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Abstract: The present work assessed the experimental susceptibility of Nyssomyia antunesi and
Lutzomyia longipalpis to Leishmania (Viannia) lainsoni and L. (V.) lindenbergi. A L. (Leishmania) chagasi–Lu.
longipalpis combination was used as a susceptible control. Wild-caught Ny. antunesi and laboratory-
bred Lu. longipalpis were membrane-fed on blood with a 5 × 106/mL log-phase promastigote
culture suspension and dissected on days 2 and 8 post-blood meal (pbm) for analysis focused on
the assessment of parasitoses, as well as placement and promastigote morphotyping. Survival
curves were constructed. In all combinations, promastigotes were observed on day 8 pbm. For both
Leishmania species, in Lu. longipalpis, the presence of parasites was observed up to the stomodeal
valve, while in Ny. antunesi, the presence of parasites was observed up to the cardia. There were no
significant differences in parasitosis between L. (V.) lainsoni and L. (V.) lindenbergi in either Ny. antunesi
or Lu. longipalpis. Six morphological promastigote forms were distinguished in Giemsa-stained gut
smears. The survival curves of all combinations decreased and were affected differently by several Lu.
longipalpis–parasite combinations, as well with Lu. longipalpis–uninfected blood. These findings stress
Lu. longipalpis as experimentally susceptible to Leishmania spp. and suggest the putative susceptibility
of Ny. antunesi to L. (V.) lainsoni and L. (V.) lindenbergi.

Keywords: Nyssomyia antunesi; Lutzomyia longipalpis; Leishmania lainsoni; Leishmania lindenbergi;
experimental infection

1. Introduction

Phlebotomines (Diptera: Psychodidae) are medically important insects implicated in
the transmission of several pathogens, mainly Leishmania protozoa (Kinetoplastea: Try-
panosomatidae) [1], which are the agents of leishmaniases, a group of neglected tropical
diseases affecting millions of people worldwide [2].

Leishmania parasites have a digenetic life cycle and infect a wide range of verte-
brate reservoir hosts and invertebrate vectors, mainly phlebotomines (Diptera: Psychodi-
dae) [3–5]. The development of Leishmania within the phlebotomines is a complex process:
after the ingestion of infected blood, amastigotes (nonflagellated forms) differ from pro-
mastigotes (flagellated forms) inside the insect’s gut [6], overcoming adverse conditions
such as physico-chemical barriers and excretion flow [7–10]. Several subtypes of promastig-
ote forms are recognized according to their morphology, including procyclic, haptomone,
nectomonad, paramastigote and metacyclic [11], the latter of which are infective to verte-
brate hosts [12,13].
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A fundamental aspect in determining whether phlebotomines are incriminated by
the transmission of Leishmania is the differentiation of infectious metacyclic forms [14]. In
this same sense, the parasitosis and placement of late-stage infection constitute important
parameters for evaluating the vector competence of a particular phlebotomine species for
the developmental success of a given Leishmania sp. [15].

In the Brazilian Amazon, a particular tegumentary leishmaniasis (TL) transmission
scenario occurs mainly because of the etiology of L. (Leishmania) amazonensis, L. (Viannia)
lainsoni and L. (V.) lindenbergi in the forest fragments of Belém city [16]. In these TL foci,
with respect to L. (L.) amazonensis, Bichromomyia flaviscutellata has well-established vector
evidence [17]; for L. (V.) lainsoni, species of Trichophoromyia, particularly Th. Ubiquitalis and
Th. brachipyga, have been shown to be involved in transmission [18]; ultimately, for L. (V.)
lindenbergi, Nyssomyia antunesi has received attention due to its abundance, dominance,
spatiotemporal convergence with human disease, blood feeding on human and potential
reservoirs of Leishmania [19,20]. Despite the lack of evidence of true and species-specific
identifiable Leishmania infection, the vector role of Ny. antunesi remains undefined, not
advancing on suspect status.

However, studies on the interactions between Leishmania and its vectors are required
to advance the understanding of the processes involved in parasite development and
transmission [6]. Some parasite–vector combinations have been studied under laboratory
conditions; however, the majority of binomials inferred by field evidence still require
laboratory investigation. Therefore, the present study aimed to fill the gap in vector
knowledge on the development of L. (V.) lainsoni and L. (V.) lindenbergi in Ny. antunesi and
Lu. longipalpis. A L. (L.) chagasi–Lu. longipalpis combination was used as a ‘positive control’.

