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Abstract: Enterococcus faecium B13, selected from fermentation chili, has been proven to promote
animal growth by previous studies, but it belongs to opportunistic pathogens, so a comprehensive
evaluation of its probiotic properties and safety is necessary. In this study, the probiotic properties
and safety of B13 were evaluated at the genetic and phenotype levels in vitro and then confirmed
in vivo. The genome of B13 contains one chromosome and two plasmids. The average nucleotide
identity indicated that B13 was most closely related to the fermentation-plant-derived strain. The
strain does not carry the major virulence genes of the clinical E. faecium strains but contains aac(6′)-Ii,
ant (6)-Ia, msrC genes. The strain had a higher tolerance to acid at pH 3.0, 4.0, and 0.3% bile salt and a
32.83% free radical DPPH clearance rate. It can adhere to Caco-2 cells and reduce the adhesion of E.
coli to Caco-2 cells. The safety assessment revealed that the strain showed no hemolysis and did not
exhibit gelatinase, ornithine decarboxylase, lysine decarboxylase, or tryptophanase activity. It was
sensitive to twelve antibiotics but was resistant to erythromycin, rifampicin, tetracycline, doxycycline,
and minocycline. Experiments in vivo have shown that B13 can be located in the ileum and colon
and has no adverse effects on experiment animals. After 28 days of feeding, B13 did not remarkable
change the α-diversity of the gut flora or increase the virulence genes. Our study demonstrated that
E. faecium B13 may be used as a probiotic candidate.

Keywords: probiotic properties; safety; Enterococcus faecium; whole-genome sequences; gut flora;
metagenomics

1. Introduction

Enterococcus was widely present in traditional fermented foods, such as milk [1],
meat [2], cheese [3], fermented sausage [4], fermented vegetables [5,6], soy milk [7], and
other foods [6,8]. Because of its strong proteolytic and esterolytic properties, strong tol-
erance, and yielding acid, Enterococcus is even intentionally added to the process of food
fermentation [9,10]. For instance, Enterococcus is frequently used in the preparation of
traditional cheeses in Mediterranean countries, including Greece, Italy, Spain, and Portugal,
to accelerate food ripeness and aroma development [11,12]. Enterococcus faecium, belonging
to lactic acid bacteria, is a relatively unique type of probiotic. They are not only widely
used in fermented foods but also extensively used in animal health [13], such as restoration
of microbiota balance of the gastrointestinal tract (GIT) with antibiotic-induced dysbio-
sis [14–16], antiviral activity [17], antitumor effect [18,19], cholesterol-lowering effect [20],
and immune regulation [21–23].

However, unlike other probiotics, such as Lactobacillus and Bifidobacterium, E. fae-
cium possesses strong antibiotic resistance, and its resistance is still evolving. Recent
research showed that the clinical infection caused by E. faecium has continued to rise.
They often show resistance to antimicrobials, including β-lactams, high levels of amino-
glycosides, and glycopeptides [24]. Even antimicrobial resistance against vancomycin
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has been reported [25,26]. Many studies have shown that the resistance of E. faecalis is
closely related to its survival environment. E. faecalis, from the clinic, generally exhibited
strong resistance [27,28], while strains from fermented foods had weaker resistance [4]. But
antimicrobial-resistant E. faecium with low pathogenicity still affects these immunocom-
promised patients and possibly causes systemic infections because it limits the choice of
effective antibiotics. So even low-pathogenic E. faecium from food sources may be unsafe.
Therefore, the safety of using E. faecalis as a probiotic in the fields of food and healthcare
has been questioned by people [29,30]. It is essential to evaluate its probiotic properties,
especially its safety, before use.

The E. faecium B13 in this study was screened from chili and has been proven to
produce bacteriocins and promote animal growth in previous studies [31]. To determine
whether the strain has application possibilities in food and animal healthcare, the safety and
probiotic properties of E. faecium B13 must be examined based on these guidelines related
to probiotics, including those issued by the United States Food and Drug Administration
(FDA) and the World Gastroenterology Organization (WGO).

2. Materials and Methods
2.1. Strains and Culture Conditions

E. faecium B13 used in this study was previously isolated from fermented pickled chili
(preserved at Southwest Minzu University, Chengdu, China). It was cultured still at 37 ◦C
in DeMan-Rogosa-Sharpe (MRS) medium, containing (per liter) 10 g tryptone, 5 g yeast
extract, 2 g diammonium hydrogen citrate, 20 g glucose, 5 g anhydrous sodium acetate,
2 g K2HPO4·3H2O, 0.58 g MgSO4·7H2O, 0.25 g MnSO4·H2O, and 10 g beef extract. Es-
cherichia coli 8099 and Staphylococcus aureus ATCC 25923 purchased from Chengdu Peng-
shida Experimental Supplies Co., Ltd. (Chengdu, China) were used as indicator strains
and cultured at 37 ◦C for 24 h in Luria–Bertani (LB) medium, containing (per liter)
10 g tryptone, 5 g yeast extract, and 10 g NaCl.

2.2. Whole-Genome Sequencing
2.2.1. Genomic DNA Extraction

Genomic DNA was extracted from the culture broth (24 h) using the Bacterial DNA
Kit (Omega Biotek, Norcross, GA, USA) and quantified by TBS-380 Picogreen (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s protocol.

2.2.2. Illumina and PacBio Sequencing

In this study, the E. faecium B13 strain genome was sequenced by a combination of
PacBio RS II and Illumina NovaSeq 6000, respectively.

