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Abstract: Previous investigations have illuminated the significant association between the gut
microbiome and a broad spectrum of health conditions, including obesity, diabetes, cardiovascular
diseases, and psychiatric disorders. Evidence from certain studies suggests that dysbiosis of the gut
microbiota may play a role in the etiology of obesity and diabetes. Moreover, it is acknowledged
that dietary habits, pharmacological interventions, psychological stress, and other exogenous factors
can substantially influence the gut microbial composition. For instance, a diet rich in fiber has been
demonstrated to increase the population of beneficial bacteria, whereas the consumption of antibiotics
can reduce these advantageous microbial communities. In light of the established correlation between
the gut microbiome and various pathologies, strategically altering the gut microbial profile represents
an emerging therapeutic approach. This can be accomplished through the administration of probiotics
or prebiotics, which aim to refine the gut microbiota and, consequently, mitigate the manifestations
of associated diseases. The present manuscript evaluates the recent literature on the relationship
between gut microbiota and metabolic syndrome published over the past three years and anticipates
future directions in this evolving field.
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1. Introduction

The intestinal microbiota, often termed the gut microbiome, is composed of trillions of
microorganisms that inhabit the gastrointestinal tract. These microbes, which encompass
bacteria, fungi, viruses, and other forms of life, engage in a critical relationship with human
health. The dense populations of bacteria residing within our gut tissues can potentially
pose health risks such as inflammation and infection. As a result, the immune system
has evolved to maintain the symbiotic balance between the host and its microbiota. In-
versely, the gut microbiota frequently exerts an immunomodulatory effect that is vital for
sustaining host immune homeostasis. In recent years, advancements in metagenomics, 16S
rRNA sequencing, and other molecular techniques have facilitated significant progress in
the study of intestinal microbiota. Current research methodologies include metagenomic
sequencing, 16S rRNA gene sequencing, metatranscriptomics, and metabolomics analysis.
These approaches allow for the elucidation of correlations between various diseases and the
gut microbiome, providing a theoretical foundation for the prevention, diagnosis, and treat-
ment of these conditions [1]. Metagenomic sequencing provides a comprehensive analytical
approach for examining microbial communities, revealing the complete gut microbiome
profile, including species identification and their relative abundances [2]. 16S rRNA gene
sequencing is employed as a targeted method for bacterial analysis, contributing to an
understanding of bacterial diversity and population estimations. Metatranscriptomic and
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metabolomic analyses offer perspectives into microbial activity states and their impact
on the host’s physiological processes. Metabolic syndrome (MS) is a complex metabolic
disorder hallmarked by insulin resistance, abdominal obesity, hypertension, hyperglycemia,
and dyslipidemia [3]. Insulin resistance serves as the central feature of MS, reducing the
body’s sensitivity to insulin and leading to glucose metabolism dysfunction. Abdominal
obesity is recognized as a significant contributor to insulin resistance, with inflammatory
factors and hormones released by adipose tissue exacerbating this condition [4]. Hyper-
tension is closely associated with insulin resistance, affecting vascular endothelial cells
and causing vascular dysfunction. Hyperglycemia results from a combination of insulin
resistance and insufficient insulin secretion, which can lead to vascular damage, neuropathy,
and nephropathy if persistent. Dyslipidemia involves elevated triglycerides, increased
LDL-C, and decreased HDL-C levels, directly predisposing individuals to atherosclerosis
and elevating the risk of cardiovascular events.

Emerging scientific advancements and refined research methodologies have driven sig-
nificant progress in the study of metabolic diseases [5]. Perturbations in the gut microbiota
may affect insulin secretion and action, thereby impacting glycemic control. Modulating
the gut microbiome thus emerges as a novel therapeutic strategy for diabetes treatment.
Adipokines play a crucial role in the onset and progression of obesity. The gut microbiota
may contribute to the development of obesity by modulating adipokine expression and
secretion [6]. It has been demonstrated that intestinal microbes can mitigate hypertension
through various mechanisms, including altering the gut microbial composition and pro-
ducing short-chain fatty acids [7]. Gut microbes influence lipid levels through various
mechanisms, including fat absorption and metabolism, as well as cholesterol synthesis and
excretion. Over the past three years, notable progress has been made in metabolic disease
research, particularly concerning diabetes, obesity, and hypertension. These advancements
have not only yielded innovative therapeutic strategies and methods but also presented
fresh perspectives and directions for future inquiry. Figure 1 shows the metabolic syndrome
caused by obese mice.
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2. Gut Microbiota and Metabolic Syndrome

