
ACTA CHVGGGTWTC TAAT-3’) that corresponded to the V3-V4 region of the 16S rRNA
gene. The second PCR was performed using a Nextera XT index kit (Illumina, San Diego,
CA, USA) to add the index sequences for the Illumina sequencer with a barcode sequence.
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The prepared libraries were then subjected to sequencing of 250 paired-end bases at the
Biomedical Center at Takara Bio using a MiSeq Reagent v3 kit and the MiSeq system
(Illumina).

2.4. Microbiome Analysis and Community Typing

The obtained sequence data were processed using the standard QIIME2 (ver 2020.8)
software pipeline. Denoising was performed using the DADA2 plugin to generate amplicon
sequence variants (ASVs). Taxonomy assignment of each ASV was then conducted by a
scikit-learn naïve Bayes machine-learning classifier trained on the Greengenes (13_8) 99%
operational taxonomic units (OTUs). Singletons and ASVs assigned to chloroplast and
mitochondria were removed for this study. The α-diversity indices, Chao1 index (ASV
richness estimation), and Shannon index (ASV evenness estimation) were calculated using
QIIME2. β-diversity at bacterial genus level was estimated using the Bray–Curtis metric to
calculate distances between the samples and visualized using principal coordinate analysis
(PCoA).

Two general approaches were used to assign the samples to community types1; the
partitioning around medoids (PAM) model and the Dirichlet multinominal mixtures (DMM)
model. Data at the genus level were used for community typing, and only frequently
detected genera that were detected in more than 50% of the samples were selected. The
genera not selected and considered infrequently detected genera were classified together
as “other genera”. Similarly, all unclassified genera were grouped as “unclassified genera.”
The optimal number of components (communities) was identified by selecting the number
that gave the highest average silhouette width in the PAM-based clustering model and
the minimum Laplace approximation to the negative log model in the DMM-model-based
clustering. The maximum number of components evaluated was set at 20 in both clustering
methods. Community typing was performed using R software (ver. 4.0.4) with the proper
packages, such as “cluster” and “DirichletMultinomial.”

A model was constructed to predict each of the five PAM-identified communities based
on composition of the frequently detected genera, plus “other genera” and “unclassified
genera” using support vector machines (SVM) in JMP Pro (SAS Institute, Tokyo, Japan). The
power of the prediction model was evaluated using holdback validation of approximately
65% of the training data (1200 subjects) and 35% of the prediction data (603 subjects). A
linear kernel and cost parameter equal to 1 was applied in this study.

2.5. Statistical Analysis

The α-diversity indices among components were statistically compared using one-
way analysis of variance (ANOVA) with a Tukey HSD post hoc test. Differences in β-
diversity among components were evaluated using permutational analysis of variance
(PERMANOVA), followed by a Tukey HSD post hoc test. The statistical analyses were
performed using R software and the vegan package for R. Statistical differences (p < 0.05) in
the relative abundance of bacterial phyla and genera among groups were evaluated using
one-way ANOVA with the Benjamini–Hochberg correlation in STAMP software. The odds
ratio of each disease for each of the gut microbiota was calculated based on the disease
frequency in each community. Statistical differences (p < 0.05) in the odds ratio of the
diseases in each community were calculated using the Wald test in JMP Pro.

2.6. Ethics Statements

The study conformed to the code of ethics stated in the Declaration of Helsinki, and the
research protocol was approved by the Ethics Committee of Kyoto Prefectural University
of Medicine (ERB-C-1770-2). All participants provided written informed consent prior
to enrollment. The study was registered at the University Hospital Medical Information
Network Center (UMIN000045216).
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3. Results
3.1. Enrolled Study Participants

We enrolled 1803 Japanese subjects (983 male, 820 female), including 283 healthy
subjects (Table 1). The average age of all participants was 64.2 ± 15.0 years (14–101
years). As shown in Table 1, the participants exhibited various diseases statuses, including
cardiovascular diseases; hepatic diseases; functional gastrointestinal disorders; endocrine
diseases; neurological diseases; psychiatric diseases; IBD; autoimmune diseases; malignant
diseases; and lifestyle-related diseases, such as hypertension, dyslipidemia, hyperuricemia,
T2D, and obesity. A more detailed breakdown of each disease is shown in Supplementary
Table S1.