2. Materials and Methods
2.1. Parasites

The World Health Organization reference strains of three different Leishmania species
maintained in the cryobank of the ‘Ralph Lainson’ Leishmaniases Laboratory, Instituto
Evandro Chagas (IEC), Belém, Brazil, were used: L. (V.) lainsoni (MHOM/BR/1981/M6426),
L. (V.) lindenbergi (MHOM/BR/1996/M15729) and L. (L.) chagasi (MHOM/BR/1981/M6445).
Promastigotes were cultured in Schneider’s insect medium (SIM) supplemented with
100 U/mL penicillin, 100 g/mL streptomycin and 10% heat-inactivated fetal bovine serum.
To carry out the subsequent experimental infection of phlebotomines, low-passage parasites
were used. Before being mixed with the blood, the samples were washed by centrifugation
(2400× g for 5 min) and resuspended in a sterile container with a saline solution [5].

2.2. Phlebotomines

Wild-caught Ny. antunesi were obtained from the Bosque Rodrigues Alves-Jardim
Botânico da Amazônia (1◦25′48′′ S; 48◦27′25′′ W), an urban park of Belém city in which
the phlebotomine fauna has already been surveyed [21]. Captures were performed with
CDC light traps set 1.5 m above ground level (n = 4) and 20 m above ground level (n = 2),
operating from 6:00 p.m. to 6:00 a.m., from May to August 2023. The phlebotomines
were visually screened, aspirated from the primary cage in the field, and transported to
the laboratory under 80 ± 10% relative humidity and 10% glucose solution offered ad
libitum [22,23]. The phlebotomines were immediately transferred to a secondary nylon
cage. Congested, gravid or semigravid females were excluded from the experiments [24].

Laboratory-bred Lu. longipalpis from an established Amazonian closed colony (Abaete-
tuba F236) were used. For the tests, adult female specimens 5–9 days old were used [5,25]
and supplied with 10% glucose solution ad libitum [26] up to 24 h before the assays [27,28].

2.3. Parasite–Vector Systems

Experimental infections were carried out according to the artificial blood feeding
protocol proposed by Sánchez Uzcátegui et al. [24]. Briefly, the groups of both wild-caught
Ny. antunesi and laboratory-bred Lu. longipalpis were artificially fed in 30 cm3 nylon cages
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for 3 h through a sausage membrane installed in a circulator device containing previously
heat-inactivated serum (56 ◦C for 1 h) human blood and 5 × 106/mL promastigotes [5] from
log-phase cultures [29]. For Lu. longipalpis, females that had fed on uninfected blood were
also assessed. The engorged females were confined to 200 mL flasks, and the recipients were
lined with moistened filter paper and given a 10% sucrose diet until dissection [5]. Females
from each species/experiment were divided into two groups for dissection: one group was
dissected before the females defecated (early stage of infection) on day 2 post-blood meal
(pbm), and the other group was dissected after defecation (late stage of infection) on day
8 pbm [5,25].

2.4. Parasite Detection and Development

Phlebotomines were monitored daily to account for dead females, and survival curves
were constructed. Dead females were dissected, and only Leishmania-positive females were
counted [30]. The proportion survived (lx) was calculated according to Rabinovich [31].
Survivorship curves were obtained for different parasite–vector combinations and were
compared by the log-rank test using BioEstat 5.3 software [32]. On days 2 and 8 pbm, the
females were removed from the oviposition glasses using a Castro aspirator, and placed
at 4 ◦C for thermal immobilization by cooling. The females were washed once with a
0.9% NaCl solution plus 5% neutral detergent, and twice with 0.9% NaCl for subsequent
dissection. Phlebotomines were placed in a drop of phosphate-buffered saline (PBS) on
a microscope slide, and the head was separated from the thorax before the intestine was
extracted through the apex of the abdomen. The intestines were individually observed
under an optical microscope and examined to determine the development of flagellates in
the guts [33] following the taxonomic statement of Lainson and Shaw [34], and classified
with the semiquantitative parasitosis scale described by Myskova et al. [15], whereby
parasite loads were graded as absent (0 parasites per gut), weak (less than 100 parasites per
gut), moderate (100–1000 parasites per gut) or heavy (more than 1000 parasites per gut).
Promastigotes from the gut were Giemsa-stained and microscopically assessed to infer
distinguishable evolutive forms based on morphologic/morphometric criteria modified by
Ticha et al. [5], focusing on identifying metacyclic-like forms on day 8 pbm. All experiments
were repeated at least three times for each parasite–vector combination. Parasitoses were
compared using the G test with BioEstat 5.3 software [32]. In all statistical analysis, p ≤ 0.05
was considered to indicate a 95% confidence interval.