For Illumina pair-end sequencing of this strain, purified genomic DNA was sheared
into smaller fragments with 300~500 bp by Covaris M220 (Covaris, Woburn, MA, USA), and
genomic libraries of E. faecium B13 were constructed using the TruSeq™ Nano DNA Sample
Prep Kit (Illumina, San Diego, CA, USA). The whole genome sequencing was performed
on an Illumina NovaSeq 6000 (150 bp*2, Shanghai BIOZERON Co., Ltd., Shanghai, China)
using the Truseq SBS Kit (Illumina, California, USA) with 300 cycles.

Moreover, genomic DNA was processed into 15–20 kb fragments by the G-tubes
method and sequenced using a PacBio BS(Sequel) II instrument(PacBio, Menlo Park, CA,
USA) following the Pacbio standard protocol. The data were assembled using unicycler
version 0.4.8. The protein sequences were predicted by GeneMarkS (version 4.17), and the
COG database was used to annotate the functions of the predicted open reading frames.

2.2.3. Average Nucleotide Identity

42 strains of E. faecium from different sources in the NCBI database were selected and
their average base similarity was compared with E. faecium B13 using the ANI Calculator
online analyzer (https://www.ezbiocloud.net/tools/ani) (accessed on 6 October 2023).

https://www.ezbiocloud.net/tools/ani
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2.2.4. Identification of Virulence Factors and Antibiotic Resistance Genes

The virulence factor database (VFDB) [32,33] was used to identify and characterize the
virulence genes within the genome. The antibiotic resistance genes were identified using the
Comprehensive Antibiotic Resistance Database (CARD) [34]. The mobile genetic elements
in the DNA sequences of the strain were identified through the web-based tool oriTfinder
(https://tool-mml.sjtu.edu.cn/oriTfinder/oriTfinder.html) (accessed on 2 January 2024).
All the above predictions were made using default parameters.

2.3. Phenotypic Safety and Probiotic Characteristics Assessment
2.3.1. Acid and Bile Salt Tolerance

To assess acid tolerance, 2% (v/v) activated suspensions of E. faecium B13 were inocu-
lated into MRS medium, cultured overnight, and centrifugated. The cell pellet was washed
twice with PBS and resuspended in PBS of pH 1.0, pH 2.0, pH 3.0, pH 4.0, and pH 7.0,
respectively, then incubated at 37 ◦C for 3 h. The viable cells were counted using the flat
colony counting method. The number of viable bacteria was assessed on MRS agar, and
the results are expressed as log10 CFU/mL. The survival rate of the bacteria was calculated
using Formula (1):

Survival rate (%) = N1/N0 × 100. (1)

where N1 (log CFU/mL) is the total viable cell after treatment (3 h), and N0 (log CFU/mL)
represents the total viable cell at pH 7.0.

To assess bile tolerance, 100 µL cell suspensions of B13 cultured overnight were added
into MRS broth containing 0.3% (w/v) bile salt and incubated at 37 ◦C. The viable bacteria
were measured after 0, 1, 2, and 3 h of exposure to bile salt treatments. The survival rate
was calculated using Formula (2):

Survival rate (%) = Nt/N0 × 100. (2)

where Nt (log CFU/mL) is the total viable cell after different treatments, and N0 (log
CFU/mL) represents the total viable cell before treatment (0 h).

2.3.2. Cell Surface Hydrophobicity

The cell surface hydrophobicity (CSH) of the strain was determined by bacterial
adhesion to hydrocarbons (BATH) [35]. E. faecium B13 in the logarithmic growth phase was
harvested by centrifugation (6000 rpm, 4 ◦C, 15 min), washed twice with PBS (pH 7.0), and
resuspended in the same solution. The n-hexadecane and bacterial suspensions were mixed
at a ratio of 1:5 (v:v) and vortexed for 2 min. The mixture was kept at room temperature
for 45 min, and then the OD600 of the aqueous phase was determined. CSH was calculated
using Formula (3):

CSH (%) = (A0 − A/A0) × 100. (3)

A0 and A represent the OD600 values measured before and after mixing with n-
hexadecane.

2.3.3. Auto-Aggregation

The auto-aggregation analysis followed the procedure described by Reubene et al. [36],
with some modifications. Overnight cultures were centrifuged (6000 rpm, 5 min) and
washed twice with PBS. The sediment was resuspended in PBS and vortexed for 10 s, and
then the OD600 was measured as A0 (initial optical density). The bacterial suspensions
were incubated at 37 ◦C and measured at 0, 1, and 5 h as A1. Auto-aggregation ability was
calculated as follows (4):

Auto-aggregation (%) = [1 − (A1/A0) ] × 100. (4)

https://tool-mml.sjtu.edu.cn/oriTfinder/oriTfinder.html
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2.3.4. Antioxidant Activity and Total Antioxidant Capacity

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity of E. fae-
cium B13 fermented supernatant was assessed according to the method described by Wu
et al. [37] with minor modifications. The culture medium of E. faecium B13 (24 h) was
centrifugated at 4 ◦C (6000 rpm for 5 min) and filtered through a 0.22 µm filter membrane
to obtain the cell-free supernatants (CFS). Then, 1.5 mL of CFS was mixed with 1.5 mL
of ethanolic DPPH solution (0.2 mM). DPPH solution was mixed with sterilized water
as a control group, and CFS was mixed with ethanol as a blank group. All groups were
incubated in the dark at 25 ◦C for 30 min, and then the absorbance was measured at a
wavelength of 517 nm. The DPPH free-radical scavenging activity of VC (1 mmol/L) was
assessed at the same condition as the positive control. The scavenging ability was calculated
according to Formula (5):

Scavenging activity (%) = [1 − (Asample − Ablank)/Acontrol] × 100. (5)

where Asample, Ablank, and Acontrol represent the absorbance at 517 nm of the sample, blank,
and control groups.

