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Abstract: Gulls act as intermediaries in the exchange of microorganisms between the environment and
human settlements, including Salmonella spp. This study assessed the antimicrobial resistance and
molecular profiles of Salmonella spp. isolates obtained from fecal samples of gulls in the city of Porto,
Portugal, in 2008 and 2023 and from water samples in 2023. Antimicrobial susceptibility profiling
revealed an improvement in the prevalence (71% to 17%) and antimicrobial resistance between the
two collection dates. Two isolate collections from both 2008 and 2023 underwent serotyping and
whole-genome sequencing, revealing genotypic changes, including an increased frequency in the
monophasic variant of S. Typhimurium. qacE was identified in 2008 and 2023 in both water and fecal
samples, with most isolates exhibiting an MDR profile. The most frequently observed plasmid types
were IncF in 2008 (23%), while IncQ1 predominated in 2023 (43%). Findings suggest that Salmonella
spp. circulate between humans, animals, and the environment. However, the genetic heterogeneity
among the isolates from the gulls’ feces and the surface water may indicate a complex ecological and
evolutionary dynamic shaped by changing conditions. The observed improvements are likely due to
measures to reduce biological contamination and antimicrobial resistance. Nevertheless, additional
strategies must be implemented to reduce the public health risk modeled by the dissemination of
pathogens by gulls.

Keywords: gulls; seagulls; Salmonella spp.; Laurus spp.; antimicrobial resistance; multidrug-resistant
bacteria; whole-genome sequencing; serotyping

1. Introduction

The association between humans, animals (companion animals, livestock, and wildlife),
and the shared ecosystem facilitates the emergence and spread of zoonotic diseases [1].
Among the zoonotic pathogens, Salmonella spp. represent a public health threat due to
their wide distribution, adaptability to infect both humans and animals, and the potential
for carrying antibiotic resistance traits [2,3]. Salmonellosis is the second most reported
foodborne disease in Europe [4]. The European Union implemented control programs in
2004 to target Salmonella serotypes based on the detection and management of infections in
poultry production, processing, and distribution [5]. As a result, there was a notable decline
in reported human cases between 2004 and 2021, namely from 200,000 to 60,050 cases [4–6].
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Nevertheless, the environment still poses a risk for Salmonella spp. contamination because
they can survive in various sources for extended periods of time, including in water from
effluent discharge [1].

Antimicrobial resistance (AMR) carries severe implications for public health by reduc-
ing treatment efficacy, increasing mortality rates, and prolonging hospital stays [7,8]. It
also has a significant impact on the environment, which is widely recognized as a reser-
voir for AMR, serving as a conduit for the dissemination of pre-existing resistant bacteria
introduced through sewage, hospital wastewater, and agricultural waste and as a source
and facilitator of their evolution [9,10]. The concern also extends to animals, where AMR
affects the effectiveness of veterinary treatments but also contributes to the environmental
reservoir, potentially facilitating the transmission of AMR bacteria and genetic elements to
humans [11]. Therefore, there is an ongoing global health crisis driven by infectious diseases
and the escalating challenge of AMR, which may be disseminated in the environment.

Marine wild birds like gulls are important carriers of Salmonella spp. due to their
scavenging feeding behaviors and wide-ranging presence in different environments, and as
such, they can be considered sentinel species [12]. In addition, gulls have been suggested
as potential independent reservoirs capable of perpetuating and dispersing pathogenic
and resistant strains [13,14]. The remarkable increase in gull populations, coupled with
their ubiquity in urban and rural environments and their migratory capabilities, accelerates
the dissemination of Salmonella spp. across diverse geographical regions and among a
wide range of species, encompassing both humans and animals [15–20]. Indeed, recent
studies conducted in northern Europe revealed an occurrence of Salmonella spp. in gulls
of approximately 21%, and 19.2% of the Salmonella isolates exhibited multidrug-resistant
(MDR) profiles [21]. Typhimurium was the most frequently observed serotype [21]. In
contrast, Italy reported a prevalence of 1.3% of Salmonella spp. in gulls, and all strains were
identified as Salmonella arizonae, with a predominant resistance to sulfonamides [13].

The objective of this study was to assess the antimicrobial resistance and molecular
profiles of Salmonella spp. isolates obtained from fecal samples of gulls in the city of Porto,
Portugal, in 2008 and 2023. Additionally, surface water samples were also collected from
the same location in 2023, to evaluate environmental contamination. This study, to the best
of our knowledge, is the first to evaluate the presence of Salmonella spp. in gull populations
in the city of Porto.

2. Materials and Methods
2.1. Sample Collection

Fecal samples from wild gulls (Laurus spp.) were collected every 2 weeks during
two distinct time sampling periods: December 2007 to April 2008 (hereinafter 2008) and
December 2022 to April 2023 (hereinafter 2023). The sampling was performed in Porto,
the second largest city of Portugal. The metropolitan region of Porto has a population of
1.7 million and a GDP of EUR 34.5 billion. Two sample points were selected (Figure 1):
(i) Matosinhos beach (41◦10′35.0′′ N, 8◦41′33.7′′ W), a sandy beach bathed by Atlantic
waters (predominantly NW currents) and north of the Douro River estuary; (ii) Largo
António Calém (41◦8’53.6′′ N, 8◦39’12.2′′ W) in the northern margin of the Douro River
estuary. These points were selected based on their proximity to a densely populated urban
area, ease of access, and the frequent presence of gulls. Pools of 30 gull feces were collected
in sterile tubes using a sterile spatula, careful to avoid sediment contamination. Water
samples were also collected in 2023 from the same sampling points using 1 L sterile glass
bottles to evaluate environmental contamination. Both the water and fecal samples were
promptly placed in sterile containers and processed in the microbiology laboratory within
1 h. A total of 72 samples were analyzed: 24 fecal samples from 2008, 24 fecal samples from
2023, and 24 water samples from 2023.
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2.2. Isolation of Salmonella spp.