2.5. Ethical Approval

The capture and processing of invertebrate fauna (phlebotomines) were authorized by
the ‘Sistema de Autorização e Informação em Biodiversidade’ under protocol no. 70142-2.
Animals used for the blood feeding of phlebotomine colonies were maintained and handled
at the Instituto Evandro Chagas animal facility, in accordance with institutional guidelines
and Brazilian legislation (Federal Law no. 11.794, 8 October 2008). In vivo blood feeding
standard operational procedures were approved by the Ethics Committee on Animal Use
(CEUA/IEC), under certificate no. 30/2021.

3. Results
3.1. Susceptibility of Ny. antunesi to L. (V.) lainsoni and L. (V.) lindenbergi

In total, 43 blood-fed Ny. antunesi females were dissected, 22 of which were exposed
to L. (V.) lainsoni and 21 to L. (V.) lindenbergi. On day 2 pbm, the infection rates were 90%
for both parasite–vector combinations, recording weak, moderate and heavy parasitoses,
respectively; 50%, 10% and 30%, respectively, for L. (V.) lainsoni; and 0%, 30% and 60%,
respectively, for L. (V.) lindenbergi. Promastigotes were limited to the endoperitrophic space
within the ingested blood meal. On day 8 pbm, the infection rates were 16% and 36%
for L. (V.) lainsoni and L. (V.) lindenbergi, respectively. For L. (V.) lainsoni, parasitoses were
assessed as 8% weak and 8% moderate, whereas for L. (V.) lindenbergi, parasitoses were
assessed as 9% weak, 18% moderate and 9% heavy (Figure 1A). The results from the assess-
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ment of parasitoses between these Leishmania species were not significant (G test = 2.2148,
df = 3, p = 0.5290).
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Figure 1. Infection rates and parasitoses of Leishmania (Viannia) lindenbergi
(MHOM/BR/1996/M15729) and L. (V.) lainsoni (MHOM/BR/1981/M6426) in (A) Nyssomyia antunesi
and (B) Lutzomyia longipalpis. The well-known susceptible L. (L.) chagasi–Lu. longipalpis combination
was also performed as the control. Intestines were dissected on days 2 and 8 post-blood meal (pbm).
Parasitoses were classified into four categories: weak (less than 100 parasites per gut), moderate
(100–1000 parasites per gut) and heavy (more than 1000 parasites per gut). The number of females
evaluated can be found above the columns.

Regarding the placement of parasites in the gut, as promastigotes were limited to the
endoperitrophic space on day 2 pbm, this parameter was only considered on day 8 pbm,
when 83% of the Ny. antunesi–L. (V.) lainsoni combinations did not sustain infection; 8.3%
presented peripylarian development with colonization in the hindgut (HG) and abdominal
midgut (AMG); and 8.3% presented suprapylarian development, with colonization in
the AMG, thoracic midgut (TMG) and cardia (CA) (Figure 2A). In Ny. antunesi–L. (V.)
lindenbergi combinations, 63.6% of the strains did not sustain infection, and 36% presented
suprapylarian development, 18.2% colonization in the AMG and 18.2% suprapylarian
development with colonization in the AMG, TMG and CA (Figure 2B).
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Figure 2. Diagramatic placement of Leishmania spp. in the gut of Nyssomyia antunesi on day 8 post-
blood meal (pbm). (A): Leishmania (Viannia) lainsoni (MHOM/BR/1981/M6426); (B): L. (V.) lindenbergi
(MHOM/BR/1996/M15729). HG, hindgut; MTs, Malpighian tubules; AMG, abdominal midgut;
TMG, thoracic midgut; CA, cardia; SV, stomodeal valve. Percent distribution of localization patterns
among the infected females is shown in the top right of each diagram.