The total antioxidant capacity was measured according to the instructions of the total
antioxidant capacity (T-AOC) test kit (Nanjing Jiancheng Bioengineering Research Institute,
China). The total antioxidant capacity of VC was measured as a positive control.

2.3.5. Bile Salt Hydrolase (BSH) Activity

The bacteria were streaked on modified MRS agar and added extra 0.5% (w/v) sodium
salt of Tauro deoxycholic acid (TDCA) (Sigma-Aldrich, St. Louis, MO, USA) and 0.37 g/L
of calcium chloride (Sigma-Aldrich, USA). Plates were incubated at 37 ◦C for 72 h. A halo
zone around colonies was observed (indicating bile salt hydrolase activity existed).

2.3.6. Gelatinase Activity

The bacterial suspensions were added into the gelatin biochemical identification tube
(Qingdao Hope Bio-Technology Co., Ltd., Qingdao, China) and cultured at 37 ◦C for 48 h.
Then the tube was placed at 4 ◦C for 30 min, and solidification was observed by slanting.
Whether liquefaction occurred in the medium was the standard for determining gelatinase
activity. If the medium is liquid, the gelatinase activity is positive. S. aureus ATCC 25923 in
a gelatin tube and PBS in a gelatin tube were used as positive and negative controls.

2.3.7. Decarboxylase Activity

The E. faecium B13 was respectively inoculated into the double-arginine hydrolase
broth, the ornithine decarboxylase broth, the lysine decarboxylase broth, and the corre-
sponding control broth (Qingdao Hope Bio-Technology Co., Ltd., Qingdao, China), then
cultured at 37 ◦C for 24 h. E. coli 8099 and MRS broth were used as positive and negative
controls. If the color of the test medium and the control medium did not change, decar-
boxylase activity is negative. If the color of the test medium changed to purple and the
color of the control medium was still yellow, decarboxylase activity is positive.

2.3.8. Indole Experiment

The E. faecium B13 was cultured at 37 ◦C for 24 h in tryptophan broth. Then Ko-
vac’s reagent was added and shaken. If the color of the medium changes to rose, the
tryptophanase activity is positive. E. coli 8099 and MRS were used as positive and
negative controls.

2.3.9. Hemolysin Activity

The E. faecium B13 was streaked on the columbia blood agar plate and cultured for
48 h [38]. Then, a hemolytic transparent circle around the colony was observed. The
hemolytic S. aureus ATCC 25923 was used as the positive control. If grass green ring
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appeared around the colony, it is α hemolysis; if a clear ring appeared around the colony, it
is β hemolysis; if the culture medium around the colony had no change, it is γ hemolysis,
which means no hemolysis.

2.3.10. Antibiotic Susceptibility

According to the Kirby Bauer (K-B) method recommended by the American Clin-
ical Laboratory Standardization Institute (CLSI), the diameter of the inhibition zone of
17 kinds of antibiotics against E. faecium B13 was measured to determine the drug resistance.
S. aureus ATCC 25923 was used as a quality control strain in this test [39].

2.3.11. Cell Adhesion In Vitro

Caco-2 cells were cultured at 37 ◦C in a humidified environment containing 5% CO2 in
DMEM medium containing 10% fetal bovine serum (Gibco, Shanghai, China) and seeded
in 24-well tissue culture plates and incubated until full differentiation (21 days).

Bacterial suspensions at a concentration of 108 CFU/mL were applied to confluent
Caco-2 monolayers [40]. After 1 h of incubation at 37 ◦C, the mixture was rinsed three times
with PBS, and 0.5% Triton X-100 solution (Sigma-Aldrich, Shanghai, China) was added to
digest the cells. The digested cell suspensions were placed on MRS agar to determine the
number of adherent bacteria. The adhesion percentages were calculated by comparing the
viable cell numbers before and after adhesion.

2.3.12. Inhibitive Pathogen Adhesion

Three different methods were used to examine the ability of E. faecium B13 to defend
against pathogen adhesion to Caco-2 cells [41]. The competition was assessed in group 1.
1 × 108 CFU/mL of E. faecium B13 and 1 × 108 CFU/mL of E. coli were added simultane-
ously to the CaCo-2 cells and incubated at 37 ◦C for 2 h. The displacement was assessed in
group 2. CaCo-2 cells were incubated with E. coli suspensions for 1 h and then added to
E. faecium B13 suspensions and incubated together for 1 h. The exclusion was assessed in
group 3. CaCo-2 cells were incubated to E. faecium B13 suspensions for 1 h, then added with
E. coli suspensions for 1 h. CaCo-2 cells were incubated with 1 × 108 CFU/mL of E. coli for
2 h as the control group. All groups were rinsed with PBS (pH 7.2) and treated with a 0.5%
Triton X-100 solution (Sigma-Aldrich, Shanghai, China). The digested cell suspensions were
serially diluted in PBS, and colonies were counted on MacConkey Agar. The inhibition rate
was calculated using Formula (6):

Inhibition rate (%) = (1 − (Nt/Nc)) × 100. (6)

where Nt (log CFU/mL) represents viable cells in the treated group and Nc (log CFU/mL)
represents viable cells in the control group.

2.4. Effects In Vivo
2.4.1. Animals and Bacteria

Male ICR mice (3 weeks) were housed under standard conditions with an alternating
12 h light and dark cycle at a temperature of 25 ± 2 ◦C and with free access to food and
water. E. faecium B13 was cultured at 37 ◦C for 24 h in the MRS medium, then centrifuged
for 10 min at 6000 rpm, rinsed, and resuspended in normal saline.