Isolation of Salmonella spp. on both fecal and water samples was performed using
conventional microbiological protocol recommended by ISO 6579 [22]. Briefly, fecal samples
were precultured in buffered peptone water (BPW, Liofilchem, Teramo, Italy) at a 1/10 (v/v)
dilution and incubated at 37 ◦C for 16 to 20 h. Next, 1 mL of the suspension was transferred
into Mueller Kauffmann tetrathionate broth (MKT, Biokar Diagnostics, Allonne, France)
and selenite cystine broth (SC, Merck, Darmstadt, Germany). Samples from the MKT and
SC were inoculated on selective agars: Hektoen enteric agar (HEA, Biokar Diagnostics) and
xylose lysine deoxycholate agar (XLD, Biokar Diagnostics) and incubated at 37 ◦C for 24 h.

Regarding water samples, a volume of 40 mL was filtered through 0.45 µm pore
size membrane filters (Whatman, Maidstone, UK). The filtered membrane was placed in
10 mL of BPW (Liofilchem, Waltham, MA, USA) at 37 ◦C for 24 h. After the incubation,
1 mL of the suspension was added to MKT and SC, and 10 µL were inoculated in MRSV.
Then, the samples were inoculated on both HEA and XLD. After selective isolation on
HEA and XLD, bacterial isolates from both fecal and water samples underwent biochem-
ical tests for lactose fermentation and urea hydrolysis using triple sugar iron agar (TSI,
Biokar Diagnostics, Allonne, France) and motility indole urea (MIU, Liofilchem) agars,
respectively, to differentiate Salmonella spp. from other non-lactose-fermenters of the family
Enterobacteriaceae. Bacterial isolates were further subjected to a rapid latex agglutinations
test (Thermo Scientific™ Oxoid™ Salmonella Test Kit, Waltham, MA, USA). Pure colonies of
Salmonella spp. from both fecal and water samples were stored in BPW supplemented with
1.5% glycerol (Biokar Diagnostics) at −20 ◦C for further analysis.

2.3. Salmonella Identification by Polymerase Chain Reaction (PCR)

Prior to polymerase chain reaction (PCR), DNA extraction from fresh and pure colonies
was performed by suspending a colony in 20 µL of TE buffer (Tris 10 mM + EDTA 1 mM,
pH = 8) and incubating for 15 min at 95 ◦C using a dry block heating thermostat (BIO
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TDB-100, Biosan, Riga, Latvia). Afterwards, a volume of 180 µL of sterile ultrapure water
was added to the suspension and centrifuged at 12,000 rpm for 3 min. The supernatant was
stored at −20 ◦C.

PCR was chosen over other molecular techniques due to its specificity in Salmonella
spp. identification by targeting the invA gene [23]. The detection of the invA gene was
performed using the primers InvA_R (5′GTGAAATTATCGCCACGTTCGGGCAA) and
InvA_F (5′TCATCGCACCGTCAAAGGAACC) [23]. The PCR was performed in a 25 µL
reaction mixture containing 12.5 µL of Master Mix (2× DreamTaq Hot Start PCR Master
Mix, NZYTech, Lisboa, Portugal), 1 µL each of forward and reverse primers (10 µM), and
4 µL of bacterial DNA. In a thermal cycler (MyCycler™, Biorad, Hercules, CA, USA), the
PCR conditions were as follows: an initial denaturation at 95 ◦C for 3 min, followed by
35 cycles of denaturation at 94 ◦C for 30 s, 54 ◦C for 30 s, 72 ◦C for 1 min, and a final
extension at 72 ◦C for 7 min. Genomic DNA of Salmonella typhimurium CECT 443 was used
as control in the PCR assay.

The 284-bp fragments present were subjected to electrophoresis on 1.5% (w/v) agarose
gel (Agarose Ultrapure grade, NZYTech) in 1×TBE at 100V for 45 min and stained with
Green Safe Premium (NZYTech). Ladder VII (NZYTech) was used as the molecular
weight marker.

2.4. Antimicrobial Susceptibility Testing

The resistance patterns of all Salmonella spp. isolates were determined with the
Kirby–Bauer method on Mueller–Hinton agar (MHA, Biokar Diagnostics) following the
Clinical Laboratory Standards guidelines [24]. The following antimicrobial drugs were used:
amoxicillin–clavulanate (AMC, 30 µg), amikacin (AMK, 30 µg), ampicillin (AMP, 10 µg),
aztreonam (ATM, 30 µg), cefazoline (CFZ, 30 µg), cefoxitin (FOX, 30 µg), cefotaxime (CTX,
30 µg), ceftazidime (CAZ, 30 µg), chloramphenicol (CHL, 30 µg), ciprofloxacin (CIP, 5 µg),
doxycycline (DOX, 30 µg), gentamycin (GEN, 10 µg), imipenem (IPM, 10 µg), levofloxacin
(LEV, 5 µg), nitrofurantoin (NIT, 30 µg), streptomycin (STR, 10 µg), sulfamethoxazole–
trimethoprim (SXT, 25 µg), tetracycline (TET, 30 µg), and tobramycin (TOB, 10 µg). All
antimicrobial disks were from Oxoid (Basingstoke, UK). Escherichia coli ATCC 25922 was
used as reference strain. All bacterial isolates were classified as susceptible, intermediate, or
resistant, using the current CLSI breakpoints [24]. Isolates resistant to 3 or more antibiotics
classes were defined as multidrug-resistant (MDR) bacteria [25].

In addition, the colistin resistance was assessed by determining the minimal inhibitory
concentrations (MICs) through the broth microdilution method as recommended by EU-
CAST [26]. Briefly, fresh colonies were suspended in cation-adjusted Mueller–Hinton broth
(CAMHB, Sigma-Aldrich, St Louis, MO, USA), and optimal density at 600 nm was adjusted
to 0.1. A final inoculum concentration of 5 × 105 colony-forming unit per mL (CFU/mL)
was achieved in each well containing two-fold serial dilutions of colistin (concentrations
ranged from 1 to 16 µg/mL) in a sterile 96-well U-shaped untreated polystyrene plate.
Microplates were incubated for 16–20 h at 37 ◦C and the MIC was determined as the
lowest concentration of colistin that prevented visible growth. Positive (without colistin)
and negative (without inoculum) controls were used. At least three independent assays
were conducted.