3.2. Susceptibility of Lu. longipalpis to L. (V.) lainsoni and L. (V.) lindenbergi

In total, 180 blood-fed Lu. longipalpis females were dissected, 82 were exposed to L.
(V.) lainsoni and 98 were exposed to L. (V.) lindenbergi. On day 2 pbm, the infection rates
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were 81% for L. (V.) lainsoni and 98% for L. (V.) lindenbergi, with promastigotes found in
the endoperitrophic space only within the ingested blood meal. Parasitoses were assessed
as 10% weak, 23% moderate and 48% heavy for L. (V.) lainsoni, whereas parasitosis were
assessed as 5% weak, 8% moderate and 85% heavy for L. (V.) lindenbergi. On day 8 pbm, the
infection rates were 29% for L. (V.) lainsoni and 38% for L. (V.) lindenbergi, with parasitoses
assessed as 10% weak, 7% moderate and 12% heavy for L. (V.) lainsoni, whereas parasitosis
were assessed as 9% weak, 5% moderate and 24% heavy for L. (V.) lindenbergi (Figure 1B).
The results from the assessment of parasitoses between these Leishmania species were not
significant (G test = 1.7129, df = 3, p = 0.6341).

Regarding the presence of parasites in the gut on day 8 pbm, within 28.7% of the Lu.
longipalpis–L. (V.) lainsoni positive combinations, 2.4% presented with hypopylarian, 14.3%
with peripylarian and 12% with suprapylarian development. The peripylarian patterns
included colonization in the HG, AMG, TMG, CA and stomodeal valve (SV) (9.5%), and
in the HG, AMG and TMG (4.8%). The suprapylarian patterns included colonization in
the AMG, TMG, CA and SV (4.8%), and in the TMG (4.8%) and AMG (2.3%) (Figure 3A).
Within 37.8% of the Lu. longipalpis–L. (V.) lindenbergi positive combinations, hypopylarian
(5.2%), peripylarian (10.3%) and suprapylarian (22.3%) development was observed. The
hipopylarian pattern included colonization in the HG (5.2%); peripylarian comprised
colonization in the HG and AMG (8.6%), and MTs and AMG (1.7%); and more frequent
suprapylarian colonization was in the AMG (17.2%), while other infection patterns did not
exceed 2% (Figure 3B).

Microorganisms 2024, 12, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 3. Diagramatic placement of (A) Leishmania (Viannia) lainsoni (MHOM/BR/1981/M6426), (B) 
L. (V.) lindenbergi (MHOM/BR/1996/M15729) and (C) L. (L.) chagasi (MHOM/BR/1981/M6445) in the 
gut of Lu. longipalpis on the 8th day post-blood meal (pbm). HG, hindgut; MTs, Malpighian tubules; 
AMG, abdominal midgut; TMG, thoracic midgut; CA, cardia; SV, stomodeal valve. In the upper 
right part of each diagram is the percentage distribution obtained for each Leishmania species within 
the intestine of Lu. longipalpis. 

3.3. Susceptibility of Lu. longipalpis to L. (L.) chagasi (Control Experiment) 
In total, 98 Lu. longipalpis exposed to L. (L.) chagasi were dissected. On day 2 pbm, the 

infection rate was 99%, recording 18% weak, 38% moderate and 43% heavy parasitoses. 
On day 8 pbm, the infection rate was 59%, recording 14% weak, 19% moderate and 26% 
heavy parasitoses. Peripylarian (12.1%) and suprapylarian (44.8%) development was ob-
served. Peripylarian pattern comprised colonization in the HG, AMG, TMG, CA and SV 
(10.3%); suprapylarian comprised colonization in the AMG, TMG, CA and SV (31%), ex-
clusively in the AMG (8.6%), and TMG, CA and SV (3.5%); and other infection patterns 
did not exceed 2% (Figure 3C). 