2.4.2. Intestinal Distribution of E. faecium B13

To investigate the characteristics of E. faecium B13 colonization of the GIT, fluorescein
isothiocyanate (FITC) was used to stain B13 [42]. The E. faecium B13 was collected during
the logarithmic growth phase, washed three times with normal saline, and resuspended in
the same solution. An equal volume of FITC staining solution (Beyotime, Shanghai, China)
was added to the bacterial suspensions, and the mixture was incubated for 30 min at 37 ◦C



Microorganisms 2024, 12, 994 6 of 19

in the dark. The samples were then rinsed three times to remove the unbound dye. B13
was resuspended in normal saline at a concentration of 1 × 1010 CFU/mL.

The entire experimental period was 14 days. The mice were gavaged with 200µL
of fluorescent-labeled bacterial suspensions for 7 consecutive days, then stopped on the
8th day, whereas the control group was given normal saline the whole time. Mice were
euthanized at 2 h, 4 h, 6 h, 8 h, 12 h, 24 h, and every day to collect 1 cm sections of the
jejunum, ileum, colon, and cecum. After thoroughly rinsing the intestinal tube with normal
saline, the intestine homogenates were centrifuged, and the precipitate was resuspended to
detect the fluorescence value. Meanwhile, the sections of ileum and colon on the 4th day
were fixed in formalin, processed in paraffin, and stained with DAPI.

2.4.3. Animals Experiment

The safety experiment of E. faecium B13 in vivo was conducted for 28 days. After a
one-week adaptation period, mice were randomly divided into 2 groups of 8 animals each.
Control group: the mice were gavaged with 200 µL of normal saline once a day. Experi-
mental group: the mice were gavage equivalent bacterial suspensions (5 × 109 CFU/mL).

The mice were monitored daily for changes in clinical signs, mortality, fur, body
weight, and food intake. On the 29th day, the mice were fully anesthetized for sacrifice after
a fast of 12 h. The blood samples were being taken for routine examination. The organs,
such as the heart, liver, heart, spleen, lung, and kidney, were weighed to calculate the
organ index and determine the viable microbe count on these organs. Colon was collected
for histological analysis by hematoxylin and eosin (H&E) staining. Colon contents were
collected for further analysis. All the procedures involving animals followed the guidelines
of the national standards outlined in GB 14925–2010 [43] and permitted by the Southwest
Minzu University Animal Ethics Committee.

2.4.4. Metagenome Sequencing of Colon Microbiota

Colon contents (n = 5) were collected and sequenced. The metagenomic sequencing
was based on Shanghai Majorbio Bio-Pharm Technology Co. Ltd. and was in accordance
with the company’s standard protocols (Shanghai, China).

2.5. Statistical Analysis

All measurements were repeated independently in triplicate, and the results are ex-
pressed as the mean ± standard deviation. Statistical analyses were performed using
SPSS version 25.0. The data were subjected to a one-way analysis of variance (ANOVA),
followed by a Duncan’s test or Student’s t-test to examine for significant differences.
Differences in bacterial microbiota community structures between samples were visual-
ized by principal coordinate analysis (PCoA). The difference was considered significant
at p < 0.05.

3. Results and Discussion
3.1. The Whole Genome Sequence Analysis of the E. faecium B13
3.1.1. General Genome Features

A total of 14,188,932 raw reads of the E. faecium B13 strain were generated by Illumina
Novaseq 6000 mode. The Q30 value of raw reads was 91.29%. After data QC and filtering,
approximately 2040 Mb of clean data were used for assembly. The E. faecium B13 genome,
with an average GC content of 38.35%, consists of one chromosome and two plasmids
(plasmid1 and plasmid2). The chromosome contains 2,591,601 bp, while plasmid1 and
plasmid2 contain 197,836 bp and 37,755 bp, respectively (Figure 1). The whole genome
consisted of 2785 genes, including 68 tRNAs, 6 5S rRNAs, 6 16S rRNAs, 6 23S rRNAs, and
52 other ncRNAs.
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Figure 1. The complete genome of E. faecium B13. (A) Chromosomal genome map of E. faecium B13.
(B) Plasmid 1 genome map of E. faecium B13. (C) Plasmid 2 genome map of E. faecium B13. The outermost
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circle of the circle map is the genome-sized logo; each scale is 0.1 Mb (for Figure 1A), 10 kb (for
Figure 1B), and 1 kb (for Figure 1C). The second and third circles are CDS on the forward and reverse
chains, and the assorted colors indicate different COG classifications of the CDS. The fourth circle is
rRNA, or tRNA. The fifth circle is the GC content, and the outward orange part indicates that the
GC content in the region is higher than the whole-genome average GC content. The inward green
portion indicates that the GC content in the region is low; the higher peak value indicates a greater
difference from the average GC content.

3.1.2. Functional Annotation

A total of 2390 protein-coding genes (85.81% of the total protein-coding genes) were
assigned a putative function by COG, which belong to 20 different categories, respec-
tively. These gene categories involved replication, transcription, translation, transport,
and metabolism of carbohydrates, nucleic acids, and lipids, as well as material transport
and energy conversion. Functional genes associated with transcription (254 Open Read-
ing Frames (ORFs)), translation (206 ORFs), and carbohydrate transport and metabolism
(246 ORFs) were ranked among the most abundant COG functional categories. The func-
tional categories of genes annotated are shown in Figure 1. The research by Michael S.
Gilmore [44] showed that the largest functional gene groups that helped E. faecalis adapt
to the environment were those genes involved in translation, ribosome structure, and
biogenesis. The diversity of functional annotations indicated that their genomes have high
plasticity to adapt to different environments.