Statistical analysis was conducted on IBM SPSS Statistics 29, namely, using Fisher’s
exact test (or its extension for tables larger than 2 × 2, the Fisher–Freeman–Halton test)
to compare the frequencies of resistance strains between samples, considering α = 0.05.
This test was preferred to Chi-square due to the presence of low expected values (<5) in
several cells.

2.5. Creating a Salmonella Collection of 2008 and 2023

At least one Salmonella spp. isolate from each positive sample in 2008 and 2023 was
selected for serotyping and whole-genome sequencing (WGS) according to the antimicrobial
susceptibility profiles.
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2.5.1. Serotyping of Salmonella Isolates

The selected Salmonella isolates were serotyped using the slide agglutination method
for somatic and flagellar antigens (SSI Diagnostica, Hillerod, Denmark; Sifin diagnostics,
Berlin, Germany), according to the Kauffmann–White–Le Minor scheme [27].

2.5.2. WGS Characterization and Bioinformatics Analysis

Genomic DNA extraction was performed using the ISOLATE II genomic DNA kit
(Bioline, London, UK) and quantified in the Qubit fluorometer (Invitrogen, Waltham,
MA, USA) with the dsDNA HS assay kit (Thermo Fisher Scientific, Waltham, MA, USA),
following the manufacturer’s guidelines. The NexteraXT library preparation protocol
(Illumina, San Diego, CA, USA) was performed prior to cluster generation and paired-end
sequencing (2 × 150 bp or 1 × 250 bq) on a MiSeq or a NextSeq 550 instrument (Illumina)
according to the manufacturer’s instructions. Sequencing reads were submitted to the
QAssembly pipeline (v 3.61) of EnteroBase (https://enterobase.warwick.ac.uk/; accessed
on 1 July 2023) for quality control, trimming, and to generate assemblies of high quality.

Online bioinformatic tools from EnteroBase v5.1 (https://enterobase.warwick.ac.uk//;
accessed on 3 July 2023), were used to determine the sequence type (ST) and the core
genome multilocus sequence typing (cgMLST). Tools from the Center for Genomic Epi-
demiology (CGE, http://www.genomicepidemiology.org; accessed on 31 July 2023) were
also used to assess antibiotic resistance genes and point mutations (ResFinder 4.1); and
plasmid replicons (PlasmidFinder 2.1). Virulence genes were obtained from the Viru-
lence Factors of Pathogenic Bacteria (VFDB) platform (http://www.mgc.ac.cn/cgi-bin/
VFs/genus.cgi?Genus=Salmonella; accessed on 1 July 2023), using the Vfanalyser tool.
A comparative genomic analysis was made using the core genome MLST (cgMLST) of
the isolates in this study and of additional genomes obtained from EnteroBase (https:
//enterobase.warwick.ac.uk/; accessed on 1 July 2023), according to the country (Portugal)
and the year (2008 and 2023). The cgMLST analysis was based on the Salmonella schemes
provided by EnteroBase, encompassing 3002 loci [28] (https://enterobase.warwick.ac.uk/;
accessed on 10 July 2023) and the hierarchical clustering of cgMLST (HierCC) [29]. Based
on these data, a minimum spanning tree was constructed using both GrapeTree and NINJA
NJ tools [30].

2.5.3. Data Availability

The sequence reads were submitted to the European Nucleotide Archive (ENA) under
BioProject accession number PRJEB32515. The accession numbers of the genomic sequences
for each strain are listed in the Supplementary Material, Table S1.

3. Results
3.1. Detection of Salmonella spp.

In 2008, a total of 77 isolates were obtained from 17 (71%) fecal samples, while in 2023,
11 isolates were identified from 4 (17%) fecal samples and 7 were recovered from 3 (13%)
water samples (Table 1).

Table 1. Overview of the total samples collected, the percentage of positive samples, and the number
of Salmonella spp. isolates recovered from 2008 and 2023 samplings.

Sampling (n) Number of Positive
Samples

Number of Salmonella
spp. Detected

2008 F 24 17 (71%) 77

2023
F 24 4 (17%) 11

W 24 3 (13%) 7

https://enterobase.warwick.ac.uk/
https://enterobase.warwick.ac.uk//
http://www.genomicepidemiology.org
http://www.mgc.ac.cn/cgi-bin/VFs/genus.cgi?Genus=Salmonella
http://www.mgc.ac.cn/cgi-bin/VFs/genus.cgi?Genus=Salmonella
https://enterobase.warwick.ac.uk/
https://enterobase.warwick.ac.uk/
https://enterobase.warwick.ac.uk/
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3.2. Antimicrobial Susceptibility of Salmonella spp. Isolates

The antimicrobial susceptibility results of the Salmonella spp. isolates are displayed in
Table 2 and Figure 2. While categorized into resistant, intermediate, and susceptible groups,
the intermediate susceptibility results are presented and discussed as resistant, simplifying
the assessment of the relative frequency of antimicrobial resistance.

Regarding Salmonella spp. isolates recovered from fecal samples collected in 2008,
the predominant resistances were mainly toward streptomycin (70%), tetracycline and
doxycycline (39%), and ampicillin (27%). Among the 2023 collection, the leading resistances
were against streptomycin (83%), tetracycline and doxycycline (44%), ampicillin (44%),
and sulfamethoxazole–trimethoprim (11%). No antimicrobial resistance to colistin, fluoro-
quinolones, monobactams, nitrofurans, or carbapenems were observed in either collection
(Appendix A, Table A1).

