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Abstract: Microbially influenced corrosion (MIC) is a formidable challenge in the marine industry,
resulting from intricate interactions among various biochemical reactions and microbial species.
Many preventions used to mitigate biocorrosion fail due to ignorance of the MIC mechanisms. This
review provides a summary of the current research on microbial corrosion in marine environments,
including corrosive microbes and biocorrosion mechanisms. We also summarized current strategies
for inhibiting MIC and proposed future research directions for MIC mechanisms and prevention.
This review aims to comprehensively understand marine microbial corrosion and contribute to novel
strategy developments for biocorrosion control in marine environments.
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1. Introduction

Microbially influenced corrosion (MIC) is widely recognized as corrosion caused by
the presence and activities of various microorganisms [1]. Due to its impact on marine
steel, MIC imposes significant financial and safety challenges on harbor and port operators
globally. Annually, 2.5 trillion US dollars are used for direct corrosion expenses [2,3], 20%
of which is attributed to MIC [4], and the data do not include the additional economic costs
related to production loss, employee training, research and development, and preventive
maintenance. Corrosion-related losses affect critical structural sectors, including offshore
oil-gas pipelines, ship hulls, water cooling systems, aviation fuel tanks, sewer systems, and
drinking water distribution networks [5] (Figure 1). For example, nuclear power plants
have experienced a number of corrosion-related failures since the 1970s, resulting in billions
of euros in costs for the industry [6,7]. Consequently, the economic factor is driving the
continuous growth of microbial corrosion research [3].

Recently, more and more research related to MIC has yet to be conducted. Though
MIC research is a challenging multidisciplinary field, substantial advancements in fun-
damental research have been made over the past decade. This review summarized re-
cent progress in MIC and microbially influenced corrosion inhibition (MICI) processes
and updated our understanding by data mining investigations on microbial corrosion in
marine environments.

Advances in MIC Research in Recent Years

Corrosion in the marine environment is a multifaceted issue influenced by various
biological, chemical, and physical factors [8]. As research in this field has been increasing,
there is a better understanding of corrosion in the marine environment. Here, we employed
bibliometric analysis to summarize the publications on marine MIC in the last 30 years.
Bibliometric analysis is a quantitative technique that employs data mining, statistics, and
mathematical methods to assess development trends within specific research domains [9].
For instance, Zheng et al. conducted a bibliometric analysis of the literature related to
marine environmental corrosion using software such as HistCite, CiteSpace (version 5.7.R1),
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and VOS viewer (version 1.6.8) [9]. Compared to traditional reviews, this study provides
a novel approach to the large-scale quantitative analysis and visualization of marine
environmental corrosion.
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Figure 1. Marine biofilms on different substrates. Microbial coverage is present on various surfaces 
in marine environments, ranging from the ocean surface to the deep sea. Microbial cells colonize 
various surfaces such as animals (hexagon), transparent extracellular polymeric particles (TEPs) 
(pentagon), marine sediments (ellipse), rocks (ellipse), ships (pentagram), submarine (triangle), and 
mining platforms (circle), leading to the formation of biofilms and the occurrence of pitting corro-
sion. The occurrence of corrosion is more pronounced in areas with a higher density of microorgan-
isms. 
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tles, abstracts, and keywords sections were included. We focused on the keywords of the 
abbreviation “MIC” and vocabulary related to microbiologically influenced corrosion, 
such as microbiologically influenced corrosion, microbiologically induced corrosion, and 
microbiologically mediated oxidation. Review studies were excluded, and the analysis re-
sults are shown in Figure 2a. During the initial stage before 1997, research on MIC in the 
marine environment was sporadic as people did not pay the subject much attention. Sev-
eral events during this period promoted MIC research development. For example, in the 
mid-20th century, a pipeline rupture in Australia resulted in a substantial oil spill [10,11]. 
The corrosion of microorganisms garnered attention, marking the beginning of research 
in the marine MIC field. In the second stage, from 1997 to 2005, researchers began to pay 
close attention to studying corrosion in the marine environment, resulting in a significant 
increase in relevant studies. This trend is due to the growing recognition of MIC in the 

Figure 1. Marine biofilms on different substrates. Microbial coverage is present on various surfaces
in marine environments, ranging from the ocean surface to the deep sea. Microbial cells colonize
various surfaces such as animals (hexagon), transparent extracellular polymeric particles (TEPs)
(pentagon), marine sediments (ellipse), rocks (ellipse), ships (pentagram), submarine (triangle), and
mining platforms (circle), leading to the formation of biofilms and the occurrence of pitting corrosion.
The occurrence of corrosion is more pronounced in areas with a higher density of microorganisms.