3.1.3. Average Nucleotide Identity

According to ANI analysis (strain information is shown in Supplementary Table S1),
the closest genetic relationship to E. faecium B13 is the strain DUTYH_16120012 isolated
from Chinese sauerkraut (ANI = 99.44); in addition, the strains isolated from Korean
fermented soybean also have a high ANI value near 99% (98.87%~99.14%) with E. faecium
B13. However, compared to those strains selected from other foods, such as yogurt, cheese,
fermented yak milk, fermented milk, camel milk, and commercial food with E. faecium B13,
the ANI value was relatively lower, about 95% (94.68%~95.28%). Moreover, the similarity
between E. faecium B13 and other natural environment strains, such as clinical isolation,
wastewater, and soil, was also low (94.71%~95.34%). Surprisingly, E. faecium B13 was very
similar (99.33%) to a probiotic candidate 17OM39 isolated from the feces of a healthy adult
in India [45].

These results indicated that the similar living environment and fermentation substrate
may be the cause of the high similarity between Chinese sauerkraut, Korean fermented
soybean, and E. faecium B13. Many studies have shown that E. faecium derived from
fermented foods has higher safety [4,46] than clinical strains. Genomes of clinical strains
are significantly larger than those of non-clinical strains because of the acquisition of
mobile genetic elements, virulence, and AMR genes [4,47]. Exceptionally, further analysis
showed that the potential virulence genes and drug resistance genes carried by B13 were
significantly different from 17OM39, which may be caused by the two circular plasmids
carried by E. faecium B13.

3.1.4. Virulence Genes

The results of virulence genes annotated by the virulence factors of the database (VFDB)
are shown in Table 1. A total of 8 genes related to virulence were specifically annotated,
involving these functions: biofilm formation, adhesion, streptolysin, and evasion of the
immune system. Among them, 5 genes were located on the chromosome, and the rest
were located on plasmid 1. The strain carried multiple pili genes (pilA, pilB, pilE, and pilF).
Although pili genes are associated with the pathogenicity of certain bacteria, they can also
help bacteria adhere to host cells. Adherence to the gut epithelial cells and subsequent
colonization could extend the persistence of probiotic strains in the intestinal tract. The bopD
encoded the secretory protein of the type III secretion system, which is a transmembrane
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channel formed by a multi-component protein complex and is a complex molecular device
presented in many Gram-negative pathogenic bacteria [48]. The bopD locus is regulated
by the Fsr system and is necessary for biofilm formation [49,50]. The strain does not carry
major virulence genes that the clinical E. faecium strains possess, like asa1, gelE, cylA, esp,
and hyl, suggesting that the strain is unlikely to initiate opportunistic infection.

Table 1. Virulence gene of E. faecium B13.

Virulence genes Product Function Location Identify(%) VFid GeneID

Adherence

pilB pilB-type pili Involved in type IV
pili biosynthesis chr 99.2 VFG042991 B13000560

pilF minor pilin subunit Involved in type IV
pili biosynthesis plasmid1 99.1 VFG042984 B13002625

pilE cell wall-associated
LPXTG-like protein

Involved in type IV
pili biosynthesis plasmid1 99.2 VFG042986 B13002627

pilA pilA-type pili Involved in type IV
pili biosynthesis plasmid1 98.3 VFG042988 B13002629

Biofilm formation

sgrA cell wall anchored
protein SgrA

Adherence to
cell wall chr 79.6 VFG043511 B13001199

bopD
Sugar binding
transcriptional

regulator

biofilm on
plastic surfaces chr 86.3 VFG002197 B13000384

Immune Evasion

hasC Hyaluronic acid
HA capsule

Evasion of host
immune system chr 73.3 VFG005865 B13001994

pathogenicity

sagA Streptolysin S
core peptide hemolytic activity chr 95.4 VFG043441 B13002370

Compared to these E. faecium strains isolated from commercial swine and cattle probi-
otic products [47], B13 contains fewer virulence genes. But the sagA gene was identified
to suggest the strain may secrete SLS, which can cause β-hemolysis. So, the safety of B13
needs further testing.

3.1.5. Antibiotic Resistance Genes

The antibiotic-related genes of E. faecium B13 were detected using CARD databases
and shown in Table 2. E. faecium B13 carries genes encoding resistance to a few medically
important antibiotics, including aminoglycosides (aac(6′)-Ii, ant(6)-Ia), macrolide (msrC),
lincosamide (lnu(G)), pleuromutilin (eatA), and the tetracyclines tet(L) and tet(M). Genetic
traceability analysis traced that tet(L) and tet(M) genes may originate from Geobacillus
stearothermophilus and Staphylococcus aureus, respectively; ant (6)-Ia genes may originate
from Exiguobacterium.

Tetracycline resistance is commonly present in Gram-positive and Gram-negative
bacteria and is easily transmitted in the environment. Research by Sunghyun Yoon [1]
showed that up to 73.4% of 338 strains of enterococci isolated from 1584 batches of bulk
tank milk samples were resistant to tetracycline from 396 farms that were affiliated with
four dairy companies in Korea. Genomic analysis of antibiotic-resistant Enterococcus spp.
revealed the spread of plasmid-borne tet(M), tet(L), and erm(B) genes from chicken litter to
agricultural soil in South Africa by Fatoba [51]. Even foodborne lactobacillus was able to
spread tet(M), tet(L), and tet(W) in different natural environments [52].