Over the past three years, the intricate relationship between metabolic diseases and
the gut microbiome has attracted considerable attention within the scientific community.
While significant advancements have been achieved, numerous facets still require further
investigation. For example, there is an urgent need to enhance our comprehension of the
gut microbial community’s structure and function, as well as its role in the development
and progression of metabolic disorders. Moreover, there is a crucial necessity to devise
more effective strategies for modulating the gut microbiome to prevent and treat these
conditions. Lifestyle factors, obesity, and the gut microbiome are recognized as pivotal
contributors to the risk of metabolic dysregulation [8]. A variety of gut microbes, including
Firmicutes, Enterobacter, Bacteroidetes, Lactobacillus rhamnosus PL60, Escherichia coli,
Staphylococcus aureus, and Bifidobacterium, have been implicated in conditions such as
obesity and diabetes. These microorganisms can influence host metabolism through their
metabolites. For instance, the interaction between bile acids and the gut microbiota can
alter bile acid composition, which subsequently modulates host metabolic pathways via re-
ceptors such as TGR5 and FXR signaling [9]. Alterations in the gut microbiota composition
are evident in the development of metabolic syndrome and obesity [10]. The transforma-
tion of the gut microbiome is associated with the emergence and progression of diabetes,
and it can impact glucose levels through multiple mechanisms. Investigations have eluci-
dated that the gut microbial community structure in diabetic patients significantly deviates
from that of healthy individuals. Analogously, perturbations in the intestinal microbial
community are implicated in the onset and progression of obesity, with the community
structure in obese patients diverging substantially from that of their healthy peers. More-
over, shifts in the intestinal microbiome are linked to the development of hypertension and
can influence blood pressure through various pathways [11]. A multitude of studies have
underscored the gut microbiota’s involvement in diverse aspects of metabolic syndrome,
including insulin resistance, dyslipidemia, atherosclerosis, hepatic steatosis, and elevated
blood pressure [12]. Figure 2 shows the metabolism of gut microbiota and its impact on
target organs.
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2.1. Gut Microbiota and Obesity

Obesity represents a significant global health challenge, having attained epidemic
proportions. In recent years, the role of the gut microbiome in obesity has attracted con-
siderable scrutiny [11]. While the fundamental cause of obesity is an imbalance between
energy intake and expenditure, disparities in the gut microbial ecology between healthy
individuals and those who are obese may exert an influence on energy homeostasis. In
essence, individuals with a propensity for obesity may harbor specific gut microbial com-
munities that enable more efficient energy extraction and/or storage from a given diet.
Traditionally, obesity has been characterized as excessive adiposity that is detrimental
to health and has been clinically evaluated using the body mass index (BMI), which is
determined by dividing weight (in kilograms) by the square of height (in meters) [13]. A
BMI of 25 or higher is categorized as overweight, while obesity is defined as having a BMI
of 30.0 or above [14]. Dietary interventions have the potential to alleviate obesity. Meslier
and colleagues elucidated that a Mediterranean diet augmented the presence of microbial
genes associated with carbohydrate degradation and butyrate metabolism in fecal bacteria,
thereby ameliorating the health status of obese subjects [15]. Ma and coworkers emphasized
that a compromised gut barrier function could result in augmented permeability, enabling
microbiota-derived endotoxins, such as lipopolysaccharide (LPS), to infiltrate systemic
circulation. Toll-like receptor 4 (TLR4) detects LPS, activating proinflammatory signaling
pathways that induce insulin resistance and exacerbate obesity. Nevertheless, dietary
spermidine has been observed to safeguard gut barrier function and curtail permeability.
Moreover, spermidine has manifested anti-obesity effects in DIO mice.