In this review, we conducted a bibliometric analysis spanning from 1993 to 2023
(Figure 2a), encompassing 12,364 articles, where the specified keywords appearing in the
titles, abstracts, and keywords sections were included. We focused on the keywords of
the abbreviation “MIC” and vocabulary related to microbiologically influenced corrosion,
such as microbiologically influenced corrosion, microbiologically induced corrosion, and
microbiologically mediated oxidation. Review studies were excluded, and the analysis
results are shown in Figure 2a. During the initial stage before 1997, research on MIC in
the marine environment was sporadic as people did not pay the subject much attention.
Several events during this period promoted MIC research development. For example, in the
mid-20th century, a pipeline rupture in Australia resulted in a substantial oil spill [10,11].
The corrosion of microorganisms garnered attention, marking the beginning of research in
the marine MIC field. In the second stage, from 1997 to 2005, researchers began to pay close
attention to studying corrosion in the marine environment, resulting in a significant increase
in relevant studies. This trend is due to the growing recognition of MIC in the marine
environment as a global issue, with governments investing more in this field. During the
third stage, after 2005, MIC research of the marine environment experienced exponential
growth, primarily due to increasing government investment and the greater number of
excellent researchers involved in this field.
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Figure 2. Bibliometric analysis of more than 30 years of research related to marine microbial corrosion.
(a) Number of papers on marine microbial corrosion research in the last 30 years. (b) Different colored
lines and circles represent different keywords and their co-occurrence patterns. Co-occurrence
network analysis of advances in marine microbial corrosion research.

To depict keyword co-occurrence, we utilized network visualization as shown in
Figure 2b. We retrieved 21,350 keywords, which were clustered into 16 groups. The
brightness and intensity of circles and text represent the strength of co-occurrence with other
keywords within that cluster. The distance between items reflects their correlation, while the
distance between lines represents their correlation. Figure 2b showed that most studies on
MIC mainly focused on single-bacteria corrosion, sulfate-reducing bacteria (SRB), nitrogen-
reducing bacteria (NRB), and methanogens (MPB) previously related to the circulation
of geochemical elements, which cannot fully explain the MIC phenomenon in complex
environments. With the development of biological technologies, people can use advanced
methods such as in situ technologies, metagenomics, meta-transcriptomics, proteomics, and
bioinformatics to study the behavior and mechanism of MIC in real aqueous environments,
which contributes to better understanding and addresses environmental problems caused
by microorganisms. Researchers can now analyze gene expression and regulation during
the process of MIC from a molecular level. These works enabled the identification of
marine microbial species that were involved in MIC and promoted the development of
MIC mechanisms.

2. Microorganisms Involved in Marine MIC

Corrosive biofilms encompass a diverse assortment of microorganisms, such as bacte-
ria, archaea, and fungi, which contribute to the corrosion process directly or indirectly [12].
The corrosive bacteria involved in the marine MIC process were summarized in Figure 3.
The primary types of bacteria associated with steel corrosion vary based on their metabolic
modes, mainly including sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria (SOB),
metal-oxidizing bacteria (MOB), metal-reducing bacteria (MRB), as well as microorgan-
isms that secrete organic acids and generate extracellular polymer substances (EPS) [13].
Gaining a comprehensive understanding of the ecological functions of these various mi-
croorganisms and the mechanisms by which they influence steel corrosion is essential for
the development of effective corrosion prevention strategies.

2.1. Marine Sulfate-Reducing Bacteria

Marine sulfate-reducing bacteria (SRB) are anaerobic microorganisms that utilize
organic matter as an electron donor during respiration [14]. SRB plays a crucial role
in the geochemical element cycle, accounting for more than 50% of sulfate reduction in
marine sediments [15]. Additionally, SRB are widely present in marine sediments and have
been identified as a leading cause of metal corrosion in the marine environment. This is
attributed to the production of acidic by-products during SRB metabolism, which can result
in severe corrosion on metal surfaces. Numerous studies have identified many types of
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marine SRB that inhabit seawater, sediments, and rocks. Currently, more than 60 types
of SRB are known to exist in the marine environment [16]. Recent advances in genomics
and metabolic pathways have led to new insights into the ecophysiology and distribution
of SRB in the marine environment. For instance, studies have demonstrated that SRB is
the primary microorganism involved in the long-term seawater immersion process [17].
Prominent SRB species such as Desulfovibrio and Desulfobacter have been detected in the
inner layer of carbon steel, with a significantly higher abundance index than other bacterial
species [18].
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SRB participates in the corrosion process by producing hydrogen sulfide as the final
product of metabolism, which reacts with metal surfaces and forms metal sulfide once
the biofilm is established. This reaction releases protons that reduce the pH value of the
surrounding environment and produce an acidic microenvironment, further accelerating
corrosion [19–21]. The metabolic activities of SRB and metal corrosion are interrelated. Cor-
rosion causes the biofilm to thicken and become more complex, altering the electrochemical
properties of metal surfaces, and promoting the accumulation of corrosive metabolites, such
as hydrogen sulfide and organic acids. These metabolites further stimulate the metabolic
activity of SRB, forming a positive feedback loop that accelerates the corrosion rate and
leads to extensive damage, making this the main mechanism by which SRB participates
in corrosion.