3.2. Gut Microbiota of Japanese Participants

Based on average relative abundance, the gut microbiota of Japanese subjects en-
rolled in the study predominantly consisted of four phyla: Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria (Figure 1a), which is consistent with reports from pre-
vious studies [12,17]. At the genus level, seven genera were found to be predominant in
the Japanese subjects, Bacteroides, Bifidobacterium, Faecalibacterium, Blautia, Ruminoocccus
(family Ruminococcaceae), Roseburia, and Prevotella. The sum of their average abundance
accounted for approximately 45% of the gut microbiota (Figure 1b). Thirty-six genera were
found in >50% of the subjects (Figure 1c). These frequently detected genera were used for
community typing of the gut microbiota.
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Figure 1. Taxonomic composition of the microbial communities of Japanese subjects enrolled in
the study. Cumulative bar chart for average abundance of four major bacterial phyla (a), seven
predominant genera (b), and frequently detected genera (c) in the gut microbiota of Japanese subjects
enrolled in the study. The frequently detected genera are comprised of 36 genera, which were detected
in more than 50% of the subjects.

3.3. Gut Microbiota Community Typing in Japanese Participants Enrolled in the Study

The optimal number of communities defined based on PAM clustering was five
(Supplementary Figure S1a), whereas that based on DMM-model clustering was 15 (Sup-
plementary Figure S1b). Characteristics of the 15 communities identified by the DMM
model and their relations with the various diseases are briefly discussed below. However,
for simplicity, the relationships between the five communities of the gut microbiota identi-
fied by the PAM model and the relevant diseases are mainly discussed in the subsequent
portions of this article.

The five communities were categorized as type A–E in accordance with the order
identified by the PAM clustering. As shown Table 2, the number of healthy individuals
in the type E community was the largest among the five clusters, whereas the number of
healthy subjects in the type A and type D communities was notably smaller compared
with those in the other three types. The α-diversity indices (both Chao1 and Shannon
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indices) were the highest in type A, followed by those in type E and type C (Figure 2a,b).
Both Chao1 and Shannon indices were lowest in the type D community. With respect to
β-diversity, based on Bray–Curtis dissimilarity, the distance between type A and type B,
that between type B and type E, and that between type C and type D were not significantly
different (Figure 2c,d). However, the distances between other pairs, including between
type A and type D, were significantly different.

Table 2. Number and rate of healthy subjects in each PAM-identified type.

The Number of
Enrolled Subjects

The Number of
Healthy Subjects

The Rate of
Healthy Subjects (%)

Male (Age ± SD) Female (Age ± SD)

Type A 512 25 4.9 264 (69.8 ± 13.0) 248 (69.9 ± 9.7)
Type B 552 147 26.6 299 (58.4 ± 17.1) 253 (62.9 ± 14.6)
Type C 271 28 10.3 151 (64.4 ± 16.4) 120 (66.6 ± 11.9)
Type D 292 20 6.8 133 (65.5 ± 14.9) 159 (62.4 ± 14.5)
Type E 176 63 35.8 136 (57.3 ± 15.7) 40 (62.4 ± 16.7)
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Figure 2. α-diversity and β-diversity of gut microbiota for five PAM-identified communities. α-
diversity assessed by Chao 1 index (ASV richness estimation) (a) and Shannon index (ASV evenness
estimation) (b). Statistical differences in α-diversity indices among the groups were evaluated using
one-way ANOVA. Statistical significance (p < 0.05) is indicated by different letters. β-diversity
represented by principal coordinate analysis plots based on Bray–Curtis dissimilarity. Axis 1 and
axis 2 (c) and axis 3 and axis 4 (d). Ellipses enclosing the clusters indicate an 80% confidence
interval. Statistically significant differences in β-diversity among the groups were confirmed using
PERMANOVA (p = 0.001).

