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Abstract: The benefits of probiotics on dysbiotic microbiomes and inflammation are dependent on
the tested strain, host factors, and the resident microbiome. There is limited knowledge on the effects
of probiotics in A. actinomycetemcomitans-associated periodontitis. Thus, Lactobacillus acidophilus LA5
(LA5) was orally inoculated for 30 days in C57Bl/6 mice infected with A. actinomycetemcomitans JP2
(Aa) and S. gordonii (Sg). Alveolar bone loss, gingival gene expression, and oral and gut microbiomes
were determined. LA5 controlled bone loss in Aa+Sg-infected mice, downregulated the expression
of Il-1β and upregulated Il-10 in gingival tissues, and altered the oral and gut microbiomes. LA5
increased the diversity of the oral microbiome of Aa+Sg infected mice, and Aa+Sg and Aa+Sg+LA5
oral or gut microbiomes clustered apart. LA5 induced shifts in Aa+Sg infected mice by increasing the
abundance of Muribaculaceae and decreasing Bifidobacteriaceae in the oral cavity and increasing the
abundance of Verrucomicrobiae and Eggerthellales in the gut. In conclusion, LA5 oral administration
controls experimental Aa-associated periodontitis by altering inflammatory gene expression and the
oral and gut microbiomes.

Keywords: Aggregatibacter actinomycetemcomitans; immune modulation; lactobacilli; periodontitis;
probiotics

1. Introduction

Periodontal diseases (PD) are inflammatory conditions of the tooth-supporting struc-
tures induced by dysbiotic subgingival biofilms. The Gram-negative facultative bacterium
Aggregatibacter actinomycetemcomitans (Aa) is involved in the polymicrobial community of
periodontitis, especially of rapidly progressing disease with molar-incisor pattern (MIP)
affecting young subjects (previously known as localized aggressive periodontitis) [1,2].
A. actinomycetemcomitans is 50-times more abundant in MIP sites than in subgingival sites
of age-/race-matched healthy controls, and dysbiosis is seem not only in the oral but also
in the gut microbiome of these diseased patients [2]. A. actinomycetemcomitans-associated
periodontitis usually requires systemic antibiotic for successful treatment [3] and life-long
supportive periodontal therapy [4].

Animal and clinical studies indicated that interventions with beneficial bacteria such
as probiotics would be able to control the dysbiotic biofilm and modulate host response
in periodontitis [5]. Recent meta-analyses data revealed that the oral administration of
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probiotics results in an improvement in clinical parameters and immunological biomarkers
in gingivitis patients and periodontally healthy subjects [6]. These data also showed that
the administration of probiotics as adjuvant treatment in combination with scaling and root
planning can improve clinical parameters, reduce proinflammatory markers, and change
the microbial profile in chronic periodontitis patients [6,7]. However, these randomized
clinical trials of probiotics may not be comparable, since variables such as criteria for patient
selection, probiotic strain, dose, frequency, and period of probiotic treatment can potentially
affect the experimental outcomes.

The benefits of probiotics for each disease are specific to each isolate and differ even
between isolates of the same species [8]. Since probiotic health benefits should be pre-
dictable based on the strain’s properties and their underlying mechanisms [9], we selected
the commercially available probiotic strain Lactobacillus acidophilus LA5 for this study due to
its antimicrobial and immunomodulatory properties. The data of in vitro analyses revealed
that L. acidophilus LA5 can impair the establishment of pathogens in a subgingival multi-
species biofilm model [10], reduce the apoptosis of infected gingival epithelial cells [11],
regulate the transcription of bacteria virulence factors [12,13], and reduce the dysbiosis
of the diabetic gut microbiota [14]. L. acidophilus LA5 modulatory properties comprise
the attenuation of epithelial cells response to Porphyromonas gingivalis [13] and to A. acti-
nomycetemcomitans [11] and of dendritic cells to LPS [15], whereas this strain induced a
high response of otherwise non stimulated CD14 + monocytes [16]. We have also recently
shown that LA5 was able to control bone destruction induced by a pathogenic consortium
formed by P. gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and S. gordonii in a
murine periodontitis model [17]. Thus, to evaluate whether L. acidophilus LA5 would also
impact periodontitis associated with A. actinomycetemcomitans, such as MIP periodontitis,
we tested its effect in an A. actinomycetemcomitans and S. gordonii periodontitis experimental
model by evaluating the alveolar bone loss, expression of inflammatory mediators and
pathogens’ recognition patterns in the gingiva, as well as the oral and gut microbiomes.