When comparing the relative percentages of antibiotic resistance in isolates from
the fecal samples from both collection dates, resistance to cefazolin, chloramphenicol,
gentamicin, sulfamethoxazole–trimethoprim, and tobramycin was not observed in 2023,
and tetracycline resistance showed a small decrease (36% versus 39%). Furthermore, the
relative percentage of resistance to ampicillin (from 27% to 55%), doxycycline (from 27% to
55%), and streptomycin (from 27% to 55%) was higher in 2023. However, no statistically
significant differences were observed (Supplementary Material, Table S2). Resistance to
tetracycline was an exception, presenting a significant difference between the two years
(p = 0.018) due to a relative increase in the intermediate resistant isolates and a decrease in
the resistant and susceptible isolates in 2023. However, statistical analysis was limited by the
lower number of isolates from 2023 stemming from the decrease in Salmonella prevalence.

Comparing water samples and fecal samples from 2023, sulfamethoxazole–trimethoprim
presented a 29% resistance rate in the water samples, while the fecal isolates displayed com-
plete susceptibility. There was no statistically significant difference in antibiotic resistance
between the fecal and the water samples (Supplementary Material, Table S3).

MDR profiles were observed in 18 isolates (23%) from 2008. In 2023, MDRs were de-
tected in 8 (44%) from 2023, of which 6 (55%) were from fecal samples and 2 (29%) from water.

3.3. Molecular Analysis
3.3.1. Creating Salmonella Collections

A collection of Salmonella spp. isolates was created for each sampling time (2008
and 2023) based on the following criteria: (i) inclusion of at least one Salmonella spp.
isolate per sample and (ii) inclusion of all isolates with distinct antimicrobial suscepti-
bility profiles within the same sampling time. Therefore, 26 isolates from 2008 and 7
from 2023 were selected for serotyping and WGS. Antimicrobial resistance determinants,
ST, cgMLST, and plasmid replicons of Salmonella enterica from the 2008 and 2023 col-
lections are displayed in Tables 3 and 4, respectively. Virulence factors are detailed in
the Supplementary Material, Figure S1.

3.3.2. Salmonella Serotyping

A total of 13 distinct serotypes of Salmonella enterica were identified in 2008. The
S. Typhimurium serotype was the predominant serotype (35%, 9/26), followed by S. Derby
(15%, 4/26), S. Enteritidis (12%, 3/26), and a monophasic variant of S. Typhimurium
1,4,[5],12:i:- (8%, 2/26) (Table 3). Among the 2023 isolates, only six different serotypes were
observed, with monophasic variants of S. Typhimurium 1,4,[5],12:i:- and 1,4,[5],12:b:- being
the most prevalent (43%, 3/7) (Table 4). When comparing the 2023 selected isolates from the
water and fecal samples, the monophasic variant of S. Typhimurium was more frequently
detected in fecal samples (75%, 3/4) but not in water. Surface water samples exhibited
different serotypes (S. Saintpaul, S. Rissen, and S. Poona), which were not identified in the
fecal samples.



Microorganisms 2024, 12, 59 7 of 21

Table 2. Summary of the percentage of phenotypic antibiotic resistance of Salmonella spp. isolates recovered from gull feces and surface water from Porto, Portugal,
in 2008 and 2023.

Year Samples n Salmonella
spp. Isolates

AMP CFZ CHL DOX GEN STR SXT TET TOB
R I S R I S R I S R I S R I S R I S R I S R I S R I S

2008 F 24 77 27 0 73 1 10 88 5 0 95 39 0 61 5 0 95 27 43 30 16 0 84 39 0 61 7 0 94

2023
F 24 11 55 0 45 0 0 100 0 0 100 55 0 46 0 0 100 55 18 27 0 0 100 36 18 46 0 0 100
W 24 7 29 0 71 0 0 100 0 0 100 29 0 71 0 0 100 29 71 0 29 0 71 29 0 71 0 0 100

F: feces; W: water; n: number of samples; AMP: ampicillin; CFZ: cefazoline; CHL: chloramphenicol; DOX: doxycycline; GEN: gentamycin; STR: streptomycin; SXT: sulfamethoxazole–
trimethoprim; TET: tetracycline; TOB: tobramycin; R: resistant; I: intermediate; S: susceptible.
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Figure 2. Antimicrobial susceptibility of isolates from gulls’ feces (F 2008 and F 2023) and wa-
ter samples from the Douro River (W 2023). Aminoglycosides: gentamycin (GEN), streptomycin
(STR), tobramycin (TOB). Cephalosporins: cefazoline (CFZ). Miscellaneous: chloramphenicol (CHL).
Penicillin: ampicillin (AMP). Sulfonamides: sulfamethoxazole–trimethoprim (SXT). Tetracycline:
tetracycline (TET), doxycycline (DOX).

Table 3. Serotype, ST, cgMLST, phenotypic antimicrobial resistance profile, antimicrobial resistance
determinants, and plasmid replicons of the selected Salmonella isolates from gull feces in 2008.

Isolate Serotyping ST cgMLST
Phenotypic

Antimicrobial
Resistance Profile

Resistance Genes Plasmid

PT_SE0338 Braenderup 22 378210 None aac(6′)-Iaa, aac(2′)-Iia,
parC:T57S NF

PT_SE0339 Brandenburg 10,807 378218 STRI aac(6′)-Iaa, parC:T57S NF

PT_SE0350 Bredeney 897 378215
CHLR, DOXR, GENR,

STRI, SXTR, TETR,
TOBR *

aac(6′)-Iaa, aph(3′′)-Ib,
aph(4)-Ia, aph(6)-Id,

aadA1, aac(3)-IV, floR,
dfrA1, parC:T57S, qacE,

sul1, tet(A)

ColpVC,
IncHI1A(NDM-

CIT)
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Table 3. Cont.