On the other hand, the results of the evaluation of parasites among the Leishmania 
species were significant on day 8 pbm (Table 1). 

Table 1. Summary statistics for the comparison of parasitosis on day 8 post-blood meal in different 
parasite–vector combinations. Significant differences are highlighted in bold. 

Vector Parasite n Statistics 

Ny. antunesi 
L. (V.) lainsoni 12 

G test = 2.2148, df = 3, p = 0.5290 L. (V.) lindenbergi 11 

Lu. longipalpis L. (V.) lainsoni 42 G test = 1.7129, df = 3, p = 0.6341 
L. (V.) lindenbergi 58 

Lu. longipalpis L. (V.) lindenbergi 58 G test = 8.636, df = 3, p = 0.0345 L. (L.) chagasi 58 

Lu. longipalpis 
L. (V.) lainsoni 42 

G test = 8.0092, df = 3, p = 0.0458 L. (L.) chagasi 58 
  

Figure 3. Diagramatic placement of (A) Leishmania (Viannia) lainsoni (MHOM/BR/1981/M6426),
(B) L. (V.) lindenbergi (MHOM/BR/1996/M15729) and (C) L. (L.) chagasi (MHOM/BR/1981/M6445)
in the gut of Lu. longipalpis on the 8th day post-blood meal (pbm). HG, hindgut; MTs, Malpighian
tubules; AMG, abdominal midgut; TMG, thoracic midgut; CA, cardia; SV, stomodeal valve. In the
upper right part of each diagram is the percentage distribution obtained for each Leishmania species
within the intestine of Lu. longipalpis.

3.3. Susceptibility of Lu. longipalpis to L. (L.) chagasi (Control Experiment)

In total, 98 Lu. longipalpis exposed to L. (L.) chagasi were dissected. On day 2 pbm, the
infection rate was 99%, recording 18% weak, 38% moderate and 43% heavy parasitoses. On
day 8 pbm, the infection rate was 59%, recording 14% weak, 19% moderate and 26% heavy
parasitoses. Peripylarian (12.1%) and suprapylarian (44.8%) development was observed.



Microorganisms 2024, 12, 809 6 of 13

Peripylarian pattern comprised colonization in the HG, AMG, TMG, CA and SV (10.3%);
suprapylarian comprised colonization in the AMG, TMG, CA and SV (31%), exclusively in
the AMG (8.6%), and TMG, CA and SV (3.5%); and other infection patterns did not exceed
2% (Figure 3C).

On the other hand, the results of the evaluation of parasites among the Leishmania
species were significant on day 8 pbm (Table 1).

Table 1. Summary statistics for the comparison of parasitosis on day 8 post-blood meal in different
parasite–vector combinations. Significant differences are highlighted in bold.

Vector Parasite n Statistics

Ny. antunesi L. (V.) lainsoni 12 G test = 2.2148, df = 3, p = 0.5290
L. (V.) lindenbergi 11

Lu. longipalpis L. (V.) lainsoni 42 G test = 1.7129, df = 3, p = 0.6341
L. (V.) lindenbergi 58

Lu. longipalpis L. (V.) lindenbergi 58 G test = 8.636, df = 3, p = 0.0345
L. (L.) chagasi 58

Lu. longipalpis L. (V.) lainsoni 42 G test = 8.0092, df = 3, p = 0.0458
L. (L.) chagasi 58

3.4. Morphology of L. (V.) lainsoni and L. (V.) lindenbergi Promastigotes in Ny. antunesi

On day 8 pbm, six promastigote morphotypes of L. (V.) lindenbergi (Figure 4) and L.
(V.) lainsoni (Figure 5) were observed in the gut of Ny. antunesi: elongated nectomonad,
short nectomonad, metacyclic promastigote, rounded metacyclic promastigote, rounded
paramastigote and haptomonad.
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Survival Curves

The survival of both phlebotomine species decreased up to day 8 pbm for all com-
binations (Figure 6). The survival of Lu. longipalpis was affected differently in some Lu.
longipalpis combinations, and the survival was higher when the phlebotomine species were
infected with L. (V.) lindenbergi than when they were infected with L. (V.) lainsoni (p < 0.0001)
or L. (L.) chagasi (p < 0.0001). Moreover, the survival was higher when the phlebotomine
species were infected with L. (V.) lainsoni compared with L. (L.) chagasi (p < 0.0001); and
when they were infected with uninfected blood compared with those infected with L. (V.)
lindenbergi (p = 0.0246), or L. (L.) chagasi (p < 0.0001) (Table 2).
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Table 2. Log-rank test significance on the comparison of survival curves obtained for the different
parasite–vector combinations up to day 8 post-blood meal. Significant differences are highlighted
in bold.