2. Materials and Methods
2.1. Animals and Group Allocation

Thirty-two 4-week-old old C57Bl/6 male mice, bred under specific pathogen-free
conditions, were acquired from the Central Facility of School of Medicine, USP, and kept in
the mouse breeding facility of the Department of Microbiology and Parasitology, Institute of
Biomedical Sciences, USP. Animals were kept in microisolators, with an artificial light–dark
cycle of 12 h and room temperature of 22 ◦C, with water and food available ad libidum
and randomly allocated in four groups (n = 8): non-infected negative control (SHAM),
positive control (Aa+Sg), probiotic control (LA5) and test group (Aa+Sg+LA5). The animals
were monitored for weight gain, loss of mobility, and skin appearance throughout the
experimental period. Procedures were performed following National Institutes of Health
Guidelines for Experimental Animal Welfare and approved by the Institutional Animal
Care and Use Committee (ICB/USP numbers: 3104200220 and 4828281020).

2.2. Blinding

Each animal was assigned a temporary random number within the group. Based on
their position on the rack, cages were given a numerical designation. For each group, a
cage was selected randomly from the pool of all cages. Blinding was carried out during the
allocation, evaluation of the results, and data analysis. Blindness was unfeasible during the
experiment since the bacterial suspensions differed in color from the vehicle.

2.3. Exclusion Criteria

Animals presenting alteration in growth, weight and/or physical defects at baseline
were excluded.



Microorganisms 2024, 12, 836 3 of 14

2.4. Sample Size

Alveolar bone loss was the primary outcome and therefore used for sample size
calculation. A pilot study was conducted taking into consideration a difference in the
bone volume of 4719 cubic pixels at a standard area, and a sample size of 7.84 animals was
adequate to obtain a Type I error rate of 5% and power greater than 80% [18,19]. Thus, each
group was formed by 8 animals.

2.5. Bacteria Strains and Culture Conditions

Lactobacillus acidophilus LA-5™ (CHR Hansen Holding A/S, Hørsholm, Denmark) was
used as the probiotic strain. The microbial consortium consisted of A. actinomycetemcomitans
strain JP2 [20] and S. gordonii DL1 [21].

LA5 was cultured in MRS Lactobacilli agar and broth, A. actinomycetemcomitans in
tryptone soy agar with 0.5% yeast extract or brain heart infusion (BHI) broth, and S. gordonii
in BHI agar or broth, incubated at 37 ◦C, 5% CO2.

Standard broth cultures were obtained, and cells were harvested and resuspended
in 500 µL lyophilization solution (10% skin milk with 5% L-Glutamic acid monosodium
salt hydrate, and 5% dithiothreitol) (Sigma-Aldrich, Darmstadt, Germany). Aliquots
were lyophilized (Freezone Triad Freezer Dryers, Labconco, Kansas City, MI, USA) and
maintained at −80 ◦C. Lyophilized bacteria of the microbial consortium were inoculated in
BHI broth, incubated for 6 h under 37 ◦C/5% CO2 to recover to physiological state prior
being inoculated. Viability was estimated for each lot.

2.6. Experimental Treatments

Groups Aa+Sg and Aa+Sg+LA5 received 50 µL aliquots containing 1 × 109 CFU
A. actinomycetemcomitans and 1 × 108 CFU S. gordonii in PBS/1.5% carboxymethylcellulose,
into the oral cavity with the aid of a gavage needle, three times a week for four weeks [22].
These groups also received, under anesthesia, a palatal injection of 10 µL containing
1 × 107 CFU A. actinomycetemcomitans in PBS in the interproximal gingiva between the first
and second molars on the left hemimaxilla [23] at days 01, 03, and 05 of the experimental
period. The non-infected group (SHAM) and the probiotic control group (LA5) were orally
inoculated with PBS/1.5% carboxymethylcellulose and received a palatal injection with
PBS at the same days and volumes used in the Aa+Sg infected groups.

Groups LA5 and Aa+Sg+LA5 received the probiotic daily in the oral cavity for 30 days,
in 50 µL aliquots containing 1 × 108 CFU of LA5 in PBS/1.5% carboxymethylcellulose.
SHAM and Aa+Sg groups received the vehicle (Figure 1A).

