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Aleksandra Kalińska 2 , Marcin Gołębiewski 2, Daniel Radzikowski 2 , Ewa Sawosz 1 and
Sławomir Jaworski 1,*

����������
�������

Citation: Lange, A.; Grzenia, A.;

Wierzbicki, M.; Strojny-Cieslak, B.;
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Simple Summary: Bovine mastitis is a common disease in cows. It is caused by many pathogen
species, which can form three-dimensional structures composed of bacterial cells, known as biofilms.
These structures are almost impermeable to antimicrobials, making treatment difficult. We looked at
the influence of metal nanometre-scale particles on biofilm formation by several pathogen species.
We analysed the properties of these nanoparticles, determined the concentration needed to inhibit
the growth of pathogens and to damage their membranes, and finally, checked how nanoparticles
influence biofilm formation. We show that metal nanoparticles (silver and copper nanoparticles and
their mixture) limit the formation of biofilm very effectively. These results mean that nanoparticles
can be used to cure cattle suffering from mastitis, which will lead to higher milk production and less
financial loss.

Abstract: Bovine mastitis is a common bovine disease, frequently affecting whole herds of cattle. It is
often caused by resistant microbes that can create a biofilm structure. The rapidly developing scientific
discipline known as nanobiotechnology may help treat this illness, thanks to the extraordinary
properties of nanoparticles. The aim of the study was to investigate the inhibition of biofilms created
by mastitis pathogens after treatment with silver and copper nanoparticles, both individually and in
combination. We defined the physicochemical properties and minimal inhibitory concentration of the
nanoparticles and observed their interaction with the cell membrane, as well as the extent of biofilm
reduction. The results show that the silver–copper complex was the most active of all nanomaterials
tested (biofilm was reduced by nearly 100% at a concentration of 200 ppm for each microorganism
species tested). However, silver nanoparticles were also effective individually (biofilm was also
reduced by nearly 100% at a concentration of 200 ppm, but at concentrations of 50 and 100 ppm, the
extent of reduction was lower than for the complex). Nanoparticles can be used in new alternative
therapies to treat bovine mastitis.

Keywords: biofilm; mastitis pathogens; bovine mastitis; silver nanoparticles; copper nanoparticles;
silver-copper complex

1. Introduction
1.1. Biofilms

A biofilm is a multicellular structure with specific composition, formed by microor-
ganisms. In addition to bacterial cells, biofilm contains water and extracellular polymeric
substance (EPS), which consists mainly of polysaccharides, proteins, nucleic acids, and
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surfactants [1]. It allows microorganisms to adhere particularly strongly to both biotic
and abiotic surfaces, especially when exposed to unfavourable environmental factors, and
hence biofilm forming is recognised as protection against damage [2]. The exopolysaccha-
ride matrix may also be impermeable to antimicrobials and inhibit their penetration into
the biofilm [3].

Maturation of the biofilm includes steps such as initial reversible and irreversible
attachments, maturation, and dispersion. The last step is critical, allowing the biofilm to
embed in new areas through detachment of planktonic forms, which initiate new biofilm
structures in other locations [4].

The phenotype structure of a biofilm, regardless of its shape, is always similar. Small
cells with limited multiplication potential are located inside the bacterial community,
whereas outward-facing areas are occupied by metabolically active cells. This is due to the
reduced availability of oxygen and nutrients in the centre of the structure [5]. Bacterial
heterogeneity may promote the development of various resistant features, which, as a result,
may encompass the whole community [3]. Remarkably, bacteria without resistant features
initially become less sensitive to antimicrobials when grown in a biofilm structure [6].
“Quorum sensing” is the main means of communication in bacterial clusters, where every
cell produces chemical compounds (such as bacteriocins), and certain genes are expressed.
This phenomenon is considered a resistant mechanism [7]. The larger the population
of microorganisms, the more self-inducing compounds are secreted. Changes in gene
expression occur, and eventually the whole population is altered [8]. The prevalence of
resistant bacteria in biofilms is one of the reasons bacterial infections are difficult to treat.
The mechanisms of medications may also be ineffective against bacteria embedded in
a biofilm [9]. Initially, infections are usually easily treatable because of the sensitivity
of the planktonic forms that cause them. The difficulty arises when infections become
chronic. They become much tougher to combat because by then they form advanced
biofilm structures [10].

1.2. Bovine Mastitis

Bovine mastitis, caused by many bacterial species, is one of the most common bovine
illnesses, affecting whole herds of cattle [10]. This affects the amount of milk produced,
which in turn leads to financial losses in the dairy industry due to low productivity [11].