The lnu (G) gene located on a mobile element (Tn 6260) is easily disseminated [53]. In
our study, these genes (tet(L), tet(M), ant (6)-Ia, and InuG) are all located in plasmids and
may get rid of by plasmid elimination.
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Table 2. Resistance genes of the E. faecium B13 genome by CARD analysis.

Location Identify(%) Gene family Product Drug Class Resistance
Mechanism Origin Species

plasmid2 99.75 tet(L) tetracycline efflux MFS
transporter Tet(L) tetracycline antibiotic efflux Geobacillus

stearothermophilus

chr 98.901 AAC(6′)-Ii aminoglycoside
N-acetyltransferase AAC(6′)-Ii aminoglycoside antibiotic

inactivation
Enterococcus

faecium

plasmid1 99.625 lnu(G) lincosamide
nucleotidyltransferase Lnu(G) lincosamide antibiotic

inactivation
Enterococcus

faecalis

plasmid1 100 ANT(6)-Ia
aminoglycoside

nucleotidyltransferase
ANT(6)-Ia

aminoglycoside antibiotic
inactivation Exiguobacterium

chr 97.531 liaF three-component signaling
pathway regulator LiaF lipopeptide antibiotic

target alteration
Enterococcus

faecium

chr 98.941 cls cardiolipin synthase Cls lipopeptide antibiotic
target alteration

Enterococcus
faecium

chr 99.524 liaR response regulator
transcription factor LiaR lipopeptide antibiotic

target alteration
Enterococcus

faecium

chr 100 liaS sensor histidine kinase LiaS lipopeptide antibiotic
target alteration

Enterococcus
faecium

plasmid2 95.149 tet(M)
tetracycline resistance
ribosomal protection

protein Tet(M)
tetracycline antibiotic

target protection
Staphylococcus

aureus

chr 97.154 msrC ABC-F type ribosomal
protection protein Msr

macrolide/
streptogramin

antibiotic
target protection

Enterococcus
faecium

chr 99 eatA ABC-F type ribosomal
protection protein Eat(A) pleuromutilin antibiotic

target protection
Enterococcus

faecium

Unlike E. faecalis, E. faecium is naturally susceptible to lincosamides, streptogramins A,
and pleuromutilins (LSAP phenotype). But the eat (A) gene is an intrinsic gene of E. faecium,
and the eat (A) protein displayed 66%, 44%, 43%, and 42% amino acid identities with other
proteins Lsa (A), Lsa (E), Lsa (B), and Lsa (C), conferring LSAP-type resistance in various
Gram-positive organisms. So, when this gene undergoes a mutation, the strain may exhibit
the LSAP phenotype.

The bacteriocin gene has been predicted through WGS analysis and had also been
detected [54], so the liaFSR system and cls gene may definitely be inherent systems. Because
E. faecium is Gram-positive, it is intrinsically resistant to low levels of aminoglycoside [55].
Aminoglycoside phosphotransferase (APH), aminoglycoside riboside transferase (ANT),
and aminoglycoside acetyltransferase (AAC) can modify the amino groups or hydroxyl
groups of aminoglycoside antibiotics and destroy their binding to the ribosome, thus
rendering aminoglycoside antibiotics unable to work [56].

The presence of aac(6′)-Ii and ant (6)-Ia genes suggests a moderate and high level
of aminoglycoside resistance. The strain possessed the msrC gene, which allows the
organisms to be resistant to macrolides, but when aac (6′)-Ii and msrC coexist, they may be
non-functional, which was present in many macrolide-susceptible strains [57].

3.2. Probiotic Properties Assessment
3.2.1. Acid and Bile Salt Tolerance

Tolerances to low-acid and high-bile salt stresses are significant properties for any
potential probiotic bacteria. The abilities of E. faecium B13 to tolerate acid and bile salts
are presented in Tables 3 and 4. The pH of animal gastric juice can fluctuate from around
1.0 on an empty stomach to 4.0 after eating and even reach 5.0 after consuming yogurt
and fermented milk. The survival rates of B13 at different pH conditions varied greatly
(p < 0.05) from 0 at pH 1.0 and 2.0 to above 97.97% at pH 3.0 to pH 4.0. Its acid tolerance
was similar to that of E. faecium MG5232 from Kimchi [5], but far below that of MZF1-MZF5
selected from artisanal Tunisian meat [40] and E. faecium OV3-6 from the fermentation
plant [41]. The results showed that the bile salt tolerance of B13 significantly decreased
with time (p < 0.05), but the survival rates at different times were all found to be above
90%. The bile salt tolerance of B13 was similar to 17OM39 from human feces [45]. In
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addition, B13 exhibited significantly high survival rates in 0.3% bile salt solution compared
to some Pediococcus species [58–61]. WGS analysis detected the bsh gene, and the bile salt
hydrolase activity was positive. The high tolerance to bile salt of B13 may be due to its
bile salt hydrolase. E. faecium OV3-6 showed BSH activity and resistance to simulated
small intestine conditions, with the percentage survival of the strain above 96.89% at 4 h.
The good tolerance for acid and bile salt suggested that B13 could potentially reach the
intestinal lumen and thus stay alive in that environment.

Table 3. Acid tolerance of E. faecium B13 at different pHs.

pH Viable Count (log10 CFU/mL) Survival Rate (%)

1.0 - 0
2.0 - 0
3.0 6.74 ± 0.03 97.97
4.0 6.95 ± 0.04 101

“-” represents the number of viable bacteria is 0.