2.7. Euthanasia and Samples Collection

After 30 days, the animals were anesthetized (ketamine (100 mg/kg IP) + xylazine
(10 mg/kg IP)) and sacrificed by exsanguination.

Oral biofilm was obtained with a microbrush, the content of the jejunum was obtained
with a spatula and both samples were kept in TRIS-EDTA, pH 7.4, for microbiome analysis.
The gingival tissue around the buccal and palatal surfaces of the left molars was removed
and stored in RNAlaterTM Stabilization Solution (Invitrogen Life Technologies, Carlsbad,
CA, USA) for gene expression analyses. The left hemimaxilla was kept in 4% formaldehyde
solution for 24 h, transferred to PBS, and stored for alveolar bone analysis.

2.8. Alveolar Bone Loss Analysis

Alveolar bone resorption was determined by micro tomography (SkyScan 1174 ver-
sion 1.1, Kontich, Belgium) at 45 kV voltage, 550 uA current, 8.71 µm pixel size, 0.2 mm
aluminum filter. The left hemimaxillae were scanned, and a blinded examiner selected
a standard area of 60 × 30 pixel (Roi) at the interproximal region between the first and
second molar from the second molar cementoenamel junction in 15 coronal sections. The
images were analyzed by calculating percentages of bone volume and porosity using CT
Analyzer software Version 1.15.4.0, SkyScan.
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2.9. Gene Expression in Gingiva

RNA was extracted using Trizol LS Reagent (Invitrogen Life Technologies, Carls-
bad, CA, USA) in a cell disrupter (BioSpec 3110BX Mini-BeadBeater-1 High Energy Cell
Disrupter, Campinas, SP, Brazil) for 20 s, twice. After deoxyribonuclease (Ambion™
DNase I, Invitrogen Life Technologies) treatment, cDNA was obtained using the Super-
ScriptTM ViloTM Synthesis Kit for RT-PCR (Invitrogen Life Technologies). Quantitative
PCR was performed in StepOne Plus System thermocycler (Applied Biosystems, Foster
City, CA, USA) with 100 ng cDNA using TaqMan™ Gene Expression Assay (Invitrogen
by Thermo Fisher Scientific, Vilnius, Lithuania). Commercial Taqman primers and probes
(Invitrogen Life Technologies, Carlsbad, CA, USA) comprised Tlr-2 (Mm01213946_g1), Tlr-4
(Mm00445273_m1), Il-1β (Mm00434228_m1), Il-10 (Mm01288386_m1), Tnf (Mm00443258_m1),
β-actin (Mm00607939_s1), and Gapdh (Mm99999915_g1). Relative expression of target genes
was calculated by the ∆∆CT method, using β-actin and Gapdh as endogenous controls [24],
and expressed as fold changes in relation to control group (SHAM).

2.10. Oral and Gut Microbiomes

DNA from oral biofilm and gut samples of six animals per group was extracted
using the Master pureTM DNA Purification Kit (Epicentre® Illumina Company, Madison,
WI, USA). A barcoded primer set Bakt_341F CCTACGGGNGGCWGCAG and Bakt_805R
GACTACHVGGGTATCTAATCC [25] was used to amplify the hypervariable V3–V4 region
of 16SrRNA. DNA was sequenced by ByMyCell (Ribeirão Preto, São Paulo, Brazil) using
the Illumina MiSeq 2 × 250 platform. Data were submitted to Sequence Read Archive
(SRA) under BioProject identification #PRJNA994574.

2.11. Statistical Analysis

Data normality was checked using the Kolmogorov–Smirnov statistical test with Lil-
liefors correlation, and homogeneity of variances was assessed using the F test. Parametric
data were analyzed by Kruskal–Wallis, followed by Dunn’s post-hoc test. Statistical sig-
nificance was set at p < 0.05. The GraphPad Prisma® Version 9.0.0 program was used
(GraphPad Software, La Jolla, CA, USA).