Isolate Serotyping ST cgMLST
Phenotypic

Antimicrobial
Resistance Profile

Resistance Genes Plasmid

PT_SE0336 Derby 40 378219 DOXR, STRI, TETR aac(6′)-Iaa, fosA7, tet(B),
parC:T57S NF

PT_SE0173 Derby 40 336752 DOXR, STRI, TETR aac(6′)-Iaa, fosA7, tet(B),
parC:T57S NF

PT_SE0174 Derby 40 336759 STRI aac(6′)-laa, fosA7,
parC:T57S NF

PT_SE0346 Derby 40 378211 DOXR, STRR, TETR
aac(6′)-Iaa, aadA2b,

fosA7, parC:T57S, qacE,
sul1, tet(A)

Col(pHAD28)

PT_SE0248 Enteritidis 11 336819 None aac(6′)-Iaa IncFIB, IncFII

PT_SE0345 Enteritidis 11 378224 None aac(6′)-Iaa IncFIB(S),
IncFII(S)

PT_SE0171 Enteritidis 11 336751 None aac(6′)-Iaa IncFIB, IncFII

PT_SE0347 Give 7704 378214 None aac(6′)-Iaa, parC:T57S NF

PT_SE0337 London 155 378209 None aac(6′)-Iaa, parC:T57S NF

PT_SE0343 1,4,[5],12:i:- 34 378212 AMPR, STRR
aac(6′)-Iaa, aph(3′′)-Ib,
aph(6)-Id, blaTEM-1B,

sul2
IncQ1

PT_SE0348 1,4,[5],12:i:- 34 378220 DOXR, STRR, TETR
aac(6′)-Iaa, aph(3′′)-Ib,
aph(6)-Id, blaTEM-1B,

sul2, tet(B)

Col156, Inc-
FII(pRSB107),

IncQ1

PT_SE0349 Panama 48 378216 None aac(6′)-Iaa, parC:T57S NF

PT_SE0344 Rissen 469 378221 DOXR, TETR aac(6′)-Iaa, tet(A),
parC:T57S NF

PT_SE0247 Tennessee 319 336860 None aac(6′)-Iaa, fosA7,
parC:T57S NF

PT_SE0241 Typhimurium 19 336815 STRI aac(6′)-Iaa ColpVC, IncFIB,
IncFII

PT_SE0243 Typhimurium 19 336818 AMPR, CFZI, DOXR,
STRI, SXTR, TETR *

aac(6′)-Iaa, aph(3′′)-Ib,
aph(6)-Id, blaTEM-1B,
dfrA14, sul2, tet(A)

IncN

PT_SE0244 Typhimurium 19 336820 AMPR, CFZI, DOXR,
STRI, SXTR, TETR *

aac(6′)-Iaa, aph(3′′)-Ib,
aph(6)-Id, blaTEM-1B,
dfrA14„ sul2, tet(A)

IncN

PT_SE0245 Typhimurium 19 336817 AMPR, CFZI, DOXR,
SXTR, TETR *

aac(6′)-Iaa, aph(3′′)-Ib,
aph(6)-Id, blaTEM-1B,
dfrA14, sul2, tet(A)

IncN

PT_SE0340 Typhimurium 19 378211 AMPR, DOXR, SXTR,
TETR *

aac(6′)-Iaa, aph(3′′)-Ib,
aph(6)-Id, blaTEM-1B,
dfrA14, sul2, tet(A)

IncN

PT_SE0342 Typhimurium 19 378222 AMPR, CFZR, DOXR,
STRI, SXTR, TETR *

aac(6′)-Iaa, aph(3′′)-Ib,
aph(6)-Id, blaTEM-1B,
dfrA14, sul2, tet(A)

IncN

PT_SE0246 Typhimurium 19 336821 STRI aac(6′)-Iaa IncFIB, IncFII
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Table 3. Cont.

Isolate Serotyping ST cgMLST
Phenotypic

Antimicrobial
Resistance Profile

Resistance Genes Plasmid

PT_SE0242 Typhimurium 34 336816 AMPR, STRR
aac(6′)-laa, aph(3′′)-Ib,
aph(6)-Id, blaTEM-1B,

sul2
IncQ1

PT_SE0341 Typhimurium 34 378223 AMPR, DOXR, STRR,
TETR *

aac(6′)-Iaa, aph(3′′)-Ib,
aph(6)-Id, blaTEM-1B,
dfrA14, sul2, tet(B)

IncQ1

R Resistant; I Intermediate; * MDR profile; AMC: amoxicillin/clavulanic acid; AMP: ampicillin; CFZ: cefazoline;
CHL: chloramphenicol; DOX: doxycycline; NIT: nitrofurantoin; STR: streptomycin; SXT: sulfamethoxazole–
trimethoprim; TET: tetracycline; TOB: tobramycin; NF: not found.

Table 4. Sample type, serotype determination (SISTR1 Serovar), ST, cgMLST, phenotypic antimi-
crobial resistance profile, antimicrobial resistance determinants (ResFinder), and plasmid replicons
(PlasmidFinder) of the selected Salmonella isolates from gull feces and surface water from 2023.

Isolate Sample Type Serotyping ST cgMLST Antimicrobial
Resistance Profile

Resistance
Genes Plasmid

PT_SE0356 F Bovismorbificans 142 366510 STRI aac(6′)-Iaa

Col
(pHAD28),

Col156,
Col440I_1

PT_SE0351 F 1,4,[5],12:i:- 34 366505 AMPR, STRR

aac(6′)-Iaa,
aph(6)-Id,

aph(3′′)-Ib,
blaTEM-1B,

sul2

Col
(pHAD28),

IncQ1; p0111

PT_SE0353 F 1,4,[5],12:b:- 34 366511 AMPR, DOXR,
STRR, TETR *

aac(6′)-Iaa,
aph(6)-Id,

aph(3′′)-Ib,
blaTEM-1B,
sul2, tet(B)

IncQ1

PT_SE0352 F 1,4,[5],12:i:- 42 366507 None aac(6′)-Iaa,
parC:T57S IncI1-I(α)

PT_SE0355 W Poona 447 366506 STRI aac(6′)-Iaa,
parC:T57S NF

PT_SE0354 W Rissen 469 366509
AMPR, DOXR,
STRR, SXTR,

TETR *

aac(6′)-Iaa,
aadA1, aadA2,

blaTEM-1B,
drfA12,
mph(A),

parC:T57S,
qacE, sul1,

tet(A)

IncQ1

PT_SE0357 W Saintpaul 50 366508 STRI aac(6′)-Iaa NF

F: fecal; W: water; R Resistant; I Intermediate; * MDR profile; AMP: ampicillin; DOX: doxycycline; STR: strepto-
mycin; SXT: sulfamethoxazole–trimethoprim; TET: tetracycline; NF: not found.