Table 4. Resistance of E. faecium B13 at 0.3% bile salt conditions.

Times of Exposure (h) Viable Count (log10 CFU/mL) Survival Rate (%)

1 7.80 95%
2 7.61 92.69%
3 7.45 90.62%

3.2.2. Antioxidant Activity In Vitro

A lot of research has shown that the fermented supernatant of the strain had sig-
nificantly higher DPPH radical scavenging activity compared to its intact cells [37]. So,
our study assessed the antioxidant capacity of the fermentation supernatant. The free
radical DPPH clearance rate and the total antioxidant capacity of E. faecium B13 (Table 5),
respectively, were 32.83% and (19.28 ± 3.14) U/mL, lower than those of the vitamin C
group (88.39% and 37.45 ± 1.35 U/mL). Numerous lactobacillus, such as Lactiplanti bacillus
plantarum GXL94 [62] and LGG [63], have been reported to exhibit high DPPH scavenging
activity. Unlike these lactobacilli, the antioxidant capacity of E. faecium has rarely been
reported. The antioxidant activities could increase in a dose-dependent manner [64]. There-
fore, increasing the bacterial concentration may enhance the antioxidant capacity of the
fermented supernatant of B13.

Table 5. Antioxidant activity of E. faecium B13 and Vc.

Subjects CFS Vitamin C

DPPH radical (%) 32.83 ± 0.37 88.39 ± 1.64
total antioxidant capacity (U/mL) 19.28 ± 3.14 37.45 ± 1.35

3.2.3. Cell Adhesion

The adhesion rate of B13 to Caco-2 cells was 36.69% at 37 ◦C. Compared with E. faecium
GEFA01 (above 30%), E. faecium 17OM39 (57%), E. faecium MZF5 (21%), and E. durans
WEDU02 (7.50%), the bacterial adhesion rate to Caco-2 is related to the hydrophobicity
and auto-aggregation of bacteria, unrelated to the bacterial source. Interestingly, Mohamed
Zommiti et al. [40] reported that auto-aggregation ability had no direct correlation with the
adhesion rate. Moreover, the inhibition of E. coli adhesion to Caco-2 cells by E. faecium B13
is shown in Figure 2B. The results indicated that the adhesion sites of the two bacteria had
a certain degree of duplication.
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Figure 2. Probiotic properties and safety assessment in vitro. (A) Auto-aggregation abilities
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ns indicates no significance.

3.2.4. Hydrophobicity and Auto-Aggregation

The hydrophobicity and auto-aggregation of bacteria are indicators of the non-specific
adhesion of probiotics to the intestine. Auto-aggregation and hydrophobicity help bacterial
adhesion to epithelial cells of the host GIT and the prevention of pathogen colonization [65]
and also help biofilm formation by LAB, which further promotes colonization [66].

B13 showed a low level of hydrophobicity (11.3%). The hydrophobicity of B13 is
equivalent to that of E. faecium MG5232 from Kimchi, which is lower than that of 17OM39
from human feces and Enterococcus durans SJRP29 from cheese [3]. Compared to previous
studies, the autoaggregation ability of various probiotic strains was approximately 30–96%,
with an average of 62.6% [67]. Our result showed that the auto-aggregation ability increased
with time, changing from 20% at 2 h to 77% at 24 h (Figure 2A). The same result was reported
by other research [68]. In addition, the auto-aggregation was proven to be strain specific
and may vary in the same taxonomic group [69,70].

3.3. Safety Assessment In Vitro

The E. faecium B13 did not exhibit gelatinase (Figure 2C), ornithine decarboxylase
(Figure 2D), or tryptophanase activity, which are consistent with genotype results. Variously,
WGS detected the sagA gene and LOG gene; there was no LOC gene in B13, but E. faecium B13
had no hemolysis (Figure 2E), exhibited arginine decarboxylase activity. These phenotypes
cannot match genotypes. Arginine decarboxylase can catalyze arginine to spermine, which
has a significant physiological regulatory effect at low concentrations [71]. Some edible
microorganisms and probiotic strains were reported to produce biogenic amines [72–74],
which have a significant impact on the flavor of food.

The antibiotic sensitivity test showed that B13 was sensitive to 12 antibiotics but
resistant to 5 antibiotics, including erythromycin, rifampicin, tetracycline, doxycycline, and
minocycline (Table 6).

The results of the antibiotic sensitivity test were consistent with the predicted results
of antibiotic resistance genes, except for two cases. In our study, B13 carried the gentamicin
resistance genes (tet (L) and tet (M) (belonging to aminoglycosides) detected by whole
genome sequencing, but it is phenotypically susceptible. Genetic modification or silence
may cause the discrepancies between gene predictions and phenotypic experiments [75].
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Some studies have identified individual strains with silenced AR (antibiotic resistance)
genes [76]. But dormant AR genes are able to resume their expression in certain environ-
ments [77]. Furthermore, this strain was phenotypically resistant to rifampicin but did not
possess related AR genes. It is possible that the strain had nonspecific efflux pumps or had
other new resistance genes that had not been discovered. Additionally, gene prediction has
some limitations. Its accuracy is affected by many complex factors, such as detection depth,
database breadth, and transcriptional changes [78].

These results suggested genotype–phenotype discrepancies were relatively common
in E faecium. The study on 197 strains of Enterococcus [57] showed genotype-to-phenotype
correlations of 97% for E. faecalis but only 88% for E. faecium.

Table 6. Antibiotic susceptibility of E. faecium B13.