Microbiome data were analyzed using Qiime 2 2022.8 [26]. Demultiplexed sequences
and reads were filtered using Dada 2, and quality score threshold = 25. Trimmed sequences
were clustered into amplicon sequence variants (ASVs), and taxonomy was assigned using
Silva138 database [27,28]. Alpha diversity indices (Faith, Pielou and Shannon), and Beta
diversity by Weighted and Unweighted UniFrac distances were calculated. Clustering was
visualized by principal Coordinates Analysis (PCA) [26,29] and differences among groups
determined by Permanova (999 permutations). Differences in mean relative abundance of
taxa were determined by ANCOM (analysis of composition of microbiomes) [30], using
75% as the empirical cut-off value. The expanded HOMD (eHOMD) database was assessed
to search for the inoculated species.

3. Results
3.1. Animals Changes

Animals did not exhibit any changes in fur, skin, and mobility throughout the ex-
periment. There were no differences in animals’ weight at baseline. There was a trend
to increased final weight in the groups that received LA5 (LA5 and Aa+Sg+LA5) when
compared to SHAM and Aa+Sg, respectively (Figure 1B).

3.2. Alveolar Bone Loss

The inoculation of Aa+Sg induced alveolar bone loss. Administration of LA5 in oth-
erwise non-infected animals (probiotic control group-LA5) also showed some degree of
destruction compared to SHAM. However, administration of LA5 to Aa+Sg-infected ani-
mals (Aa+Sg+LA5) prevented bone destruction induced by Aa+Sg infection (Figure 1C,D).
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Figure 1. C57Bl/6 mice were allocated into four groups (n = 8) and submitted to different treatments
for 30 days: negative control (SHAM); positive control: A. actinomycetemcomitans and S. gordonii
(Aa+Sg); probiotic control: L. acidophilus (LA5), and test group: A. actinomycetemcomitans, S. gordonii
and L. acidophilus LA5 (Aa+Sg+LA5). (A) Study design. Control groups received the vehicles.
(B) Animals weight in grams at the end of the experimental period. (C) Alveolar bone analysis
determined by microtomography in the interproximal region of first and second molar at the left
maxilla. Representative image of the alveolar bone of different groups. (D) Percentage of alveolar
bone porosity (I) and percentage of alveolar bone volume (II). Different letters indicate statistical
difference among groups. Kruskal–Wallis, post-hoc Dunn (p < 0.05).

3.3. Transcription Analysis in Gingival Tissue

Infection with Aa+Sg increased mRNA levels of Il-1β. Administration of LA5 to other-
wise non-infected animals led to the upregulation of Tlr2 but did not alter the transcription
of other studied genes. There was no difference in Tnf expression levels among groups.
However, administration of LA5 to Aa+Sg-infected animals led to the upregulation of Tlr2
and Tlr4, downregulation of Il-1β, and upregulation of Il-10 and Il-6 (Figure 2).
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Figure 2. Relative transcription of genes encoding receptors Tlr-2 and Tlr-4 and cytokines Il-1β,
Il-10, and Il-6 in gingival tissue of C57Bl/6 mice submitted to different treatments: Groups (n = 6):
negative control (SHAM); positive control: A. actinomycetemcomitans and S. gordonii (Aa+Sg); probiotic
control: L. acidophilus (LA5), and test group: A. actinomycetemcomitans, S. gordonii and L. acidophilus
LA5 (Aa+Sg+LA5). Data on target genes were normalized to mRNA levels of Gapdh and/or β-actin
reference genes (internal controls). Different letters indicate statistical difference among groups.
Kruskal–Wallis, post-hoc Dunn (p < 0.05).

3.4. Oral and Gut Microbiomes

Oral biofilm and gut samples from six animals/group were evaluated for the micro-
biome analyses. However, the data were obtained only from four animals of the SHAM
group due to the poor recovery of DNA from oral biofilm samples. The total number
of sequences obtained after the amplification of 16SrRNA of oral and gut samples was
7893.351 (max 386,428 and min 92,229). After filtering and removal of chimeras, the total
number was 257,7399 for oral (max 147,037 and min 82,876) and 1,609,759 for gut samples
(max 229,627 and min 4859).

Inoculation of Aa+Sg tended to decrease alpha diversity indices (not significant) of oral
biofilms. However, administration of LA5 induced a more diverse phylogenetic community
(Faith) and increased the richness (Shannon) of the oral microbiome of Aa+Sg-infected
mice (Figure 3A,B). There were no differences in Alpha diversity indices (Faith, Pielou, and
Shannon) of the gut microbiome among groups.