2.2. Marine Sulfur-Oxidizing Bacteria

Marine sulfate-oxidizing bacteria (SOB) exhibit contrasting behavior to sulfate-reducing
bacteria (SRB), as they are a type of microorganism that oxidizes diverse reduced sulfur
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species (e.g., hydrogen sulfide, thiosulfate) and elemental sulfur to sulfuric acid under
more acidic conditions. A diverse range of SOB is involved in metal corrosion, including
both aerobic and anaerobic microorganisms. Among these, sulfide-oxidizing bacteria,
particularly those belonging to the Sulfuricurvum and Thiomicrospira genera, have been
extensively researched [22,23]. Other significant SOB groups involved in marine corrosion
include Thioalkalivibrio, Sulfurimonas, and Thiomicrorhabdus. Okabe et al. found that SOB
could oxidize H2S metabolized by SRB, ultimately generating H2SO4. This process led
to a significant decrease in the pH value of the concrete surface from 12.0 to 1.6 after
102 days [24]. Therefore, by leading to acidification of the surrounding environment, SOB
can further accelerate metal corrosion.

The corrosion caused by marine SOB can be attributed to two mechanisms of direct
chemical reaction and electrochemical corrosion. For the direct chemical reaction, sulfuric
acid is produced during the oxidation of sulfur-containing compounds, which can directly
corrode metals [25,26]. For instance, when SOB oxidizes sulfides, hydrogen and sulfate
ions are generated; these ions react with metals to form metal sulfates, releasing additional
hydrogen ions [26]. Electrochemical corrosion involves the formation of local electrochem-
ical cells on the metal surface due to the presence of SOB [27]. During this process, SOB
oxidizes sulfur compounds, generating an electron flow through the metal surface and
forming cathode and anode regions. As a result, metal ions are gradually lost, forming pits
or holes on the metal surface.

2.3. Marine Metal-Oxidizing Bacteria

In marine environments, metal-oxidizing bacteria (MOB) use metal as the electron
donor for energy metabolism, which causes corrosion of metal materials. Several metal-
oxidizing bacteria have been reported to cause the corrosion of metal materials in marine
environments, including Acidimicrobium and Mariprofundus, which participate in the corro-
sion of iron-based materials by oxidizing ferrous ions. In addition, iron-oxidizing bacteria
and manganese-oxidizing bacteria are the two main kinds of metal-oxidizing bacteria. Iron-
oxidizing bacteria can oxidize ferrous ions, and produce electronic and acidic metabolites,
thus promoting iron oxidation reaction [28]. Manganese-oxidizing bacteria can catalyze
the oxidation of divalent soluble Mn (II) to insoluble manganese oxides and accelerate
the metal corrosion reaction [29]. These metal-oxidizing bacteria can participate in the
corrosion of various metal materials, such as iron, steel, copper, and aluminum [29].

In the marine environment, metal-oxidizing bacteria accelerate metal oxidation mainly
by their metabolites. For instance, the oxidizing iron–sulfur bacteria (OISSB) participate
in metal corrosion processes by oxidizing ferrous ions and sulfide minerals to generate
sulfuric acid [30].

2.4. Marine Metal-Reducing Bacteria

Marine metal-reducing bacteria (MRB) constitute a diverse group of strictly anaerobic
or facultatively anaerobic microorganisms. The representatives of metal-reducing bacteria
are iron-reducing and manganese-reducing bacteria. Unlike metal-oxidizing bacteria, these
microorganisms utilize metal ions as electron donors for energy metabolism, resulting in the
reduction of metals and subsequent corrosion of metal materials. Metal-reducing bacteria,
such as Geobacter and Shewanella, have been extensively investigated for their diverse electron
transfer properties [31]. Studies have demonstrated that Geobacter has the capability to directly
acquire electrons from metal surfaces via an extracellular electron transfer process mediated
by its nanowires and outer membrane cytochrome C protein [31–34].

The mechanisms by which metal-reducing bacteria participate in corrosion can be sep-
arated into three main aspects. First, they alter the physicochemical properties of the metal
surface by producing a hydrogen oxidation environment through metabolism, leading to the
formation of small holes [35]. Second, they reduced insoluble metal oxides (Fe (III) oxides
and Cr (IV) oxides) to soluble metal ions to promote corrosion of materials [36,37]. Last,
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metal-reducing bacteria form a uniform biofilm, which affects the electrochemical process and
provides conditions for local corrosion.

2.5. Marine Nitrate-Reducing Bacteria

Marine nitrate-reducing bacteria (NRB) are microorganisms that utilize nitrate as an
electron acceptor. These bacteria are commonly found in seawater and marine sediments.
They are known to cause biocorrosion on marine structures and ship body surfaces, which
pose a significant threat to the safety and reliability of marine engineering. Pseudomonas
aeruginosa, a typical strain of NRB, Chugh et al. discussed the EET corrosion of it in
detail [38]. Similarly, Xu et al. reported that the NRB biofilm of Bacillus licheniformis
developed on carbon steel was more aggressive than that of ordinary desulfurizing bacteria
and caused serious corrosion [39].

The kinetics and mechanisms of MIC by NRB involve a complex interplay between
biological and electrochemical processes. Biological processes include the attachment
and formation of biofilms by NRB on metal surfaces, the reduction of nitrate to nitrite
or other nitrogen compounds by NRB, and the production of corrosive metabolites [40].
Electrochemical processes, on the other hand, encompass the formation of galvanic cells
between different metal areas or between metal and biofilm, alteration of anodic and
cathodic reactions by NRB metabolites, and dissolution of metal ions by acidic or alkaline
conditions [1]. These complex interactions can lead to significant corrosion of marine
structures and machinery.