The taxonomic characteristics of type A at the genus level were in highest abundance
for Coprococcus, Gemminger, and Roseburia (Figure 3a, Supplementary Table S2). The abun-
dance of Ruminococcus (family Ruminococcaceae) in type A was the second highest, next
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to that in type C. In addition, type A had the highest abundance of unclassified genera.
Further evaluation revealed that the abundance of unclassified genera belonging to family
Ruminococcaceae was highest in type A among the five types, with a mean abundance
of 4.6% (Supplementary Figure S2). The abundance of Bacteroides was highest in type B,
whch also had the highest abundance of Blautia and Faecalibacterium. The second highest
abundance of Bacteroides was in type C. In regards to “other genera,” type C exhibited the
highest abundance of Megamonus, with a mean abundance of 4.9%. Type C also had the
highest abundance of Fusobacterium and Proteus. The highest abundance of major lactic-
acid-producing bacteria was in type D. The abundance of Bifidobacterium, Lactobacillus, and
Streptococcus was significantly higher in type D compared with that in the other four types.
A clear characteristic of type E was the highest abundance of Prevotella. The characteristic
components of the gut microbiota in each type are summarized in Table 3. The SVM-based
model generated using data from 1200 randomly selected study subjects as training data
showed a highly accurate classification of the PAM-identified communities using prediction
data from the remaining 603 study subjects. The rate of misclassification of the validation
dataset was approximately 7.8% (47/603). The area under the curve (AUC) values of the
receiver operating characteristic (ROC) curve for each type was >0.98 (Figure 4).
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Table 3. Summary of taxonomic features characteristically rich in gut microbiota of each PAM-
identified type.

Characteristic Feature Other Features

Type A family Ruminococcaceae genera Coprococcus, Gemminger and Roseburia
Type B genus Bacteroides genera Blautia and Faecalibacterium
Type C genus Bacteroides genera Megamonus, Fusobacterium and Proteus
Type D genus Bifidobacterium genera Lactobacillus and Streptococcus
Type E genus Prevotella
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3.4. Association between Gut Microbiota Community Types and Disease Status

The odds ratio of each disease status was subsequently calculated based on the profile
of type E (Figure 5). Type E was chosen because it had the largest population of healthy
subjects among the five types, at 35.8% (Table 2). Type B, which included the second largest
number of healthy individuals, at 26.6%, showed no significant difference in odd ratios of
various diseases, except for IBD. In contrast, type A, type C, and type D, which included
small numbers of healthy subjects, demonstrated associations with various diseases. Type A
showed especially high odds ratios for cardiovascular diseases, neurological diseases, and
lifestyle-related diseases, whereas type D showed high odds ratios for IBD and functional
gastrointestinal disorders. A relatively high odds ratio was also revealed in type C for IBD;
however, this was less that that in type D. Therefore, each type was found to be associated
with various disease risks. More detailed odds ratio findings for each disease are shown in
Supplementary Figure S3.
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3.5. Gut Microbiota Communities Identified via DMM-Based Clustering

Similarly the PAM-identified communities, each of the 15 communities identified
through clustering based on the DMM model were sequentially labeled as type 1–15. The
community type with the largest population of healthy subjects was type 10, with 42.2%
healthy subjects (Supplementary Table S3). The characteristic bacterial taxonomy of type
10 includes the genus Prevotella in the highest abundance, which is consistent with type
E of the PAM-identified communities (Supplementary Figure S4a,b). Calculation of the
odds ratios of various diseases based on the profiles of type 10 revealed types 5, 11, 12,
14, and 15 as having notably high odds ratios of diseases, at >20 (Supplementary Figure
S5). For instance, types 5, 11, and 12 exhibited high odds ratios for cardiovascular diseases,
whereas the odds ratios for IBD were markedly higher in types 14 and 15. Type 12 showed
higher odds ratios for other diseases, such as malignant diseases (both under and after
treatment) and hypertension compared with those of the other types. Of these five types
with relatively high associations with diseases, type 5 showed greater α-diversity (both
Chao1 and Shannon indices) than that of the other types, including type 10 (Supplementary
Figure S6a,b). The α-diversity of types 11 and 12 based on both Chao1 and Shannon
indices were also higher than those for type 10; however, α-diversity of types 14 and 15
were lower than that of type 10 (Supplementary Figure S6a,b). In regards to β-diversity,
based on Bray–Curtis dissimilarity, the distance between type 10 and types 14 or 15 was
significantly different; however, the distance between type 10 and types 5, 11, and 12 did
not significantly differ (Supplementary Figure S6c,d). The characteristic bacterial genera
for which the relative abundance was higher compared with that for other types was
Oscillospira in type 5, Ruminococcus of the family Ruminococceae in type 11, Streptococcus in
type 12, Bifidobacterium in type 14, and Veillonella in type 15 (Supplementary Figure S4a,b).