Inoculation of the microbial consortium Aa+Sg did not alter the population structure
of the oral microbiome, since the SHAM and Aa+Sg microbial communities did not differ
based on Unweighted and Weighted Unifrac distances (Figure 4). However, infection with
Aa+Sg led to a shift in the gut microbiome compared to SHAM-infected animals based on
Unweighted and Weighted Unifrac distances measurements (Figure 5).

Inoculation of LA5 either alone (probiotic control group) or in mice infected with
Aa+Sg altered the population structure of the oral microbiome, based on the Unweighted
and Weighted Unifrac distances, as shown in the PCoA plots (Figure 4A,B).

The probiotic LA5 also interfered with the structure of the gut microbiome. Beta
diversity analysis based on Unweighted Unifrac distances demonstrated that all groups
clustered apart, except for groups LA5 and Aa+Sg+LA5 (Figure 4C). Analyses based on
Weighted Unifrac distances revealed that the microbial communities in the gut of groups
SHAM, Aa+Sg and Aa+Sg+LA5 differed from each other, and LA5 differed from SHAM,
as visualized in PCoA plots and determined by PERMANOVA (Figure 4D).
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UniFrac distance metrics on gut microbial communities of C57Bl/6 mice from different groups (n = 6):
negative control (SHAM), positive control (A. actinomycetemcomitans and S. gordonii-Aa+Sg), probiotic
control (L. acidophilus-LA5), and test group (Aa+Sg+LA5). The PCoA revealed significant changes in
the oral and gut composition of C57Bl/6 mice. Treatments LA5 and Aa+Sg+LA5 exhibited similar
effects, with Aa+Sg+LA5 causing the most significant shift. These findings underscore treatment-
specific impacts on oral microbial communities (PERMANOVA, 999 permutations, p < 0.01).

Bacillota was the most abundant phylum in all oral and gut communities indepen-
dently on the treatment (Figure 5A,B). ANCOM revealed differences in RA of Planctomyce-
tota among oral samples (Figure 5A) and Verrucomicrobiae in gut samples (Figure 5B).
Furthermore, differences in RA of several taxa in oral and gut samples at lower taxonomic
levels were demonstrated (Figure 6).
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Figure 5. Microbial abundance of bacteria at the phylum level in the oral (A) and gut (B) microbiomes
of C57Bl/6 mice. The following groups were examined: negative control (SHAM), positive control (A.
actinomycetemcomitans and S. gordonii-Aa+Sg), probiotic control (L. acidophilus-LA5), and test group
(Aa+Sg+LA5). ANCOM (*) indicates statistical differences in the oral microbiome for Planctomycetota.
(ł) denotes statistical differences in the gut microbiome for Verrucomicrobiota. The Kruskal–Wallis
test was performed, with utilized p-values: p < 0.05, p < 0.01, and p < 0.001.

The eHOMD database analyses indicated that Aa was detected at a low abundance
(~0.02%) in three out of six oral samples of the Aa+Sg group but in no other oral or gut
samples. Nevertheless, S. gordonii and L. acidophilus were not detected in any of the studied
oral and gut samples.
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Figure 6. Disparities in the relative abundance (expressed as fold changes relative to SHAM) of
bacterial taxa in the oral and gut microbiomes of C57Bl-6 mice across distinct groups: negative
control (SHAM), positive control (A. actinomycetemcomitans and S. gordonii-Aa+Sg), probiotic control
(L. acidophilus-LA5), and test group (Aa+Sg+LA5). Data were subjected to analysis via ANCOM, with
the 75th percentile of the W distribution serving as the empirical cut-off value. Statistically significant
differences among groups were validated using Kruskal–Wallis (* p < 0.05, ** p < 0.01, *** p < 0.001).

4. Discussion

We have tested the effect of the probiotic strain L. acidophilus LA5 in an experimental
model of periodontitis induced by the pathogen A. actinomycetemcomitans associated with
S. gordonii due to their synergistic effect [31,32]. Although most species of oral strepto-
cocci of sanguinis-mitis groups, which includes S. gordonii, are commensals, S. gordonii
can be considered an “accessory pathogen” [31]. Cooperation between S. gordonii and
A. actinomycetemcomitans increased the survival and persistence of A. actinomycetemcomitans
and promoted its virulence in a murine abscess model [33]. This cooperation involves the
production of L-lactate and H2O2 by S. gordonii, providing nutrients for A. actinomycetem-
comitans [34] but favoring its dispersal throughout the oral cavity [35].