Traditional Chinese medicine has been recognized for its role in managing obesity [16].
Xu and colleagues reported that panax notoginseng saponins (PNS) regulated the intesti-
nal microbiota in diet-induced obese (DIO) mice, promoting brown adipose tissue (BAT)
thermogenesis and beige adipocyte biogenesis through the leptin-AMPK/STAT3 pathway,
thereby increasing energy expenditure and alleviating obesity [17]. A prevalent strategy
involves modulating the gut microbiota with probiotics and prebiotics to mitigate obesity.
Kong and coworkers conducted a randomized, double-blind, placebo-controlled trial on
Prader–Willi syndrome (PWS) patients, revealing that Lactobacillus reuteri advantageously
modified the gut microbiota, assisting weight loss and enhancing gut health [18]. Allegretti
and colleagues reviewed mouse studies suggesting that the gut microbiota influences
obesity by altering anorexigenic hormones such as glucagon-like peptide 1 (GLP1) and
bile acids, impacting lipid metabolism Their double-blind study demonstrated that fecal
microbiota transplantation (FMT) capsules obtained from lean donors were well-tolerated
and induced lasting changes in the gut microbiome and bile acid profile akin to those
of lean donors, ameliorating obesity-related health concerns [19]. Solito and colleagues
observed that treatment with Bifidobacterium breve strains BR8 and B03 enhanced insulin
sensitivity in obese young adults. Exercise training has been demonstrated to enhance
the gut microbiome and diminish endotoxemia [20]. The gut microbiota is believed to
foster systemic low-grade inflammation and insulin resistance through the discharge of
endotoxins, particularly lipopolysaccharide (LPS). Quiroga and colleagues discovered that
exercise training substantially decreased Proteobacteria and gamma bacteria, resulting in
a lesser degree of obesity compared to control groups [21]. It is widely acknowledged
that exercise training can mitigate the effects of obesity. Research conducted by Quiroga
et al. has demonstrated that a reduction in the phylum Proteobacteria and gamma bacteria
significantly curtails the activation of NLRP inflammatory signaling pathways associated
with obesity, thereby contributing to the alleviation of this condition [22]. Additionally,
Sbierski King et al. have elucidated that calorie restriction diminishes the prevalence of
microbiota linked to obesity, which are also implicated in systemic inflammation, car-
cinogenesis, and metabolic disorders, subsequently ameliorating immune senescence and
subduing low-grade inflammation [23].
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2.2. Gut Microbiota and Type 2 Diabetes Mellitus