Vector Parasite n Log-Rank Test Significance

Ny. antunesi L. (V.) lainsoni 16 p = 0.6014
L. (V.) lindenbergi 10

Lu. longipalpis L. (V.) lainsoni 159 p < 0.0001
L. (V.) lindenbergi 142

Lu. longipalpis L. (V.) lindenbergi 142 p < 0.0001
L. (L.) chagasi 94

Lu. longipalpis L. (V.) lainsoni 159 p < 0.0001
L. (L.) chagasi 94

Lu. longipalpis Uninfected blood 78 p = 0.0246
L. (V.) lindenbergi 142

Lu. longipalpis Uninfected blood 78 p = 0.0954
L. (V.) lainsoni 159

Lu. longipalpis Uninfected blood 78 p < 0.0001
L. (L.) chagasi 94

4. Discussion

Several parasite–vector combinations were studied under laboratory conditions to
evaluate interaction patterns, including the ability of vectors to support the late-stage
development of parasites, suggesting the well-recognized classification of restrictive and
permissive vectors. In the former category, phlebotomines present a remarkable specificity
for a single (or some closely related) Leishmania species; while in the latter, phlebotomines
allow for the development of a broad range of apart-related Leishmania species [35,36]. In
this sense, the present study assessed Ny. antunesi and Lu. longipalpis in the development of
medically important parasites in the Amazon biome, L. (V.) lainsoni and L. (V.) lindenbergi,
until day 8 pbm, when late-stage promastigote forms were supposed to colonize the foregut,
thus providing advanced inferences on their susceptibility.

After exhaustive attempts, the unsuccessful colonization of Ny. antunesi led the
researchers to challenge wild-caught specimens. Although the unknown life status of these
specimens and an apparently low number of assessments may compromise experimental
reproducibility, it is believed that the field background brought about by nature adds
pivotal elements for genuine parasite–vector interactions. Nyssomyia antunesi has been
recognized as a suspected vector of L. (V.) lindenbergi based on some eco-epidemiological
evidence [19–21], although no natural infection has been ascribed to this parasite. The
present findings demonstrate that Ny. antunesi can develop at least a small population
of late-stage promastigotes of both L. (V.) lainsoni and L. (V.) lindenbergi (a taxonomically
distinct species) with no difference in parasitosis on day 8 pbm, suggesting that this
species could be further investigated as a possible permissive vector, although it has
never been found to be naturally infected by L. (V.) lainsoni in wild-caught specimens that
have been examined. Interestingly, the present findings support early microscopic and
current molecular-based evidence, which suggests that Ny. antunesi can harbor Trypanosoma
sp. [37,38], Porcisia sp. [39], and a wide range of Leishmania spp. [40–49]. Most of these
detections do not provide evidence of late-stage promastigote forms, which are insufficient
to characterize Ny. antunesi as a true vector. Other supporting information for the present
results is related to O-glycosylated proteins with N-acetylgalactosamine (GalNAc) epitopes,
which are likely reported exclusively for permissive species [35], as has been suggested to
be present in the midgut epithelial cells of Ny. antunesi [50].

On day 8 pbm, L. (V.) lainsoni and L. (V.) lindenbergi were observed up to the cardia
of Ny. antunesi, probably because these Leishmania species need more time to advance to
the stomodeal valve under laboratory conditions, as has been suggested for the binomial
Phlebotomus arabicus–L. (L.) infantum [15]. On several occasions, it was noted that Ny.
antunesi only partially fed under experimental conditions (Sánchez-Uzcátegui, personal



Microorganisms 2024, 12, 809 9 of 13

observation), which could possibly be important information from an epidemiological point
of view. In this sense, multiple bloodmeals during a single gonadotrophic cycle have been
reported for Lu. longipalpis [51], which has a potential impact on survival and Leishmania
transmission, as suggested by Killick-Kendrick [52], for Ph. papatasi and L. major. Moreover,
this characteristic would improve vector competence since the development of a successful
infection in wild phlebotomines is a gradual process that depends on the parasite’s action,
which is amplified and enhanced by the ingestion of multiple blood meals [53]. Thus, all
these facts add weight to the hypothesis that Ny. antunesi is an important vector from a
medical point of view, but other criteria still need to be evaluated.