4. Discussion

In the present study, we enrolled 1803 Japanese subjects (including 15.7% healthy
subjects and 85.3% with various disease statuses), and we analyzed gut microbiota using
fecal samples. Characteristically, the participants with inflammatory bowel disease and
functional gastrointestinal disordes, which have already been reported to show alterations
in the composition of the intestinal microbiota, were included (13.1%). In addition, partici-
pants with at least one lifestyle-related disease (63.0%), such as hypertension, dyslipidemia,
hyperuricemia, T2D, and obesity, were enrolled.

In this study, the gut microbiota community of these Japanese individuals was shown
to stratify into enterotypes. Five possible constellations were identified based on gut micro-
bial structure using PAM-based clustering. Importantly, the SVM-based prediction model
showed fair reproducibility of these clusterings. Data at the genus level were used for com-
munity typing, and only frequently detected genera (those detected in more than 50% of the
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samples) were selected. As shown in Figure 3 and Table 3, the taxonomic features of the gut
microbiota in Japanese subjects were characterized based on the presence of the enterotype
rich in the genus Bifidobacterium (Type D). Another four PAM-identified communities were
similar to those previously reported from Western countries [5,7]. Among the enterotypes
reported by Vandeputure et al. [7], the B1 enterotype, which is the most common enterotype
in healthy populations, corresponds to the PAM-based type B in the present study, which,
after type E, included the second largest number of healthy individuals. Meanwhile, the B2
enterotype is similar to the PAM-based type C cluster, which was characterized by a high
proportion of Bacteroides and a low proportion of Faecalibacterium. The type E community
had the largest number of healthy individuals and was characterized by a rich abundance
of the genus Prevotella, suggesting that it may be similar to the previously reported P
enterotype. Finally, type A included an abundance of unclassified genera belonging to the
family Ruminococcaceae, which is similar the R enterotype.

Nishijima et al. [12] also demonstrated that the gut microbiome structure in a Japanese
population was considerably different from that of other populations, with at least one
of the differences being the rich abundance of the genus Bifidobacterium. Park et al. [18]
also described the high abundance of Bifidobacterium as a feature of the gut microbiota of
1596 healthy Japanese individuals. Thus, a high abundance of Bifidobacterium seems to
be notable in the structure of Japanese gut microbiota, representign an important genus,
independent of the presence or absence of various diseases.

It is well known that several Bifidobacterium strains are considered to be probiotic
microorganisms due to their beneficial effects, and they have been included as bioactive
ingredients in functional foods—mainly dairy products but also in food supplements and
pharma products [19]. The beneficial effects on human health related to the consumption of
Bifidobacterium have mainly been associated with the prevention and treatment of intestinal
diseases, including IBD and IBS, as well as immunological disorders, such as allergic
diseases. A recent study revealed that the administration of Bifidobacterium bifidum G9-1
(BBG9-1) improves quality of life for Japanese patients with constipation, as demonstrated
by changes in stool consistency [20].

However, analysis regarding the association between varying disease status and types of
the gut microbiota community demonstrated that a cluster rich in the genus Bifidobacterium
is not necessarily indicative of low risk for various diseases. In the current study, type D, the
cluster with a high abundance of Bifidobacterium, showed high odds ratios with various disease
statuses, including cardiovascular diseases; hepatic diseases; IBD and functional gastrointestinal
disorders; psychiatric diseases; and lifestyle-related diseases, such as hypertension, dyslipidemia,
hyperuricemia, and diabetes. The functional role of Bifidobacterium in health status is somewhat
controversial, as it has been demonstrated that it can be abundant in patients with heart
failure [21], hyperlipidemia, and T2D [15,22,23]. Regardless, Bifidobacterium-mediated health
benefits are thought to occur as a result of the complex and dynamic interplay among
Bifidobacterium, other members of the gut microbiota, and the human host. Accordingly, our
findings suggest that a gut environment that leads to the rich abundance of Bifiodobacterium
could be harmful, rather than Bifiodobacterium itself exerting harmful effects.