Diabetes mellitus (DM) is characterized by deficient insulin secretion, action, or both,
culminating in hyperglycemia [24]. The prevalence of type 2 diabetes mellitus (T2D) is on
the rise globally, with forecasts predicting that approximately 642.1 million individuals will
be affected by the disease by the year 2040 [25]. The emergence of drug resistance in T2D has
prompted interest in modulating the gut microbial composition to reestablish a healthful
host–microbiota relationship as a crucial approach for improving T2D. The gut microbiome
significantly impacts systemic metabolism and represents a pervasive therapeutic target
and pathway for managing type 2 diabetes. Diabetic complications are a leading cause
of death among diabetic patients. In recent years, substantial progress has been achieved
in research related to diabetic complications, including nephropathy and retinopathy. A
multicenter randomized double-blind controlled clinical trial conducted by Zhang and col-
leagues involving 409 newly diagnosed T2D patients corroborated the hypoglycemic effect
of the bacteriostatic compound berberine (BBR) in a Chinese cohort [26]. Further investi-
gations revealed that the synergistic use of berberine with probiotic formulations, such as
Prob + BBR, could substantially mitigate postprandial dyslipidemia—a contributory factor
to cardiovascular diseases in T2D. Additionally, Bifidobacterium breve has emerged as a
potential effective ingredient in probiotic BBR formulations to improve lipid profiles, with
evidence suggesting a synergistic effect between Bifidobacterium-containing probiotics
and BBR in reducing postprandial lipidemia [27]. Moreover, experimental evaluations by
Perraudeau and coworkers indicated that a novel probiotic formulation, WBF-011, supple-
mented with diverse strains, enhanced postprandial glycemic control [28]. Adeshirlarijaney
compiled an array of plant-derived products, including berberine, resveratrol, alliin, cap-
saicin, betaine, anthocyanins, and cranberry proanthocyanidins, which exhibit potential
biological activities and antidiabetic effects, possibly through the modulation of the gut mi-
crobiome [29]. Flaxseed oil (FO), rich in plant-derived omega-3 polyunsaturated fatty acids
(PUFAs) such as α-linolenic acid (ALA), has demonstrated benefits in chronic metabolic
diseases. Dietary intake of FO has been shown to ameliorate T2DM [30] by inhibiting
inflammation and modulating the gut microbiota in Sprague Dawley rat models. Patients
with T2DM frequently exhibit fecal microbiota dysbiosis [31]. Chen and colleagues demon-
strated experimentally that Simiao pills could alleviate intestinal microbiota dysbiosis in
diabetic patients. Furthermore, the beneficial effects of SMW on insulin resistance and
hepatic lipid accumulation in mice fed a high-fat diet (HFD) were partially mediated by
modulating bile acid profiles and gut microbiota composition. A randomized clinical study
by Chen and coworkers posited that a high-fiber diet could improve glucose homeostasis,
serum metabolome, and systemic inflammation in T2D subjects [9]. An increased abun-
dance of Lactobacillus, Bifidobacterium, and Akkermansia suggested that a high-fiber diet
augmented the proportion of beneficial gut microbes while decreasing the presence of op-
portunistic pathogens such as Desulfovibrio and Klebsiella. Traditional Chinese medicine
(TCM) [31], a prominent complementary and alternative medicine, has been found to
regulate intestinal flora and enhance glucose metabolism in T2D patients. In a double-
blind randomized placebo-controlled trial [32], repeated fecal microbiota transplantation
(FMT) enhanced the level and duration of microbiota engraftment in obese T2D patients,
with lifestyle interventions combined with FMT resulting in more favorable microbiota
alterations in recipients [33]. A randomized controlled trial by Birkeland and colleagues
indicated that daily supplementation with inulin-based fructans induced moderate yet
significant increases in fecal bifidobacteria, total short-chain fatty acids (SCFAs), acetate,
and propionate levels in patients with T2D. The study noted that overall microbial diversity
or fecal butyrate levels were unaffected; however, these prebiotic fibers hold moderate
potential for improving the gut microenvironment in T2D [34].

2.3. Gut Microbiota and Hypertension

The prevalence of hypertension in China is remarkably high and continues to rise. Hy-
pertension is known to aggravate the condition of atherosclerosis, which in turn leads to an
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increased incidence of cardiovascular diseases [35]. The cost of therapeutic medications for
hypertension can be prohibitive, and issues with resistance may reduce their effectiveness
in certain patient populations. Elevated blood pressure significantly increases the risk of
cardiovascular disease and premature mortality. As such, hypertension is considered one of
the most significant public health concerns in China [36]. Over the past decade, a substan-
tial body of evidence has emerged to support the role of the gut microbiome in regulating
blood pressure. In the last five years, research has shifted from establishing associations
to proving causation, with studies utilizing germ-free animals, antibiotic treatments, and
the direct supplementation of microbial metabolites [37]. There is a growing consensus
that probiotics may offer an alternative nonpharmacological approach to reducing blood
pressure [38]. Notably, a study by Fan and colleagues conducted a multicenter random-
ized placebo-controlled double-blind trial using fecal microbiota transplantation (FMT) to
investigate the therapeutic potential of gut microbiota interventions in essential hyperten-
sion [39]. Richards and coworkers have demonstrated that hypertension induces dysbiosis
of the gut microbiota, which can, in turn, perpetuate hypertension, suggesting a bidirec-
tional causality [40]. The modification of the gastrointestinal microbiome as a treatment for
hypertension is under increasing scrutiny, with Xia and colleagues revealing that exercise
not only lowered blood pressure but also altered the gut microbiome. Exercise-induced
sustained improvements in the microbiome–gut–brain axis result in lasting reductions in
blood pressure and the amelioration of some hypertensive lesions [41]. Xue and colleagues
concluded that an adequate intake of dietary fiber is an effective strategy for improving
blood pressure among individuals with hypertension or prehypertension [36]. Grape po-
mace (GP), a by-product of wine production, is rich in polyphenols and dietary fiber. It
has been demonstrated that the polyphenols and dietary fiber present in grape pomace
can favorably influence the gut microbiota. Grape pomace has the potential to increase the
population of beneficial bacteria, such as Bifidobacterium and lactic acid bacteria, while
concurrently reducing the number of pathogenic bacteria. This modulation may enhance
gut health, which could positively impact cardiac health and potentially regulate high
blood pressure. Some investigations suggest that soy-based foods may protect against
hypertension by modulating the gut microbiome [42]. However, some individuals may
experience adverse reactions to soy, potentially linked to their specific gut microbiome.
Hence, dietary soy intake could shape the microbiome by suppressing particular taxa
and prevent hypertension exclusively in individuals with a soy-responsive microbiome.
Lv and colleagues corroborated these findings in a clinical trial involving hypertensive
women and men from a northwest Chinese population, providing evidence of fecal gut
microbiome signatures [43]. These results further support the hypothesis that dysbiosis of
the gut microbiota might be implicated in the pathogenesis of hypertension [44]. Moreover,
reducing dietary sodium has been shown to elevate circulating short-chain fatty acids
(SCFAs), which can affect blood pressure and arterial compliance through alterations in
SCFA levels [45].