Aggregatibacter actinomycetemcomitans was detected in the oral biofilm of three out of
six mice of the Aa+Sg-infected group, suggesting successful colonization in accordance
with data of in vitro and in vivo abscess experimental model [32,33]. Furthermore, Aa+Sg-
infected mice exhibited alveolar bone loss and the upregulation of Il-1β in gingival tissues.
Moreover, oral administration of L. acidophilus LA5 was able to control alveolar bone loss
induced by Aa+Sg infection, reduced Aa to undetectable levels in the oral biofilm of all
studied animals, and altered the transcriptional profile of gingival tissues.

Administration of LA5 to otherwise non-infected animals resulted in a slight increase
in Tlr2 mRNA levels, but no other evident result was observed in the mice of the LA5 group,
except for a shift in the oral and gut microbiomes. Thus, the increase in Tlr2 transcription
promoted by LA5 in the gingival tissues of mice may increase surveillance in the oral
mucosa, maintaining a healthy associated microbiota in balance with the host.

On the other hand, the administration of LA5 to Aa+Sg-infected animals led to the
upregulation of Tlr2 and Tlr4, suggesting further increased surveillance in the oral mucosa,



Microorganisms 2024, 12, 836 10 of 14

but was able to reduce inflammation, as observed by the altered transcription profile of
inflammatory mediators. The capacity to differentially modulate Toll-like receptors (TLRs)
is considered an important characteristic of immunobiotic strains [36]. Although the mech-
anisms underlying the modulation of inflammation induced by L. acidophilus LA5 are not
fully understood, our previous data in LPS-mature dendritic cells indicate that L. acidophilus
LA5 is able to alter the transcription of several genes involved in TLRs signaling and in
the regulation of NF-kappa B activation [15]. Tlr2 upregulation is a common trait observed
after probiotics treatment in the gut [37], and LA5 was shown to induce Tlr2 expression in
gingival epithelial cells [11,13]. This mechanism is relevant to the anti-inflammatory effects
of lactobacilli probiotics, leading to an increased recognition of cell surface lipoproteins
and teichoic acid, as well as the production of negative regulators of the NF-κB signaling
pathway in a TLR2-dependent manner [38,39]. In contrast, the upregulation of Tlr4 pro-
moted by the probiotic in Aa+Sg-infected mice was unexpected since L. acidophilus LA5
decreased Tlr4 expression in gingival epithelial cells and monocytes in vitro [11,40], and
the present data indicate that the probiotic altered cytokines transcription profile toward
an anti-inflammatory effect.

The downregulation of Il-1β and upregulation of Il-10 promoted by LA5 in Aa+Sg
infected mice are attractive effects to modulate bone resorption and are expected in success-
ful periodontal treatment in humans [41–43]. On the other hand, the effect of the increased
Il-6 transcription levels induced by the probiotic is less clear. Il-6 is a proinflammatory
cytokine, and treatment with monoclonal antibodies against Il-6 receptor resulted in de-
creased periodontal inflammation and improved periodontal status [43]. However, IL-6
increased response is a common feature after probiotic treatment and is associated with
an increased production of IgAS against pathogens in Peyer Patches in the gut [44] in a
TLR2-dependent mechanism [45]. The overall attenuation of inflammation and reduced
bone resorption promoted by LA5 in vivo after Aa+Sg challenge could not be predicted by
in vitro studies since LA5 induced Il-1β and Il-6 transcription and Il-1β release by DCs and
monocytes [16,40] but reduced their expression by epithelial cells [11,13].