2.6. Marine Acid-Producing Bacteria

Marine acid-producing bacteria (APB) generate acidic metabolites (organic or inor-
ganic acids) that lead to the corrosion of metallic materials in the marine environment [41].
For example, these aerobic nitrogen-oxidizing bacteria utilize the reducing nitrogen species
nitrite (NO2−) as an electron donor to produce corrosive nitric acid. Nitrifying bacteria
such as Nitrobacter, Nitrococcus, and Nitrospira are included in this category. Thiobacillus
species can oxidize reduced sulfides such as elemental sulfur, sulfites, and thiosulfates,
producing metabolites H2SO3 or H2SO4 to erode metals [42]. Acid-producing bacteria of
the genus Desulfurococcus have also been associated with microbially influenced corrosion
(MIC) in marine steelwork. These microorganisms uniquely produce propionic acid as a
final product in the electron transport chain.

The metabolic products of marine acid-producing bacteria are involved in the corrosion
process by participating in the redox reactions. In contrast to electromicrobial corrosion,
these metabolic products are not involved in the corrosion process through the catalytic
action of biocatalysts but are directly reduced on the metal surface. Under acidic conditions,
the reduction of protons is combined with the oxidation of metal elements to promote the
dissolution of metal elements and accelerate the corrosion process [43].

2.7. Marine Fungi

Marine fungi are a common group that interacts with living and non-living compo-
nents of the marine environment. Recent evidence indicates that these fungi are vital in
marine food webs and are associated with marine corrosion processes [44]. Marine fungi
decompose and utilize various organic materials, thereby promoting the cycling of organic
matter and contributing to the stability of marine ecosystems. However, certain species
have been found to cause metal corrosion, which reduces the service life and safety of
marine facilities [29,45]. The corrosion is mainly due to the secretion of acidic substances
during fungal metabolism and the production of metal ions [46]. As an example, genera
such as Aspergillus, Candida, and Paecilomyces produce acidic metabolites that accelerate
the corrosion of metals such as iron and copper. Moreover, some marine fungi secrete
exogenous enzymes such as proteases and cellulases that accelerate metal corrosion by
producing additional acidic substances through the degradation of organic matter and
proteins on the surface of marine facilities.
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The corrosion caused by marine fungi is mainly due to the secretion of acidic metabo-
lites during fungal metabolism and the production of metal ions. For example, species such
as Aspergillus produce acidic metabolites that accelerate the corrosion of metals such as iron
and copper, reducing the durability of marine structures [47]. Additionally, some marine
fungi produce exogenous enzymes such as proteases and cellulases that exacerbate metal
corrosion [48,49]. These enzymes promote the breakdown of organic matter and proteins
on the surface of marine facilities, leading to the production of additional acidic substances
and accelerating the progression of corrosion.

2.8. Marine Archaea

In recent years, there has been an intensified research focus on the archaeal groups
involved in microbial corrosion, particularly in the marine environment. This is due to their
significant impact on the corrosion of marine structures, such as pipelines, ships, and oil
rigs, which can result in economic losses and environmental hazards [50]. Methanogens and
sulfur oxidizers are the primary archaeal groups involved in marine microbial corrosion,
as studies have shown [18,51–54]. Methanogens produce methane by reducing carbon
dioxide or organic matter in anoxic sediments or water [55]. This can lead to the formation
of cathodic areas and consequently promote the corrosion of metal structures. Conversely,
sulfur oxidizers use sulfur compounds, such as sulfide and elemental sulfur, as electron
donors for energy metabolism and produce sulfuric acid, which can cause metal corrosion.

Studies have shown that archaea can modify the physicochemical properties of the ma-
terial surface, such as pH, potential, dissolved oxygen concentration, and ion concentration,
by forming biofilms or rust nodules [56–59]. These alterations influence the electrochemical
corrosion process of the material. Additionally, archaea can cause local corrosion or damage
to the metal via direct or indirect chemical reactions with the metal through their metabolic
products or by-products [58]. For instance, methanogenic archaea (MA) can reduce carbon
dioxide to methane using hydrogen or metal as electron donors [59,60]. Sulfate-reducing
archaea (SRA) can oxidize organic matter or hydrogen to hydrogen sulfide using sulfate
as an electron acceptor [60]. Sulfur-oxidizing archaea (SOA) can use oxygen or nitrate as
electron acceptors to oxidize sulfur or sulfide to sulfate [61]. These metabolic processes
modify the material surface’s electron density and pH, promoting the metal’s dissolution
or pitting corrosion. Moreover, methane, hydrogen sulfide, and sulfate can react with the
metal, causing stress corrosion cracking or passivation layer destruction.