2.4. Gut Microbiota and Hyperlipidemia

Hyperlipidemia, characterized by elevated blood levels of lipids such as cholesterol
and triglycerides, has seen an increasing incidence in recent years due to improved living
standards and dietary habits [46]. This prevalent metabolic disorder is responsible for over
17 million deaths annually worldwide through cardiovascular and cerebrovascular diseases,
with coronary heart disease and stroke being the leading causes of death. In China, the
prevalence of hyperlipidemia continues to rise, currently affecting over 100 million individ-
uals, with a higher prevalence among men than women and an increase with age [47]. The
significance of hyperlipidemia as a metabolic disease is undeniable, and recent studies have
highlighted the close relationship between gut microbiota and its onset and progression. In-
testinal microbes modulate the host’s lipid metabolism via various mechanisms, including
the regulation of the gut flora balance and the production of beneficial metabolites. Further
research is warranted to elucidate the mechanisms and therapeutic potential of the gut
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microbiome in combating hyperlipidemia. Fecal microbiota transplantation experiments
have unveiled the pathogenic role of gut microbiota in hyperlipidemia, and the regulatory
functions of microbiota-derived metabolites such as bile acids, lipopolysaccharides, and
short-chain fatty acids have been partially revealed. Interventions targeting the gut micro-
biota, including prebiotics, probiotics, fecal microbiota transplantation, and natural herbs,
have demonstrated efficacy in managing hyperlipidemia. These treatments may influence
host lipid metabolism by enhancing the composition and function of the gut microbiota,
thereby reducing lipid levels and cardiovascular risks [48]. Xu and colleagues, in a random-
ized controlled trial, reported that oat consumption significantly lowered total cholesterol
(TC) and low-density lipoprotein cholesterol (LDL-C), exerting a prebiotic effect on the gut
microbiome. Phytochemicals in oats, such as β-glucans and β-glucanase inhibitors, are
suggested to play a role in lipid reduction. Studies have shown that certain bacteria can
produce cholesterol, while others can alter cholesterol absorption and metabolism [49]. For
instance, Akkermansia, found in reduced numbers in individuals with hyperlipidemia, can
modulate blood lipids by balancing the gut microbiota and producing beneficial metabo-
lites. Zhang and colleagues observed changes in fecal Bifidobacterium breve levels with
combined probiotic and berberine therapy, indicating a potential synergistic effect on the
gut microbiome [27]. Probiotics have also been linked to reduced serum cholesterol levels
and improved lipid profiles, emphasizing their preventive and therapeutic value against
hyperlipidemia [50].