Infection with Aa+Sg promoted changes in the oral microbiome. However, admin-
istration of L. acidophilus LA5 induced more shifts in the oral microbiome than infection
with the pathobionts. LA5 administration increased diversity of Aa+Sg-infected mice and
impacted their oral microbiomes, although there were no shifts in the abundance of the
main phyla Bacillota (former Firmicutes), Pseudomonadota (former Proteobacteria), or
Bacteroidota (former Bacteroidetes) [46]. Dysbiosis of the oral microbiome is character-
ized by increased abundance of opportunistic/inflammophilic organisms and decreased
abundance of commensals species. However, the administration of LA5 to Aa+Sg-infected
animals resulted in an decreased abundance of some Alpha Pseudomonadota, Veillonel-
laceae, and Bifidobacteriaceae with no known pathogenic potential in the oral cavity, as well
as an increased abundance of Muribaculaceae. Muribaculaceae is considered beneficial to
the gut due to production of short-chain fatty acids (SCFA), especially propionate [47],
and its abundance was increased by other probiotic lactobacilli [48]. The abundance of
Muribaculaceae is reduced in inflammatory diseases [49–51], including in periodontitis [52],
but its role in the oral cavity remains unknown.

Animal experimental studies have suggested that swallowing of oral bacteria results
in dysbiosis in the gut and systemic inflammation [53]. These data are reinforced by human
studies indicating an altered microbiome in the gut of periodontitis patients [2,54,55]. Our
data indicated that infection with Aa+Sg altered the gut microbiome by increasing the
abundance of Eggerthelaceae and decreasing the abundance of Turicibacteraceae.

The oral administration of LA5 was also able to alter the gut microbiome. Although
LA5 viability may decrease throughout the passage in the hazardous environment of the
stomach, its beneficial effects of LA5 toward a healthier gut microbiome were indicated by
simulating the digestive system in vitro [14]. Our data indicated that the administration of
LA5 increased the abundance of Verrucomicrobiae and Eggerthelaceae in the gut, especially of
Aa+Sg-infected mice. The role of Eggerthelaceae in the gut is not fully understood, but its
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high abundance was associated to the beneficial effects of curcumin in a mouse model [50].
More importantly, members of the phylum Verrucomicrobiae improve the integrity of
the intestinal barrier and regulate host metabolism and immunity [56]. Thus, our data
corroborate the existing evidence that LA5 administration can enrich the gut microbiome
with beneficial organisms related to health [44,45,57,58].

Overall, the probiotic treatment showed antimicrobial as well as anti-inflammatory
effects, leading to the control of periodontitis induced by A. actinomycetemcomitans, as
previously expected from in vitro studies [11,12]. However, these data should be inter-
preted under the limitations of the animal model. A. actinomycetemcomitans’ main virulence
factor, the leukotoxin, does not affect murine cells [59], whereas adhesion to epithelial
cells mediated by A. actinomycetemcomitans’ adhesins Aae and OMP100 is also impaired
in mice [58,60]. Furthermore, interaction of A. actinomycetemcomitans with S. gordonii can
alter the expression of key virulence factors of A. actinomycetemcomitans [33]. Another
drawback from this model was observed when the administration of the probiotic alone
also induced a slight alveolar bone resorption (Figure 1D), contrasting with our previous
data, where LA5 induced no significant alveolar bole destruction in mice with a reduced
microbiome [17].

Other uses of L. acidophilus LA5 include the control of diabetes [14], gestational dia-
betes [61], and Clostridium difficile infection [62]. Regarding periodontitis, this strain could
control alveolar bone loss induced by experimental inoculation of P. gingivalis and other
anaerobic organisms, as well as by A. actinomycetemcomitans, suggesting its beneficial effect
against different forms of periodontitis in humans.

The ideal probiotic treatment for any infectious-inflammatory disease should be based
not only on the nature of the disease but also on the initial resident microbiome prior to
probiotic treatment, and other factors, such as genetic susceptibility and disease progression,
should be considered. Future research should not only evaluate the efficacy of different
probiotic regimens in randomized clinical trials but should also provide the principles to
select the better probiotic regimen on an individual basis, focusing on the mechanisms
underlying probiotics effects and on the factors involved in the success and failures of
probiotic administration for each disease. Moreover, side effects should be observed as
probably not all patients can be safely treated due to their systemic health [63].

5. Conclusions

Under the limitations of previous in vitro studies and of this in vivo experimental
murine model, we can conclude that L acidophilus LA5 is a potential candidate to control
periodontitis in humans due to its immunomodulatory properties, its antimicrobial effects
against bacteria implicated in the disease, and its ability to alter the oral and gut micro-
biomes in experimental periodontitis. These results should be taken with reservation as
future clinical trials should be performed to assess the therapeutic effects of L. acidophilus
LA5 in the control of periodontal disease progression.
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