Antibiotic ZOI (mm) Antibiotic
Susceptibility Antibiotic ZOI (mm) Antibiotic

Susceptibility

Nitrofurantoin 21.76 ± 0.93 S Teikoplanin 22.4 ± 0.6 S
Zyvox 28.9 ± 1.3 S Gentamicin 20.8 ± 0.4 S

Erythromycin 12.0 ± 0.6 R Doxycycline 8.0 ± 0.1 R
Vancomycin 25.8 ± 0.5 S Minocycline 8.9 ± 0.1 R
Rifampicin 11.1 ± 0.6 R Gatifloxacin 25.1 ± 0.5 S
Tetracycline 5.2 ± 0.1 R Norfloxacin 22.0 ± 0.1 S
Ampicillin 25.3 ± 0.6 S Penicillin 17.7 ± 1.4 S

Ciprofloxacin 24.8 ± 0.4 S Levofloxacin 21.6 ± 0.4 S
Chloramphenicol 25.9 ± 1.8 S

S—susceptible; I—intermediate; R—resistant; ZOI—zone of growth inhibition.

3.4. Intestinal Localization of E. faecium B13

Fluorescent-labeled bacteria could be observed in all intestinal segments after 2 h
of gavage. The fluorescence value reached a maximum at 6 h in the colon and cecum
and at 2 h in the jejunum and ileum, then declined within 24 h. For one week of feeding,
the fluorescence value continued to increase and reached its maximum on the 3rd day
of gavage, maintained until the second day after stopping gavage. (Figure 3A,B). The
localization of B13 in the intestine is shown in Figure 3C.
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(A) Fluorescence values in intestines during 24 h. (B) Fluorescence values in the intestines dur-
ing the whole experiment. (C) Paraffin sections were used to observe the distribution of E. faecium
B13 in the colon and ileum. (D) Hematoxylin–eosin staining of the colon. scale bar: 50 µm.
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3.5. Animal Experiment

During the experimental period, there were no deaths or other pathological reactions
observed in the mice. There was no significant difference in routine blood and organ index
between the two groups (Supplementary Tables S2 and S3), and no live bacteria were
detected in the heart, liver, spleen, lungs, kidneys. In addition, pathological sections of the
mouse colon showed no abnormalities by H&E staining (Figure 3D), further supporting
its safety.

3.6. Metagenome Sequencing

There was no statistically significant difference among the groups in the α-diversity
indices (Supplementary Table S4), indicating that E. faecium B13 did not change colon mi-
crobiota diversity. The structure of the microbiome was analyzed to clarify the role of B13
in the gut microbiome. The gut microbiota of the B13 group mainly consisted of Firmicutes
(34.30%), Bacteroidetes (58.0%), Proteobacteria (3.37%), and Actinobacteria (2.45%). At the
phylum level (Figure 4A), the ratio of Firmicutes/Bacteroidetes (F/B) decreased compared
with the control group. The differences in microbial composition at the genus level are
shown in Figure 4B. The relative abundance of unclassified Lachnospiraceae [79], Candidate
Amulumruptor [80,81], and Lactobacillus increased; however, Prevotella decreased, but the
difference is not significant. Notably, the relative abundance of the species Heminiphilus
faecis between groups showed a trend of difference (p = 0.09) (Figure 4C). H. faecis is closely
related to the genus Muribaculum [82] and belongs to the family Muribaculaceae, which is
dominant in the mouse gut and beneficial to health [83,84]. M. intestinale is a newly cultured
species and a potential species associated with a healthy diet and exercise [85,86]. Principal
Co-ordinates Analysis (PCoA) revealed no significant difference between the two groups,
but the control group showed a dispersion trend, while the B13 group exhibited a more
even gut microbial structure (Figure 4D). The impact of microbes on the gut microbiota was
strain specific. Some probiotics may regulate microbial community structure [87], some
may have an impact on the host even though they do not necessarily interact with indige-
nous microbiota [88], and some may normalize the disturbed microbiota and modulate
it beneficially [89,90]. For example, the influential mechanism of lactobacillus rhamnoses
M9 [91] in the intestines is different from that of Lactobacillus fermentum HNU312 [92].
Furthermore, microbial influence also exhibits a time effect, such as the different effect of R.
intestinalis on gut microbiota on 7 days and 14 days [68].
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Heminiphilus faecis between B13 and control groups. (D) PCoA analysis between the control and
B13 groups.
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In a word, B13 cannot significantly regulate gut microbiota during 28 days, but it
can stabilize the core microbial community and has a beneficially regulatory effect on
gut ecology.

As B13 contains plasmids, there is a risk of drug resistance gene transfer. Therefore,
the ARGs were analyzed between the two groups. A total of 532 ARGs were detected in the
E. faecium B13 group and 538 ARGs in the control group. ARGs with an abundance of over
1% showed no significant difference between groups, and the drug resistance genes carried
by B13 did not increase. In addition, the oriT was not identified in the genome. These
results proved from phenotype and genotype levels that B13 did not transmit resistance
genes during the feeding cycle.

4. Conclusions

Since Enterococcus spp. has been considered a category of opportunistic pathogens,
E. faecium B13 needs a more comprehensive safety evaluation before use. In this paper,
WGS revealed the genetic background of B13 and demonstrated its safety. The strain
performed excellent probiotic properties in vitro, such as high tolerance to acid and bile
salt, high antioxidant activity, etc. Non-hemolytic activity, non-gelatinase activity, and
limited antibiotic resistance confirmed its risk was under control. Study in vivo and
metagenome sequencing further proved the probiotics and safety of B13. So, E. faecium
B13 shows promise as a probiotic, and further metabolism analysis in the intestines will be
conducted soon.
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