Butyrate, a key short-chain fatty acid produced by gut microbial fermentation, has
been shown to regulate serum cholesterol levels favorably. Lim and colleagues investigated
the benefits of a novel oil mixture on lipid profiles by stimulating butyrate production [51].
Advances in gene sequencing technology have deepened our understanding of the gut
microbiome’s structure and function, providing new tools for exploring its relationship
with hyperlipidemia. Dietary modifications and probiotics have been clinically proven to
effectively reduce blood lipid levels, and differences in gut microbiota composition have
been noted between healthy individuals and those with hyperlipidemia, corroborating
the link between gut microbiota and lipid disorders [52]. Furthermore, gut microbes can
influence lipid synthesis and catabolism by modulating host metabolic pathways, offering
a foundation for developing novel therapeutic strategies [53]. Over the past three years,
significant attention has been given to the gut microbiota’s role in hyperlipidemia, yet many
questions remain to be addressed. A deeper comprehension of the gut microbial commu-
nity’s structure and function and its impact on lipid metabolism is necessary. Additionally,
there is a need to develop more effective strategies for modulating the gut microbiome
to mitigate hyperlipidemia risks. Table 1 shows clinical trials and animal studies on the
treatment of metabolic syndrome with biotherapy.

Table 1. Registered clinical trials and animal studies about biotherapy to treat metabolic syndrome.

Biotherapy Resource Disease Outcomes Mechanism of Action References

PNS
Male C57BL/6J

mice (About
4 weeks old)

Obesity

PNS reduced adiposity
in DIO mice but not in

mice with induced
obesity and impaired

leptin signaling

The
leptin-AMPK/STAT3
pathway induced by

the PNS-mediated
modulations in the gut

microbiota was
involved in beige

adipocyte
reconstruction

(Gupta, Osadchiy
et al., 2020 [54])
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Table 1. Cont.

Biotherapy Resource Disease Outcomes Mechanism of Action References

the “W-LHIT”
capsules

Thirty-seven
patients aged
18 to 60 from

Wei-En hospital

Obesity

W-LHIT significantly
improved body weight

and comorbid
conditions without

obvious adverse
reaction or rebound

weight gain

Increased abundance
of Akkermansia
muciniphila and

Enterococcus
faecium and decreased

abundance of
Proteobacteria in
gut microbiota

(Cao, Wei
et al., 2023 [55])

Probiotics+
BBR T2D patients

Diabetes
Mellitus,
Type 2

Ant-diabetes effect

BBR can reduce
intestinal microbiota

bile acid (BA)
conversion, thereby
reducing intestinal
farnesol X receptor

(FXR) activity

(Zhang, Gu et al.,
2020 [26])

Intermittent
Fasting

Adults with MS,
age 30 to
50 years

Cardiometabolic
Risk

Factors

IF induces a significant
alteration of the gut

microbial community
and functional

pathways in a manner
closely associated with

the mitigation of
cardiometabolic

risk factors.

IF induced significant
changes in gut

microbiota
communities,
increased the
production of

short-chain fatty acids,
and decreased the

circulating levels of
lipopolysaccharides

(Guo, Luo
et al., 2023 [56])

GP-derived
seasonings

High-risk
cardiovascular

subjects and
healthy subjects

Hyperten
sion

GP-seasoning may
help in the modulation
of cardiometabolic risk
factors, mainly in the

early stages

Modulation of gut
microbiota and

functional bacterial
communities by
grape pomace

(Taladrid, Celis
et al., 2022 [42])

sodium
reduction with
slow sodium or
placebo tablets

145 participans
(42% Black
people, 19%

Asian, and 34%
female)

Hyperten
sion

Reducing dietary
intake can lower blood
pressure and improve

arterial compliance

Reducing dietary
sodium can increase

short-chain fatty acids
in the circulation,

supporting the
potential impact of
dietary sodium on

human gut microbiota

(Chen, He
et al., 2020 [45])

PNS, notoginsenoside R1 and ginsenosides Rb1, Rd, Re, Rf, and Rg1; W-LHIT capsules were prepared in a GMP
facility (Tian-jiang Pharmaceutical, Jiangsu, China); BBR, berberine; GP, grape pomace.