3. Mechanisms of MIC in the Marine Environment

From a microbial perspective, the selective attachment of microorganisms to metal
materials indicates their quest for survival. Microorganisms view metal materials as
energy “providers” and attach to them in order to survive [8]. Researchers have found
that alloy elements and surface microstructure affect the rate of steel’s MIC in different
ways. For example, both stainless steel and carbon steel are iron-based materials, but their
surface MICs differ significantly. The passivation film on stainless steel slows down the
corrosion process of microorganisms; thus, the corrosion rate of stainless steel is much
lower than that of carbon steel in seawater [62]. Although the corrosion mechanisms of
stainless steel, alloy steel, and iron-containing steel are different, there are similarities
in the microbial destruction processes; therefore, we aimed to summarize the common
corrosion mechanisms.

Although the role of microorganisms in the corrosion process has been comprehended
for over a century, potential hazards of MIC have largely been overlooked. Previously,
most work focused on checking the corrosion behavior of microorganisms, but molecular
mechanisms of microbial corrosion remain largely unknown. Classic theories, such as
the oxygen concentration difference cell theory (Figure 4a) and the corrosion product
(Figure 4b) hypothesis, suggested that microbes are not directly involved in the corrosion
process. However, these theories are limited and require more evidence in order to fully
explain the corrosion process. In 2009, Gu et al. proposed the biocatalytic cathodic sulfate
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reaction (BCSR) hypothesis based on bioenergetics and bioelectrochemistry, marking a
significant step forward in MIC research (Figure 4c) [63]. This hypothesis suggests microbial
corrosion is an active process in which microorganisms extract electrons directly from the
metal surface. Subsequently, numerous studies have been published to elucidate, support,
and refine the BCSR theory. For example, Xu’s starvation tests demonstrated that sulfate-
reducing bacteria can use iron as an electron donor to provide energy for maintenance even
without a carbon supply or electrons from external sources, which eventually resulted in
metal corrosion [64,65]. Xu et al. demonstrated that sulfur reduction occurs within SRB,
whereas the oxidation of insoluble iron takes place extracellularly. Therefore, electrons
generated from iron oxidation must first travel through an electron transfer chain to the cell
wall to participate in sulfate reduction. Thus, a novel theory called extracellular electron
transfer (EET) is presented to explain how electrons are transported extracellularly to erode
the metal, which is widely accepted as one of the molecular mechanisms for MIC.
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Figure 4d illustrates two types of EET processes between microorganisms and metal
surfaces: direct electron transfer (DET) and mediated electron transfer (MET) [66]. Direct
electron transfer refers to the short-distance transfer of electrons through cytochrome pro-
teins on the outer membrane surface or long-distance transfer via conductive biological
nanowires [67–69]. An example of direct electron transfer is seen in the sulfate-reducing
bacteria Desulfovibrio ferrophilus IS5, which can acquire electrons from solid sulfides through
an OMCs-like cytochrome-dominated pathway to respire and survive under starvation
conditions [70,71]. Tang et al. demonstrated that direct electron transfer is an important
mechanism for regulating microbial corrosion [72]. They showed that gene knockouts
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related to direct electron transfer in Geobacter sulreducens and Geobacter metallireducens can
lead to direct iron-to-microbial electron transfer, which can corrode stainless steel. Similarly,
Jin et al. proved that e-pili accelerated the electron transfer between Geobacter and metal
and promoted the microbial corrosion process [70]. Indirect electron transfer, on the other
hand, occurs when microorganisms secrete soluble electron transfer mediators such as
phenazines, flavins, quinones, humic acids, anthraquinone-2,6-disulfonate, and neutral red
to absorb electrons from the metal surface [73]. These mediators transfer the electrons to
the cell membrane and release them through c-type cytochrome. Riboflavin and FAD have
been found to accelerate the corrosion of 304 stainless steel and carbon steel by Desulfovibrio
vulgaris [74]. Similarly, researchers have utilized cross-fusion molecular biology techniques
to determine the role of phenazine compounds in regulating the corrosion of marine
P. aeruginosa bacteria at the gene level [75]. Specifically, the use of gene knockout technology
has revealed that phenazine compounds, encoded by phzH and other genes, act as extracel-
lular electron carriers [76]. This advancement promotes the study of the microbial corrosion
mechanism to a molecular level, providing a theoretical foundation for investigating the
corrosion mechanism of electroactive microorganisms. The findings confirm the crucial role
of electron transfer in microbial-mediated metal corrosion and provide a comprehensive
understanding of the mechanism of microbial regulation of metal corrosion.

4. Multi-Species Biofilms: Accelerating Corrosion through Metabolic Interactions
and EET

The corrosion of materials by multiple microbial biofilms is notably detrimental to
the natural environment, especially in the marine environment. Mixed microbial commu-
nities can form complex biofilm structures that create localized environments with low
oxygen concentrations, high nutrient levels, and corrosive media [77]. Different species
of microorganisms within a biofilm can interact with each other, leading to biochemical
reactions that intensify corrosion on the metal surface. The combined synergistic and com-
petitive interaction between multiple microorganisms usually leads to more severe MIC
than that caused by each single microorganism (Figure 5). For example, sulfate-reducing
and sulfur-oxidizing bacteria can work in tandem to degrade metallic materials, in which
the cooperation between these two bacteria species would result in the production of
organic acids, lower the pH of the environment, and accelerate the carbon steel corrosion
process [78]. Recent studies have demonstrated that the synergistic effects of different types
of microorganisms can hasten the corrosion process [79]. Nevertheless, this phenomenon
has mainly been established between two or three types of microorganisms, and research
on the corrosion mechanisms of more than five types of microorganisms remains scarce.
Therefore, further investigation is necessary in order to examine the corrosion mechanisms
of larger microbial communities.