Mastitis pathogens are characterised as either contagious (spreading through the
milking process) or environmental microorganisms. The contagious group includes Staphy-
lococcus aureus and Streptococcus agalactiae, whereas the main environmental pathogens
are Escherichia coli, Streptococcus dysgalactiae, and other streptococci [12]. While more than
130 bacterial species can cause the illness, S. aureus is one of the most common causes of
chronic mastitis, because it can form a biofilm structure [13]. The biofilm-forming process
allows bacteria such as staphylococci to colonise the internal part of the udder, and in
particular, the biofilm structure with a polymeric matrix allows microbials to survive an-
timicrobial treatments [14]. Likewise, E. faecalis, which also creates a biofilm structure, has
additional inherent resistance to certain antimicrobials, making it even more challenging to
eradicate [15].

The rise in the number of resistant bacteria in the dairy industry is related to frequent
use of antibiotics on herds of cattle. These pathogens are not thought to be dangerous to
humans if only pasteurised milk is consumed, but they may still constitute a health hazard
to the human population, especially since an increasing number of people consume raw
milk [16]. Furthermore, the detrimental influence of mastitis on cattle health and milk
production emphasises the urgent need for effective strategies to prevent and control the
development of the disease [11].

1.3. Nanoparticles

Nanoparticles are widely used in biology and medicine due to their ability to freely
penetrate the organisms’ barriers [17]. The most popular medical nanomaterial is silver
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nanoparticles (AgNPs), which have been used as a component of antiseptics since ancient
times because of their remarkable antibacterial properties and relatively low toxicity [18].
Nanosilver is thought to be effective against many of the resistant pathogens, and may
become an alternative to antibiotics in the future. Nanoparticles interact with bacterial
cells in several ways, including by disturbing cell layers and generating reactive oxygen
species that damage internal structures [19]. Silver ions interact with the outer membrane
(or wall), depriving bacteria of protection against harmful external factors [20]. They are
also able to intercalate into nucleic acids, as well as to disturb ribosomes, which may lead
to the inhibition of basic life processes in a cell, such as transcription and translation [20].
Nanoparticles with a diameter greater than 10 nm interact with the cell wall and membrane,
causing its disintegration and cell death [21].

Copper nanoparticles (CuNPs), characterised by a high surface to volume ratio, also
have great potential as antimicrobials due to easy surface functionalisation with other
compounds to amplify the primary antibacterial effect [22]. According to a previous
study [23], a combination of copper nanoparticles with carbon nanotubes inhibits the
growth of the bacterial biofilm of Methylobacterium spp. and is not toxic to human fibroblasts.
Similar effects have been observed for highly resistant Pseudomonas aeruginosa treated
with copper nanoparticles [24]. Several nanomaterials exhibit tremendous antibacterial
properties and inhibit biofilm formation on various surfaces for an extended period [9].
However, although nanoparticles are known to damage cells and to penetrate and disrupt
biofilms, their precise mechanism of action is not fully understood [2].

1.4. Objective

The aim of the study was to investigate the ability of silver and copper nanoparticles
both together and separately to inhibit biofilm formation produced by mastitis pathogens.

2. Materials and Methods
2.1. Nanoparticles

AgNPs and CuNPs were obtained from aXonnite (Nano-Tech, Warsaw, Poland). Silver-
copper (Ag-Cu) complexes were prepared by mixing 50 ppm of the hydrocolloids of each
of the nanoparticles in a 1:1 ratio, and the obtained mixture was sonicated for 45 min at
room temperature. Prior to use in experiments, each compound was subjected to ultrasonic
treatment for 30 min.

2.2. Physicochemical Analysis

Physicochemical analysis was conducted at room temperature (25 ◦C). The dynamic
light scattering method was used for size distribution, and laser Doppler electrophoresis
was used for zeta potential analysis with the Zetasizer Nano-ZS ZEN 3600 (Malvern,
Malvern Town, UK). For morphology analysis, transmission electron microscopy with a
voltage of 80 keV was used. 10 µL of nanoparticles was applied to copper grids (Mesh Cu
Grids, Agar Scientific, Stansted, UK) and dried. Samples were observed under a microscope
(JEM-1220, JEOL, Tokyo, Japan).