3. Pharmacological Modulation of Gut Microbiota as a Therapeutic Approach for
Metabolic Syndrome
3.1. Probiotics, Prebiotics, Metabiotics, and Synbiotics

Since the year 2020, there has been a progressive surge in scholarly articles pertaining
to the roles of probiotics, prebiotics, metabiotics, and synbiotics within metabolic syndrome
treatment, primarily focusing on the impact these microbial agents have on metabolic
syndrome and their potential mechanisms of action. It has been indicated that probiotics
can effectively redress the intestinal dysbiosis observed in metabolic syndrome patients. It
has been discovered that the intestinal milieu can be ameliorated through the administration
of probiotics such as Bifidobacterium and lactic acid bacteria, which serve to augment
the population of salubrious gut bacteria while curtailing the proliferation of deleterious
bacteria [57]. This amelioration contributes to reduced levels of blood glucose, lipids, and
blood pressure, dampened inflammatory responses, and enhanced insulin sensitivity.
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Prebiotics, classified as soluble dietary fibers, have also demonstrated therapeutic
utility in managing metabolic syndrome. Prebiotics foster the proliferation of beneficial gut
bacteria and inhibit the propagation of harmful bacteria, thereby upholding the equilibrium
of the intestinal microbiota [11]. Investigations have revealed that the consumption of
prebiotics can mitigate blood glucose, lipid, and blood pressure levels, as well as ameliorate
insulin resistance and inflammation [58]. Furthermore, metabiotics, postulated as processed
derivatives of probiotics, have exhibited therapeutic potential in addressing metabolic syn-
drome. Metabiotics exhibit superior resistance to acidity and stability, enabling them to
endure and exert influence within the intestinal tract. Studies have shown that metabiotics
can modulate the configuration of the gut microbiome, elevating the presence of beneficial
bacteria and curtailing the expansion of injurious bacteria, thus enhancing metabolic func-
tions. Synbiotics, a composite formulation integrating probiotics and prebiotics, have been
employed in metabolic syndrome treatment regimens. Synbiotics operate via multifaceted
mechanisms, including the regulation of intestinal flora homeostasis, the augmentation of
immune system functionality, and the diminution of inflammatory responses. Empirical ev-
idence suggests that synbiotics significantly lower blood glucose, lipid, and blood pressure
levels and ameliorate symptoms associated with insulin resistance and obesity.

3.2. Fecal Microbiota Transplantation

Fecal microbial transplantation (FMT), also referred to as intestinal microbiota trans-
plantation, constitutes a therapeutic intervention wherein fecal material from a healthy
donor is administered to a recipient for the purpose of modulating the intestinal microbiota.
This procedure has garnered increasing attention for its potential to directly reconstitute the
gut microbiota, offering prospects for the management of metabolic syndrome. However,
the safety and efficacy profile of FMT warrants comprehensive investigation to validate
its clinical utility. An expanding corpus of research has been dedicated to exploring the
capacity of FMT to enhance insulin sensitivity in individuals afflicted with obesity and
metabolic syndrome. Such studies typically involve the transfer of fecal microbiota from
individuals exhibiting a lean phenotype to those suffering from obesity or metabolic syn-
drome, followed by an assessment of the impact on insulin responsiveness [59]. FMT has
been applied across a broad range of conditions, thereby demonstrating its adaptability in
addressing a diverse array of pathologies [19,60]. In adolescent populations, the transfer of
fecal microbiome has exhibited the potential to mitigate obesity and improve metabolic
parameters. Ng and colleagues reported that iterative FMT procedures in obese patients
with type 2 diabetes mellitus (T2DM) significantly enhanced the engraftment rate and
persistence of the transferred microbiota [61]. When combined with lifestyle modifications,
FMT elicited more pronounced alterations in the gut microbiome, resulting in improved
lipid profiles and reduced liver stiffness among the study participants [33].

3.3. Others

Intermittent fasting (IF) is characterized as a dietary regimen that involves the sched-
uled restriction of eating periods, also known as time-restricted feeding. This approach has
been observed to exert a significant influence on the composition of the gut microbiota,
which may subsequently contribute to the enhancement of cardiovascular health [56]. IF
has been documented to induce notable alterations within the gut microbial community.
For instance, research has demonstrated that IF can increase the production of short-chain
fatty acids (SCFAs), a class of gut microbial metabolites that confer an array of health
benefits to the host, such as improved insulin sensitivity, reduced inflammatory responses,
and the suppression of detrimental bacteria. Lipopolysaccharides, integral components
of the bacterial cell wall, have the potential to initiate inflammation. By reducing circulat-
ing levels of LPS, IF may contribute to the alleviation of cardiovascular risks associated
with chronic inflammation. Studies have additionally revealed that IF can lower blood
pressure, ameliorate lipid profiles, and reduce body weight—all recognized as risk factors
for cardiovascular disease. Moreover, IF may induce specific genetic alterations in the gut



Microorganisms 2024, 12, 851 10 of 14

microbiota related to carbohydrate metabolism, suggesting that modifications in dietary
patterns could potentially modulate host metabolism and health by affecting the gene
expression of gut microbes.