Communication. Microbial community behavior regulation mechanisms significantly
influence the growth, structure, and function of biofilms. As shown in Figure 5a, to
regulate their collective behavior, bacteria employ a cell-to-cell communication system
known as “quorum sensing (QS)” [80]. Quorum sensing is defined as an environmental
sensing system that enables bacteria to monitor their population density and coordinate
group behavior through a wide range of chemical signaling molecules [80,81]. One classic
example of adverse biofilm effects is MIC. Additionally, QS mechanisms have been found
to affect biofilm formation positively and negatively. Therefore, QS plays a crucial role
in mediating MIC by modulating biofilm formation by the microbiome. The relationship
between quorum sensing and microbial corrosion was investigated by Umarevathi et al.,
whose results demonstrated that researchers can effectively inhibit the biocorrosion of
metals by QS inhibitors [81]. For instance, Methyl eugenol inhibited microbiome corrosion
of 316L stainless steel [82].
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Cooperation and competition. Microbial cooperation and competition interactions
are essential in accelerating metal corrosion (Figure 5b,c) [58]. Videla and Herrera (2005)
pointed out that competition between different types of microorganisms can exacerbate
corrosion, as it can lead to the establishment of more aggressive microbial communities [83].
Recent research has indicated that microbes can obtain electrons through electron shuttles
or nanowires to support their metabolic processes, potentially resulting in the corrosion of
metals [84–86]. As mentioned, the transfer of electrons can occur across different species,
thereby allowing microbial communities to collaborate in corroding objects in marine
environments. Iron-reducing bacteria and iron-oxidizing bacteria are two examples of
species that engage in electron transfer and can contribute to metal corrosion. Iron-oxidizing
bacteria use oxygen as an energy source, generating Fe (III) that can be transferred to iron-
reducing bacteria [87]. This exchange of electrons can encourage the formation of anodic
regions on metal surfaces, accelerating metal corrosion. Likewise, iron-oxidizing bacteria
and sulfur-reducing bacteria can also collaborate in electron transfer and contribute to
metal corrosion. For example, IOB forms biofilm on the surface of the material, creating a
micro-anaerobic environment for the growth of SRB, thereby promoting the corrosion of the
material [88]. Microbial competition occurs when different species compete for resources
such as nutrients, oxygen, and space, producing corrosive agents such as organic acids
and hydrogen sulfide (Figure 5c) [28]. For example, sulfate-reducing and acid-producing
bacteria compete for nutrients and produce organic acids that speed up metal corrosion in
marine environments [89].

Therefore, interspecies relationships of microorganisms in the marine environment
have a catalytic effect on metal corrosion. Comprehensive research is necessary in order to
examine the corrosion mechanisms of multiple microorganisms to better understand how
MIC occurs under natural conditions. These mechanisms are still under investigation, and
researchers are exploring the potential influence of microbial communities on infrastructure
and the marine environment.

The salinity, pH, temperature, dissolved solids, and biological factors in seawater
all affect the corrosion process. The synergistic action of these biological and abiological
factors alters the electrochemical process and accelerates the corrosion process caused by
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microorganisms [90]. For example, the corrosion rate of 6061 aluminum alloy by Escherichia
coli increases with the increase in seawater salinity [62]. These salinities not only maintain
the optimal environment for microbial growth but are also involved in the corrosion
damage process. Similarly, chloride ions can destabilize the oxide film, and SRB utilizes
sulfates in seawater to generate organic and inorganic precipitates, thereby destroying the
oxide film [91].

5. Marine MIC Inhibition

A key impetus behind the investigation of MIC mechanisms lies in the pursuit of
developing enhanced mitigation strategies. At present, MIC inhibition strategies encom-
pass several general categories, such as surface treatment, coating, material design, and
biological protection (Figure 6).
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5.1. Surface Treatment

Physical treatment. MIC is primarily caused by the adhesion and growth of marine
microorganisms on the material surface [12]. The formation of biofilms plays a crucial role
in inducing these phenomena. In the marine environment, periodic cleaning is a frequently
employed method by which to inhibit MIC [92]. However, this method necessitates harsh
operations and the cleaning effect in micro-areas is not conspicuous [92]. Thus, it is essential
to acknowledge the difficulty of removing the accumulated biofilms [93].