3.3.3. WGS Characterization
Sequence Type Determination

In the 2008 collection, the most frequent STs were ST19 (27%, 7/26), ST34 (15%, 4/26),
ST40 (15%, 4/26), and ST11 (8%, 3/26) (Table 3). Among the 2023 samples, ST34 was the
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most frequently detected in fecal isolates (50%, 2/4), while no reoccurring ST was identified
in isolates from water (Table 4).

Antimicrobial Resistance Determinants

All isolates from the 2008 collection displayed at least one acquired resistance gene
commonly associated with aminoglycoside resistance (aac(2′)-Iia, aac(6′)-Iaa, aph(6)-Id,
aph(3′′)-Ib, aph(4)-Ia, aadA1, aac(3)-IV, and aadA2b) (Table 3). Eleven isolates showed resistant
genes associated with tetracyclines (tet(A), tet(B)) and sulfonamides (sul1, sul2), while nine
isolates displayed predictive resistance to β-lactams (blaTEM-1B). Seven isolates harbored
acquired genes linked to resistance to trimethoprim (drfA14, dfrA1), and five isolates carried
genes associated with fosfomycin (fosA7) resistance. Additionally, two isolates displayed
an antiseptic-resistant gene (qacE) and one demonstrated a florfenicol-related resistance
gene (floR).

Similar to the 2008 collection, all isolates from 2023 presented at least one acquired gene
related to aminoglycoside resistance (aac(6′)-Iaa, aph(6)-Id, aph(3′′)-Ib, aadA1, and aadA2)
(Table 4). Additionally, within the 2023 collection, three isolates carried acquired genes
related to penicillins (blaTEM-1B) and sulfonamides (sul1, sul2) resistance, while another
set of two isolates harbored predictive trimethoprim resistance (drfA12). Acquired genes
conferring predictive resistance to macrolides (mph(A)) was found in two other isolates.

No genes or mutations mediating resistance to carbapenems, colistin, monobactams,
or nitrofurans were found in either the 2008 or 2023 collections. Genes conferring resistance
to fosfomycin (fosA7) and phenicols (floR) were detected only in the 2008 isolates collection.

Furthermore, the phenotypic and genotypic results were consistent (Supplementary Material,
Tables S4 and S5).

Virulence Factors

According to VFDB, 216 genes from 14 different virulence factor classes were identified,
with a minimum of 74 and a maximum of 163 genes found in an isolate (Supplementary Material,
Figure S1). Fifty-four genes from six VF classes were found in all genomes. As expected,
genes associated with the Vi antigens were not found in any isolate. The gene-encoding
exotoxin SpvB was identified in five isolates from 2008 (three S. Enteritidis and two
S. Typhimurium), while the cdtB and pltA genes, belonging to the typhoid toxin group,
were both present in five isolates, four from 2008 (S. Brandenburg, S. Panama, S. Give, and
S. Bredeney) and one from 2023 (S. Poona). Other relevant genes, invA, hliA, and fimA, were
identified in 100%, 97%, and 61% of isolates, respectively.

Plasmid Replicons

WGS allowed the identification of 11 different plasmids in both the 2008 and 2023
isolates (Tables 3 and 4). IncF was the most prevalent plasmid replicon in 2008 (23%, 6/26),
while IncQ1 was the most frequent in 2023 (43%, 3/7).

Phylogenetic Analysis

The comparative analysis of gull isolates using hierarchical clustering with a cut-off
HierCC score ≤ 5 detected three distinct clusters among the isolates from 2008 (Figure 3,
red circles), each presenting a high degree of phylogenetic relatedness. Two Salmonella
Derby (PT_SE0336 and PT_SE0173) share a common HC5 cluster (HC5|336752) (α-circle),
with three allelic differences between them. Furthermore, two other S. Typhimurium
clusters were formed (β-circles): β1 (HC2|336817), composed of three clones (PT_SE0245,
PT_SE0340, PT_SE0342) with one allelic difference; and β2 (HC2|336818), composed of
two clones (PT_SE0243, PT_SE0244) with two allelic differences.
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The scale bar corresponds to the number of cgMLST allelic differences. Clusters are marked with
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Phylogenetic analysis (Supplementary Material, Figures S2 and S3) does not reveal
any close phylogenetic relation between gull and human isolates or gull and surface water
2023 isolates.

4. Discussion

This study aimed to assess the antimicrobial resistance and molecular profiles of
Salmonella spp. isolates in gull fecal samples from Porto, Portugal in 2008 and 2023, while
also investigating surface water samples from 2023. Previous research has indicated an
increased risk of transmitting pathogens, such as Salmonella spp., Campylobacter spp., and
Chlamydia spp., between infected gulls and human populations [31]. Salmonella spp. was
detected in both sampling years, but the positivity was lower in 2023 (17%) than in 2008
(71%). Nevertheless, the prevalence found in 2023 in Porto (17%) is higher than that found
in previous years (2020–2021) in three other locations in Portugal (2.8%) [20] and in southern
Italy (1.3%; 2016 to 2019) [13]. The prevalence in surface water samples from 2023 was 13%.
In 2013, Salmonella spp. have been previously isolated in two lakes in Porto, presenting
high susceptibility to all antibiotics tested [32].