Dietary fiber derived from whole grains, vegetables, and fruits serves as a nutrient
source for the gut microbiota and can significantly influence the composition, diversity,
and richness of the microbiome [62]. This effect is attributed to dietary fiber providing a
variety of substrates for particular microbial species equipped with the enzymes necessary
for degrading these complex carbohydrates. For example, soluble fiber can be fermented by
certain gut bacteria to produce beneficial compounds such as SCFAs. Dietary supplements,
including probiotic and prebiotic formulations, offer a convenient method for supplement-
ing the nutrients essential for intestinal flora [63]. Investigations have demonstrated that
purified citrus polymethoxy-flavonoid-rich extract (PMFE) effectively mitigates metabolic
syndrome (MetS) induced by a high-fat diet (HFD), and it attenuates the dysbiosis of the
gut microbiota. It has been indicated that the metabolic protective effects conferred by
PMFE are contingent upon the presence of gut microbiota [64].

4. Chrononutrition and Metabolic Syndrome

Regular feeding patterns have been shown to entrain the peripheral circadian clock,
while the peripheral clock systems are known to govern the absorption, distribution,
metabolism, and excretion of nutrients. This suggests a reciprocal interaction between
circadian clocks and nutrition/food intake, a phenomenon termed “chrononutrition” [65].
A study by Lujan Barroso L et al. examined 3644 participants from the European Cancer
Prospective Survey and the Spanish Nutrition Study. The findings indicated that among
Spanish adults, a higher volume of breakfast correlates with a lower incidence of metabolic
syndrome, underscoring the importance of a high-energy breakfast [66].

The influence of eating times on energy balance and metabolism is an active area of
research. Human studies have demonstrated that timed nutrient intake may be an effica-
cious strategy to augment weight loss and improve glycemic control [67]. Mazri FH et al.
discovered that lower energy consumption in the early part of the day is associated with
increased energy intake later, which elevates the risk of developing unhealthy metabolic
states. In alignment with these results, a one-year longitudinal study on adult women
reported that higher caloric intake during dinner correlated with poorer diastolic blood
pressure outcomes. Furthermore, two randomized controlled trials involving weight loss
interventions revealed that participants who consumed the majority of their calories at
breakfast (and lunch) and reduced their intake at dinner experienced greater weight loss
and a reduction in insulin resistance. A randomized crossover trial indicated that, with
equivalent dietary composition, diet-induced thermogenesis (DIT) following dinner was
diminished compared to after a morning meal. The attenuation in DIT reflects decreased en-
ergy expenditure on the digestion, absorption, and metabolism of nutrients. Consequently,
a sustained increase in energy expenditure during the latter part of the day could potentially
lead to weight gain [68]. Jeong S et al. utilized a database analysis to demonstrate that even
after controlling for age and total energy intake, individuals with higher evening energy
intake were more predisposed to develop obesity and metabolic syndrome (MetS) [69].

5. Conclusions

Investigations into the correlation between the gut microbiome and health have been
conducted; however, the mechanisms governing these interactions remain incompletely
understood. Additional research is necessary to elucidate the specific causal mechanisms
underlying these relationships. Recognizing the involvement of the gut microbiome in a
broad spectrum of diseases, there is considerable interest in pursuing innovative therapeu-
tic strategies. It has been proposed that modulating the composition of the gut microbiome
could serve as a preventive or therapeutic measure against certain diseases. Concurrent
with the expansion of knowledge regarding the gut microbiome, the potential for person-
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alized medicine is also growing. The future of healthcare may well witness the advent of
individualized treatments based on the unique characteristics of a patient’s gut microbiome.
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