Cathodic protection. Cathodic protection (CP) has been widely used in marine engi-
neering, shipbuilding, and other fields, which can significantly extend the service life of
metal materials and inhibit the occurrence of MIC [94–96]. Some studies have investigated
the effectiveness of CP in suppressing MIC [94–96]. Cathodic protection is an electrochemi-
cal method used to safeguard metal structures against corrosion by applying an external
current [97,98]. By making the metal surface act as a cathode, this process effectively
hinders the migration of electrons during corrosion, leading to a reduction in the corrosion
rate. The cathodic potential created by cathodic protection is unfavorable for microbial
growth and biofilm formation, effectively inhibiting the development of MIC. In addition,
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cathodic protection may enhance metal corrosion sometimes. For example, the application
of cathodic protection against SRB or vibrio bacteria may demand an increase in cathodic
current, and a high cathodic current will increase the possibility of failure in corrosion
protection [13]. Due to this reason, the use of this technology must be approached with
great caution, and a comprehensive analysis of the biological and chemical factors involved
in the entire system is necessary.

5.2. Coating

Thus far, various techniques have been explored to prevent corrosion, and coating
technology has emerged as a particularly effective method by physically preventing corro-
sive agents from infiltrating. Anti-corrosion coatings have been developed using a variety
of materials, including organic, inorganic, and mixed coatings [99,100].

Organic coatings. Organic coatings are extensively used due to their remarkable
adhesion, flexibility, and corrosion resistance [101,102]. These coatings can be applied
through spraying, brushing, or rolling, and are typically utilized in marine applications,
such as hulls, pipes, and offshore structures [102]. Among the various types of organic
coatings, epoxy coatings are the most widely used for their anticorrosive properties in the
marine environment [101]. As a common polymer, epoxy coatings can form a hard and
durable layer that provides adequate protection to metals and prevents microbial corrosion.
Other polymer-based coatings such as polyurethane, polyethylene, and polypropylene
have also been employed. Polyurethane-based coatings have been shown to possess
excellent resistance to marine biofouling and biological corrosion [103]. These coatings
serve to create a smooth surface and inhibit the attachment of microorganisms. Conversely,
polyethylene and polypropylene coatings have exhibited good resistance to mechanical
wear and abrasion [103]. Nonetheless, despite the impressive anticorrosion performance
of current organic coatings, they remain susceptible to degradation in the presence of
complex flora.

Inorganic coatings. Inorganic coatings, also known as metallic coatings, such as
metal oxides, nitrides, and carbides, have garnered significant attention due to their high
resistance to corrosion and stability in extreme environments [104]. These coatings are
typically made up of metals, including copper, zinc, nickel, and aluminum, which have
a lethal impact on microorganisms. Among these, copper-based coatings are commonly
utilized due to their excellent antifouling properties [105]. They prevent the growth of
microorganisms by releasing copper ions [106]. Zinc-based coatings also exhibit promising
antifouling characteristics, while nickel-based coatings have demonstrated effectiveness
against sulfate-reducing bacteria [107]. Aluminum and its alloys offer exceptional corrosion
resistance and can be utilized in various marine applications.

Mixed coatings. Mixed coatings have emerged as a promising method with which to
enhance the protection against microbial corrosion by combining the benefits of organic and
inorganic coatings. These coatings are composed of two or more materials and have shown
improved corrosion resistance and mechanical properties [108]. Of particular interest is
the polymer-ceramic blend, which exhibits unique properties such as self-healing and
thermal stability, and has been the subject of significant research [109]. In addition to
exploring specific coating materials, various strategies have been developed to enhance
coating performance against microbial corrosion, including surface modification methods
such as plasma treatment [110], micro-arc oxidation [111,112], and sol–gel coating [99,100].
These techniques improve coating adhesion and durability. Another strategy is to add
antibacterial agents such as biocides, enzymes, and peptides into the coatings, which can
inhibit microbial growth and prevent biofilm formation on the coating surface [113].

5.3. Material Design

In microbial corrosion research, establishing a microbe–metal relationship has always
been a major challenge. Selective attachment to metal surfaces is a survival mechanism em-
ployed by bacterial communities, with the materials often regarded as energy providers [8].
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Additionally, alloying elements and surface microstructure impact biofilm formation [114].
Although stainless steel and carbon steel are iron-based materials, they exhibit different
surface MIC behaviors. The formation of a passivation film between biofilm and substrate
is closely related to Cr and Mo on stainless steel, leading to a lower corrosion rate com-
pared to carbon steel in seawater [8]. Consequently, researchers aim to enhance corrosion
resistance through material design and preparation.

Adding antibacterial elements and texture tuning. The use of various alloying ele-
ments to impart antimicrobial properties is a reliable and effective technique for enhancing
the corrosion resistance of steel. Copper, silver, and chromium are examples of metals
that can impede bacterial adhesion [115]. Typically, there are three primary antibacterial
mechanisms of metal elements: First, negatively charged substances on the membrane
and cell walls of bacteria interact with positively charged metal ions, leading to bacterial
death by disrupting their living environment [116,117]. Second, metal ions bind to protein
groups in bacteria, rendering enzymes inactive and denaturing membrane proteins, thereby
hindering bacterial division and proliferation [118]. Finally, metal ions can catalyze the
generation of reactive oxygen species (ROS) from oxygen in water and air, which can
inflict oxidative damage on vital bacterial components such as proteins, nucleic acids, and
lipids, leading to bacterial death [119]. For instance, 317L-Cu stainless steel (SS) exhib-
ited considerable antibacterial activity against Staphylococcus aureus, reducing sessile
cell counts by 98.3% compared to 317L SS [120]. In Escherichia coli-containing medium,
304L-Cu SS had shallower pitting depth and lower weight loss than 304SS, with 304L-
Cu SS’s corrosion current density being four times lower than 304SS’s due to copper’s
bactericidal effects [121,122]. Similarly, HNS-Cu and 2205-Cu DSS yielded comparable
outcomes [123,124]. Recently, microbial corrosion researchers have proposed enhancing
the antimicrobial corrosion resistance of metal materials by adjusting their metallographic
ratio or grain size at the microstructural level [125]. For example, acicular ferrite pipeline
steel is superior to traditional X80 steel in terms of antibacterial activity against SRB and
Pseudomonas aeruginosa, as well as pitting corrosion resistance [126].