2.3. Bacterial Strains

Bacterial strains Streptococcus agalactiae (ATCC-31475), Streptococcus dysgalactiae (ATCC-
12388), Enterococcus faecalis (ATCC-47077), Staphylococcus aureus (ATCC-27821), Salmonella
Enteritidis (ATCC-BAA-1734), Escherichia coli (ATCC-12814), and Enterobacter cloacae (ATCC-
35030), as well as yeast Candida albicans (ATCC-24433), were purchased from LGC Standards
(Lomianki, Poland). The Mueller-Hinton (MH) broth used for growth and maintenance
of the bacterial cultures was supplied by Biomaxima (cat. PS15, Lublin, Poland), whereas
the yeast nitrogen base (YNB) for yeast was supplied by Merck Millipore (cat. 51483,
Darmstadt, Germany).
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2.4. Microbial Cultures

Each microbial strain was stored as a suspension in 20% (v/v) glycerol at −20 ◦C.
Prior to experiments, the glycerol was removed and the microbial cells were washed with
distilled water. Then microbial cultures were grown in media with an optimal availability
of nutrients: MH broth for bacteria and YNB for yeast. Then the microbial cultures were
kept in a bacterial incubator (NUAire, Plymouth, MN, USA) under standard conditions
(37 ◦C).

2.5. The Minimal Inhibitory Concentration (MIC) Test

The first step of the MIC test was the preparation of microbial cell dilutions with an
optical density (OD) of 0.1, which is equivalent to 106 cells per millilitre. Optical density
was measured at a wavelength of 660 nm. For this purpose, 100 µL of the overnight
microbial culture was added to 20 mL of liquid medium (MH for bacteria and YNB for
yeast). The resulting suspension was then diluted again, yielding the final concentration
of 2 × 104 cells per mL. Serial dilution was carried out in a 96-well plate in the presence
of a blank control (medium without cells or nanoparticles) and a growth control group
(inoculum without nanoparticles). After 24 h of incubation at 30 ◦C, a reading was taken
using a microplate reader (Tecan M200 Infinite, Monachium, Germany; absorbance at
600 nm). This allowed us to select the appropriate concentrations to continue the research.
The concentrations selected were 50 ppm, 100 ppm, and 200 ppm, for silver, copper, and
silver-copper complex, respectively.

2.6. Membrane Integrity

To evaluate cell membrane integrity, the lactate dehydrogenase (LDH) activity was
examined using a Cytotoxicity Detection Kit (In Vitro Toxicology Assay Kit, based on lactic
dehydrogenase, LDH, Sigma-Aldrich, Hamburg, Germany). 100 µL of bacteria and yeast
cells (1 × 106 CFU/mL) were cultured in liquid medium (MH for bacteria and YNB for
yeast) on 96-well plates, with the addition of nanoparticles in the concentrations identified
as the minimal inhibitory concentration for microbial species used (3.125, 6.25, 12.5, 25 ppm).
After 24 h of incubation, 100 µL of the LDH assay mixture was added to each well. The
plates were kept in the dark and incubated for 30 min at room temperature (25 ◦C). The
absorbance was recorded at 490 nm on an ELISA reader (Infinite M200, Tecan, Männedorf,
Switzerland). LDH leakage was expressed as a percentage of the test sample (reduced by
the value of the blank) in relation to the control sample (also reduced by the value of the
blank), where a blank probe was the medium without cells, and the control sample was
inoculum treated with 100 µL of Triton X-100 (Sigma-Aldrich, Hamburg, Germany).

2.7. Biofilm Formation

Hydrocolloids of the nanoparticles at the selected concentrations (50, 100, and 200 ppm)
were affixed to wells in a 96-well plate, and the prepared plate was left under the lam-
inar flow cabinet for 24 h until completely dry. After this, 100 µL of microbial culture
(1.5 × 108 CFU/mL) was added to each well, and the plate was incubated again for 24 h at
37 ◦C in a microbiological incubator (NUAire, Plymouth, MN, USA).

Planktonic cells were removed carefully by pipetting the liquid culture from the plate,
leaving only the attached biofilm, which was fixed for 5 min with a 2.5% glutaraldehyde
solution to inhibit further growth. The fixative was then removed and the wells were
washed three times with sterile phosphate-buffered saline (PBS; Sigma-Aldrich, Darmstadt,
Germany). To determine the exact quantity of biofilm, cells were stained with 100 µL of
0.25% crystal violet dye and washed gently three times with sterile PBS to remove any
additional unbound dye. Plates were dried overnight, and crystal violet was then extracted
using a 1:1 acetone:ethanol solution. The biofilm formation level was determined by
measuring absorbance at a wavelength of 570 nm (microplate reader Tecan M200 Infinite,
Monachium, Germany), which was related to the amount of dye attached to cells compared
to controls (cultured in uncoated wells).
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2.8. Data Analysis

The results were analysed by one-way analysis of variance (ANOVA) with Statgraphics
Plus 4.1 (StatPoint Technologies Inc., Warrenton, VA, USA). All data were compiled with
ANOVA (conforming to the assumptions), and differences were assumed to be statistically
significant at p ≤ 0.05.