Antimicrobial resistance was generally lower in 2023. Gulls, as sentinels for antimicro-
bial resistance and carriers of Salmonella spp., may offer valuable insights into the environ-
mental impact of measures addressing AMR in human and veterinary medicine [33–35].
Regulations aiming to control this serious public health problem have been in place since
2006, when the European Union prohibited the use of antibiotics as growth promoters [36].
Additional measures were taken in 2020, with the implementation of a categorization sys-
tem for antibiotics to restrict the use of those critically important for human medicine [37].
For example, streptomycin and ampicillin were categorized as critically important antibi-
otics to human medicine. The categorization of both antibiotics was based on the need
for their use in treatment of infections by Enterobacteriaceae from nonhuman sources and
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on the availability of options to treat serious infections, for example, the use of strepto-
mycin on enterococcal endocarditis, MDR tuberculosis, and MDR Enterobacteriaceae and
of ampicillin on Listeria and Enterococcus spp. infections [38]. In Portugal, community use
of antibiotics in medicine fell from 18.7 to 13.7 defined daily doses per 1000 inhabitants per
day between 2012 and 2021 [39], while veterinary use decreased from 166 to 150 mg per
population corrective unit between 2010 and 2021 [40] (Appendix A, Figures A1 and A2).

Resistance to antibiotics from category C (caution) that was observed in gull feces
isolates from 2008 were no longer found in 2023, except for streptomycin, which increased
(29% to 55%). Moreover, 29% of the isolates from water were resistant to sulfamethoxazole–
trimethoprim, while all isolates presented resistance or intermediate resistance to strepto-
mycin, suggesting that water may be a potential reservoir of antimicrobial resistance genes.
An increase in resistance to antibiotics from category D (precaution) was observed between
the two collections, namely, to doxycycline (39% to 55%) and ampicillin (27% to 55%).
These results are in accordance with an increased use of aminoglycosides and penicillin
in veterinary medicine in Portugal, but not with a decreased use of tetracycline [40]. The
decreasing trend in resistance to antibiotics from categories B and C and the increasing
trend in resistance to category D antibiotics is in accordance with those documented on
livestock in European member states [41]. Despite European regulations on antibiotic use,
MDR isolates were identified in both years, exhibiting a higher relative percentage in 2023
(23% and 44% in 2008 and 2023, respectively) but lower absolute frequency (18/77 against
8/18 in 2023). This suggests an increased likelihood of encountering MDR strains despite
an overall improving trend in antimicrobial resistance. In 2023, surface water and gull feces
presented Salmonella spp. with resistance to two critically important antibiotics to human
medicine, streptomycin and ampicillin.

Regarding the collections of both 2008 and 2023, the phenotypic antimicrobial sensi-
tivity results and WGS analysis were in alignment. In addition, antiseptic-resistant genes
(qacE) were also identified in 2008 and 2023 in both the water and fecal samples, most
isolates exhibiting an MDR profile (75%). Indeed, bacterial exposure to quaternary ammo-
nium compounds may result from household, industrial, and clinical uses (e.g., present in
effluents or waste) [42], and it could lead to antibiotic resistance through the selection of
class 1 integrons [43]. The most frequently observed plasmids (23%) of Salmonella isolates
from 2008 were IncF (IncFIB and IncFII), which are widely distributed in the Enterobacte-
riaceae family [44] and may carry bacterial determinants of virulence [44,45]. Conversely,
IncQ1 was predominant (43%) in 2023, which could be involved in the dissemination of
tetracycline resistant genes [46].

There was a decrease in the diversity of Salmonella serotypes found in gulls’ feces in
2023 compared with 2008. The monophasic variant of S. Typhimurium was predominant
in 2023 (50%) compared with the common serotypes identified in 2008, which included
S. Typhimurium, S. Derby, and S. Enteritidis. These serovars have been associated with
foodborne illnesses in the European Union, namely, S. Enteritidis (54.6%), S. Typhimurium
(11.4%), the monophasic variant of S. Typhimurium (8.8%), and S. Derby (0.93%) [4].
Additionally, a cluster of the monophasic variant of S. Typhimurium was detected in
clinical samples from Porto spanning the years 2001 to 2011 [47]. Despite the isolation of
five isolates of a monophasic variant of S. Typhimurium from both collections, only one
exhibited multidrug resistance (MDR). It is worth noting that this serotype often exhibits
MDR profiles [48,49].

The predominant sequence type in 2008 was ST19, likely due to the frequency of the
S. Typhimurium [50]. In 2023, ST34 was the most frequent type, linked to a monophasic
variant of S. Typhimurium [50], which has been associated with foodborne outbreaks
in Europe and China [51,52]. Moreover, S. Rissen ST469 was identified in samples from
2008 (PT_SE0344) and 2023 (PT_SE0354). While serovar Rissen ST469 is not frequently
associated with clinical cases, it has been isolated previously in the Azores between 2014
and 2017, suggesting that this serovar is disseminated in the Portuguese islands and the
mainland [53].
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No hierarchical clustering (≤5 alleles) between feces and water was found, likely
resulting from the difficulty in relating ecologically distinct populations of Salmonella spp.,
considering the impact of genetic drift, plasmid exchange, and geographical isolation on
their genomes [54]. Nonetheless, the environment has already been proven to play an
important role in the propagation of Salmonella spp. and antimicrobial resistance [55].
While no distinct pathway of environmental exposure has been identified, the presence
of serotypes previously associated with human infections (e.g., S. Typhimurium) poses a
public health threat [56]. Moreover, resistance strains were also isolated from the Douro
River’s surface waters. Indeed, improvements in wastewater treatment infrastructure (e.g.,
an increase in tertiary treatment from 24% to 51% between 2009 and 2018) could have been
undermined by emergency discharge of untreated effluents [57].

Gulls could be exposed to Salmonella through contact with effluents, waste, and other
animal species [58]. The proximity to a high-population-density area favor scavenging feed-
ing habits, which expose birds to urban waste and human food sources. Indeed, more than
81% of gull pellets in Porto contained anthropogenic debris (i.e., glass, plastic) in 2018 [59].
Migratory behaviors could further contribute to the dissemination of serotypes and resis-
tance genes across borders (e.g., along the European and African Atlantic coasts) [60]. Thus,
gulls might increase the risk of transmission to humans through the contamination of water,
fishing ports or fishing farms, and beaches [31]. In fact, gulls (Laurus spp.) have previously
been associated with the spread of AMR Escherichia coli from a landfill to a river [61].