5.4. Biological Protection

Microorganisms can play a dual role in the environment due to the complexity of their
metabolisms. Compared to conventional anticorrosion techniques, microbial corrosion
inhibition is more efficient and environmentally friendly. Some corrosive microorganisms
can protect metals by altering environments beneath the biofilm. In the actual marine envi-
ronment, the mechanism of microbial corrosion inhibition is more complex than traditional
strategies. The main mechanisms of microbiologically influenced corrosion inhibition
(MICI) comprise corrosion inhibitor secretion, biofilm, corrosion product shielding ef-
fects, alterations in the local micro-environment, and modifications in anodic and cathodic
processes [127].

Antimicrobial active substance. Microorganisms have been found to secrete a range
of compounds that can inhibit corrosion of metals. These include amino acids such as poly-
aspartic acid and γ-polyglutamic acid, biosurfactants, proteases, alkaline phosphatases, and
carbonic anhydrases [128–130]. Proteases, for example, can affect the pH of the environment
and promote the sedimentation of ions, which, in turn, helps to protect metals [131]. Studies
have shown that Bacillus sp. and Pseudomonas fluorescens secrete surfactants that can slow
down corrosion on stainless steel 304 and carbon steel ST37 [131,132]. Additionally, the
acidic extracellular secretions on the surface of microorganisms are rich in cations that can
adsorb and form a natural barrier layer on the metal surface, thus reducing the corrosion
rate of metals [131,132]. However, the potential for antimicrobial agents to dissolve into
the environment remains a topic of discussion.

EPS protection. Biofilms are formed by the adhesion and aggregation of microorgan-
isms, including bacteria and extracellular polymers (EPS). These biofilms exhibit specific
strength and viscosity and demonstrate several characteristics. Qu et al. (2015) found that a
nutrient-rich simulated seawater-based medium caused Bacillus subtilis to form biofilms on
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the surface of cold-rolled steel [133]. In the presence of Bacillus subtilis, a decrease in open
circuit potential (OCP) was observed when compared to sterile artificial seawater medium,
and corrosion inhibition was evident after the formation of the biofilm. The interactions
between various types of bacteria in biofilms and metals are complex and require further
research. EPS is a significant component of biofilm and contains polysaccharides with
carboxyl groups that contain C–O and C=O bonds [134]. These groups can be complexed
with iron and other metal ions to form a dense protective layer. Recent research indicates
that specific microorganisms can inhibit corrosion by forming biofilms in the actual marine
environment [135]. Bacillus subtilis has been identified as the main strain attached to the
natural biofilm on the surface of low alloy steel [136]. A pure culture of Bacillus subtilis was
isolated and purified, and its effect on the corrosion of low-alloy steel was studied [135].
Bacillus subtilis forms a uniform and hydrophobic biofilm composed mainly of polysaccha-
ride and starch fiber, which can withstand unfavorable physical and chemical conditions
and provide the biofilm with structural stability. The scanning vibrating electrode tech-
nique (SVET) results show that the current distribution on the sample surface is uniform,
indicating that Bacillus subtilis has formed a uniform film [135].

6. Conclusions

Developing novel materials and ensuring secure operations in the maritime industry
requires a comprehensive understanding of MIC. While recent research has primarily
focused on MIC by a single microbial strain, it is crucial to acknowledge that microor-
ganisms interact with each other in real ecosystems. Therefore, it is essential to replicate
conditions that closely resemble real-world situations. MIC is affected by various factors,
such as microbial metabolism, community distribution, attachment, and evolution, which
are challenging to quantify statistically. To develop effective strategies with which to inhibit
microbial corrosion, mechanistic and empirical models of mixed microbial corrosion should
be created, incorporating the evolution of dominant microbial community species and
changes in microbial community structure.

Though effective, traditional anti-corrosion strategies, such as corrosion inhibitors and
coatings, pose a risk of polluting the environment. MICI offers a promising and eco-friendly
way for exploring novel corrosion prevention strategies. For instance, biomineralization
and bacterial secretion substances can be combined to inhibit corrosion. Additionally, a new
intelligent self-repairing anti-corrosion layer can be designed by utilizing biomineralization
mechanisms. To ensure stable and lasting corrosion inhibition, other anti-corrosion methods
such as eco-friendly corrosion inhibitors, green anti-corrosion coatings, novel antibacterial
materials, and nanoparticles can also be integrated into MICI technology.
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