With regards to type D communities, lactate-producing bacteria (including Bifidobac-
terium) are more abundant than other bacteria types, indicating that more lactate would be
produced in this community type. Lactate produced in the colon is normally metabolized
by lactate-utilizing bacteria to short-chain fatty acids (SCFAs) that are beneficial for the
host, such as butyrate and propionate. However, in cases of a community with low num-
bers of lactate-utilizing bacteria, lactate can accumulate and exert an array of deleterious
effects [24]. For example, its low pKa can drive down gut pH, which may lead to changes
in the microbiota and acidosis in the colon. Lactate can also be a growth substrate for
sulfate-reducing gut bacteria [25]; therefore, it has the potential to promote the formation
of toxic concentrations of hydrogen sulfide. Indeed, lactate has been shown to accumulate
in the colon of patients with severe colitis [26–28]. Type D, with the lowest α-diversity, may
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have fewer lactate-utilizing bacteria. Therefore, higher odds ratios for various diseases
support the possibility of lactate accumulation in the gut microbiome of this type.

In the present study, we attempted to classify gut microbiota using a DMM model, as
well as PAM. In the analysis based on the DMM model, increased numbers of subjects are
expected to result in a larger number of communities being identified. Consistent with this
expectation, we confirmed 15 clusters in the current study using a DMM model, which
was a three-fold larger number of communities than that identified using the PAM-based
clustering. Type 10 of the DMM model was a Prevotella-rich cluster similar to type E of the
PAM-based clustering. Meanwhile, type 12 may be unique as a Streptococcus-rich cluster
and had high disease odds ratios across the board. Additionally, Streptococcus tended to
be abundant in types 14 and 15 and may be important for raising the risk of disease in
these types, as Streptococcus is well-known to exhibit high homolactic acid fermentation and
high lactic acid production. The current study has several limitations. Although we were
able to enroll a larger number of subjects than that enrolled in previous studies evaluating
human enterotypes, the sample size may still be inadequate. In particular, we were unable
to perform an age-adjusted analysis, which would take into account intestinal microbiota
alterations associated with aging. In addition, although dietary habit is supposed to be
one of the most important factors for the appearance of specific enterotypes, we were not
able to take into account a survey of dietary habits. Therefore, dietary factors relevant
to each gut microbiota community cannot be discussed. Additionally, the association of
various diseases with each of the gut microbiota communities was only evaluated based
on current and past disease status. As a result, it is difficult to predict the risk/onset of
various diseases using the results of the present study. Stratification of the human gut
microbiome into separate clusters, such as enterotypes, provides an appealing method
for the evaluation of microbial markers related to certain diseases; however, the reality is
more complex. For instance, it is important to take into account the metabolic capacities
of gut microbes in order to adequately discuss the relationship between gut microbiota
communities and diseases. Unfortunately, profiles of metabolites, such as SCFAs, for each
gut microbiota community are currently unknown. Thus, there is a need to analyze the
association between microbial metabolites and community types of the gut microbiota in
future studies.

5. Conclusions

In conclusion, we successfully demonstrated the typing of Japanese gut microbiota
communities using PAM-based and DMM-model-based clustering. Unlike the enterotypes
proposed for individuals from Western countries, the Japanese gut microbiota was stratified
with a fair level of reproducibility into five community types using PAM-based clustering.
The gut microbiota of the Japanese subjects were especially characterized by the presence
of the genus Bifidobacterium. We also attempted to assess the association of various diseases
with gut microbiota community typing. However, further investigations are needed to
fully correlate the detailed microbial properties with the health status of individuals. We
anticipate that precise enterotypes driven by age, gender, ethnicity, nutritional habits,
and medication may be used as diagnostic markers in the near future, as well as being
successfully correlated with the health status of individuals.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms10030664/s1. Supplementary Table S1: Detailed distribution of the enrolled
subjects of this study; Supplementary Table S2: Abundance of bacterial genera in each PAM-identified
type; Supplementary Table S3: Number and proportion of healthy subjects in each of the 15 DMM-
model-identified types; Supplementary Figure S1: Model fitting for partitioning around medoids
(PAM) and Dirichlet multinominal mixtures (DMM) models; Supplementary Figure S2: Abundance
of bacterial groups relating to the family Ruminococcaceae in five PAM-identified community types;
Supplementary Figure S3: Odds ratios for various diseases in each of the PAM-identified community
types based on a more detailed disease background; Supplementary Figure S4: Taxonomic com-
position of the microbial community at the genus level for 15 DMM-model-identified community
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types; Supplementary Figure S5: Odds ratios of various diseases in each of the 15 DMM-model-
identified community types; Supplementary Figure S6: α-diversity and principal coordinate analysis
(PCoA) plots of gut microbiota for 15 community types stratified based on the Dirichlet multinominal
mixtures (DMM) model analysis.
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