When evaluating the experimental infection of Lu. longipalpis with L. (V.) lainsoni and
L. (V.) lindenbergi, it has been demonstrated that both parasite species can develop up to
day 8 pbm with no difference in parasitosis between these combinations. Preliminary
experimental infections have already been performed and the descriptions of these experi-
ments with the two Leishmania species have focused on determining the developmental
pattern for taxonomic purpose [19,38], thus not extending to the observation of late-stage
promastigote forms. Lutzomyia longipalpis is well known as the major natural vector of L.
(L.) chagasi [54], which is laboratory-supported as a permissive vector and competent for
experimentally transmitting L. (V.) braziliensis [55], L. (L.) chagasi [56], L. (L.) mexicana [57],
L. (L.) major [58,59] and L. (L.) amazonensis [60].

On day 8 pbm, parasitosis in Lu. longipalpis was higher in L. (L.) chagasi than in L. (V.)
lainsoni and L. (V.) lindenbergi, reinforcing the status of the ancient and well-established L. (L.)
chagasi–Lu. longipalpis natural binomial [54,61], herein regarded as the control experiment.
Naturally, this combination [6,56,62–64] is overexploited due to its medical importance, as
well as the manageable laboratory adaptation of Lu. longipalpis and consequent successful
establishment of colonies [65], with effective rates of artificial blood feeding [22,24,66]. In
addition, the results from developmental studies of L. (L.) chagasi in other phlebotomine
species were also verified [67–69].

As expected, the predominant gut development reported for the studied Leishmania
species (i.e., peripylarian for L. (V.) lainsoni and L. (V.) lindenbergi, and suprapylarian for
L. (L.) chagasi) is in agreement with the taxonomic positions of these species originally
described by Lainson and Shaw [34]. Few specimens with hindgut development were
recorded for all combinations, which was exclusively attributed to heavy parasite loads
throughout the phlebotomine gut. On that gut site, only adhered promastigotes were
considered, avoiding artifactual observation due to back-wash [70]. In contrast, in the
midgut, free-living promastigotes were considered. Killick-Kendrick [71] has shown strik-
ing features separating metacyclic forms from others in the phlebotomine gut, including a
lack of attachment to the epithelium, high motility, a small body size and the presence of a
long free flagellum.

The survival curves significantly decreased for all combinations, but were differentially
affected in Lu. longipalpis–parasite combinations and uninfected blood. The reduced
longevity of experimentally Leishmania-infected phlebotomines was documented [30,72,73],
without evidence of a strain-specific impact [30]. Moreover, the results reported herein
support the classical hypothesis that successful transmission in nature also depends on
equilibrate parasitosis, which is sufficient for the inoculum but within the limits of vector
tolerance, preserving its longevity [74].

5. Conclusions

In summary, wild-caught Ny. antunesi and laboratory-bred Lu. longipalpis have been
suggested to be experimentally susceptible to L. (V.) lainsoni and L. (V.) lindenbergi, which
results in the development of at least a small population of late-stage parasites up to day
8 pbm in the cardia or stomodeal valve. The putative permissiveness of Ny. antunesi
has not been discarded, however, still requiring further assessment. The unsuccessful
establishment of life cycles with these parasite–vector combinations in nature may result
from non-negligible ecological field-driven elements. Indeed, the putative susceptibility
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of phlebotomines suggested herein is worthy of important epidemiological consequences
because it enables a successful adaptation of Leishmania. A successful colonization of
Ny. antunesi could provide a considerable number of specimens that allow for an in vivo
and in vitro assessment of Leishmania–phlebotomine interactions, and thus definitively
determine its permissiveness and vector competence status.
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