The city of Porto is populated by 593 to 813 Laurus michahellis [62]. Gulls, as au-
tochthone and migratory species, are protected by national law, which means that popula-
tion control, through culling or the destruction of eggs or nests, is prohibited [63]. Therefore,
population control relies solely on controlling food sources, using deterrents (e.g., placing
bird spikes on building facades), and increasing awareness [64]. The potential for the
dissemination of pathogens may challenge this stance, even though gulls can act as either
a source or as a vector. A decrease in Salmonella spp. prevalence and antibiotic resistance
suggests that combined measures (e.g., restrictions on antibiotic use, wastewater treatment)
may reduce the role of gulls as reservoirs. Either way, gulls remain valuable indicators of
microbial status, bridging the gap between human populations and the environment.

5. Conclusions

Successful interdisciplinary measures on reducing biological contamination and an-
timicrobial use contribute to the decrease in the prevalence of Salmonella spp. and antibiotic
resistance. Yet, we show that surface waters of the Douro River, as well as gulls’ feces,
harbor resistant strains of Salmonella serovars usually associated with human infections.
An increased frequency of the monophasic variant of S. Typhimurium was also observed,
raising public health concerns due to its association with multidrug-resistant (MDR) pro-
files and outbreaks throughout Europe and China. Salmonella spp. are evidenced to be
circulating between the environment, animals, and human populations. However, source
identification is still a challenge for several reasons, including the continuous genotypic and
phenotypic changes in Salmonella spp. while adjusting to their environment. Limiting the
exposure of gulls to biological contamination and implementing population control in areas
of high population density, by reducing scavenging opportunities, for example, could help
reduce the public health risk posed by these reservoirs and/or vectors of pathogenic agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12010059/s1, Figure S1: Heatmap illustrating
the virulence factor (VF) classes identified in the genome of the 33 selected Salmonella strains from
both the 2008 and 2023 collections; Figure S2: Comparative GrapeTree analysis of the 2008 Salmonella
isolates from gulls examined in this study and human clinical isolates in Portugal; Figure S3: Compar-
ative GrapeTree analysis of the 2023 Salmonella isolates from gulls and water examined in this study;
Table S1: Accession numbers for the selected Salmonella isolates; Table S2: Fisher’s exact test com-
paring antibiotic resistance between feces from 2008 and 2023; Table S3: Fisher’s exact test com-
paring antibiotic resistance between feces and water samples from 2023; Table S4: Summary of
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phenotypic resistance and resistance genes by the antibiotic class of the selected isolates from 2008;
Table S5: Summary of phenotypic resistance and resistance genes by the antibiotic class of the selected
isolates from 2023.
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Appendix A

Table A1. Summary of the number of Salmonella spp. detected and phenotypic antibiotic resistance of
Salmonella spp. isolates recovered from the 2008 and 2023 samplings.

2008 Sampling (n) 2023 Sampling (n)

Feces Total Feces Water

Number of Salmonella
spp. detected 77 18 11 7

Antimicrobial
resistance profile

AMC

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

AMK

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

AMP

R 21/77 (27%) 8/18 (44%) 6/11 (55%) 2/7 (29%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 56/77 (73%) 10/18 (56%) 5/11 (45%) 5/7 (71%)

ATM

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

CAZ

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)
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Table A1. Cont.

2008 Sampling (n) 2023 Sampling (n)

Feces Total Feces Water

CFZ

R 1/77 (1%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 8/77 (10%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 68/77 (88%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

CHL

R 4/77 (5%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 73/77 (95%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

CIP

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

COL

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

CTX

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

DOX

R 30/77 (39%) 8/18 (44%) 6/11 (55%) 2/7 (29%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 47/77 (61%) 10/18 (56%) 5/11 (45%) 5/7 (71%)

FOX

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

GEN

R 4/77 (5%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 73/77 (95%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

IPM

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

LEV

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

NIT

R 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 77/77 (100%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

STR

R 21/77 (27%) 8/18 (44%) 6/11 (55%) 2/7 (29%)

I 33/77 (43%) 7/18 (39%) 2/11 (18%) 5/7 (71%)

S 23/77 (30%) 3/18 (17%) 3/11 (27%) 0/7 (0%)

SXT

R 12/77 (16%) 2/18 (11%) 0/11 (0%) 2/7 (29%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 65/77 (84%) 16/18 (89%) 11/11 (100%) 5/7 (71%)
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Table A1. Cont.

2008 Sampling (n) 2023 Sampling (n)

Feces Total Feces Water

TET

R 30/77 (39%) 6/18 (33%) 4/11 (36%) 2/7 (29%)

I 0/77 (0%) 2/18 (11%) 2/11 (18%) 0/7 (0%)

S 47/77 (61%) 10/18 (56%) 5/11 (45%) 5/7 (71%)

TOB

R 5/77 (6%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

I 0/77 (0%) 0/18 (0%) 0/11 (0%) 0/7 (0%)

S 72/77 (94%) 18/18 (100%) 11/11 (100%) 7/7 (100%)

AMC: amoxicillin–clavulanate; AMK: amikacin; AMP: ampicillin; ATM: aztreonam; CFZ: cefazoline;
FOX: cefoxitin; CTX: cefotaxime; CAZ: ceftazidime; CHL: chloramphenicol; CIP: ciprofloxacin; DOX: doxy-
cycline; GEN: gentamycin; IMP: imipenem; LEV: levofloxacin; NIT: nitrofurantoin; STR: streptomycin;
SXT: sulfamethoxazole–trimethoprim; TET: tetracycline; TOB: tobramycin; R: resistant; I: intermediate;
S: susceptible.
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Figure A1. Use of antibiotics in human medicine in Portugal from 2012 to 2021: community use (A)
and hospital use (B) [39].
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Figure A2. Use of antibiotics (tetracycline, penicillin, aminoglycosides, sulfonamides) in veterinary
medicine in Portugal from 2010 to 2021 [40].
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