3. Results
3.1. Physicochemical Analysis

AgNPs had the smallest average size and a spherical structure (Figure 1). The Ag-Cu
complex showed a mean value of hydrodynamic diameter among tested samples. CuNPs
had the biggest average diameter of over 300 nm, although size distribution suggests
that two fractions were present, one with nanoparticles smaller than 100 nm, and the
other much bigger. However, transmission electron microscopy (TEM) showed that small
particles had agglomerated into large structures according to size distribution.
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Figure 1. TEM images and size distribution (hydrodynamic diameter) of nanoparticles: (a) silver
nanoparticles; (b) copper nanoparticles; (c) silver–copper complex.

Zeta potential values also confirm the tendency of CuNPs to agglomerate, as the value
was close to zero (Table 1). Nevertheless, all samples analysed had a negative zeta potential
not exceeding ±30 mV and no colloidal stability.

Table 1. Physicochemical parameters (average hydrodynamic diameter, zeta potential, and structure)
of nanoparticles used (Ag, silver nanoparticles; Cu, copper nanoparticles; Ag-Cu, silver–copper
complex).

Nanomaterial Average Hydrodynamic Diameter (nm) Zeta Potential (mV) Structure

Ag 154.1 −26.7 spherical
Cu 345.6 −0.463 spherical

Ag-Cu 174.2 −9.09 spherical
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3.2. Minimal Inhibitory Concentration

Minimal inhibitory concentration (MIC) was determined using serial dilution based on
the concentration at which 50% of the bacterial growth was inhibited, which is considered
one of the basic parameters for evaluating the effectiveness of tested substances [25].
Both AgNPs and the Ag-Cu complex could inhibit microbial growth at a relatively low
concentration (Table 2). Optical density measurements showed that the minimal inhibitory
concentration reduced microbial growth by approximately half (Figure 2). In the case of
CuNPs, a concentration four times higher (25 ppm) was needed to limit the growth of most
species. Salmonella spp. and E. coli were more sensitive, and the inhibitory concentration
of CuNPs for these species was twice that of AgNPs and Ag-Cu complex (12.5 ppm for
CuNPs and 6.25 ppm for the others).

Table 2. Values of minimal inhibitory concentration (ppm) of the nanoparticles used (Ag, silver nanoparticles; Cu, copper
nanoparticles; Ag-Cu, silver–copper complex) for each microorganism strain.

Nanomaterial S. agalactiae S. dysagalactiae Salmonella spp. E. faecalis E. cloacae C. albicans E. coli S. aureus

Ag 3.125 6.25 6.25 6.25 6.25 6.25 6.25 12.5
Cu 25 25 12.5 25 25 25 12.5 25

Ag-Cu 3.125 6.25 6.25 6.25 6.25 6.25 6.25 12.5
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3.3. Membrane Integrity

In all samples where the cell membrane was disturbed, the LDH release was observed
in the culture medium. All three types of nanoparticles disrupted the cell membrane,
but the greatest effect was observed in the presence of the nanoparticle complex. Results
from samples with AgNPs and the complex were slightly similar, while CuNPs caused a
weaker disruption of cell membranes. However, all nanomaterials caused disturbance in a
dose-dependent manner (Figure 3).

3.4. Biofilm Formation

The application of crystal violet dye allowed us to determine the number of microor-
ganisms able to attach to the biotic or abiotic surfaces. The greatest biofilm reduction
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occurred after treatment with AgNPs and the Ag-Cu complex at a concentration of 200
ppm (Figure 4). This effect was reproducible for all species, including both Gram-positive
and Gram-negative bacteria and the yeast Candida albicans. No inhibition of biofilm for-
mation was observed when using CuNPs at concentrations of 50 or 100 ppm. Copper
nanoparticles at a concentration of 200 ppm did not eliminate the biofilm entirely in any
species tested, while silver nanoparticles and the Ag-Cu complex both did. Interestingly,
out of the three nanoparticle types, the Ag-Cu complex was most effective at inhibiting
biofilm formation, even at the lowest concentration. The results were variable depending
on the microorganism species, but in all cases, biofilm reduction was improved with a
higher dose concentration.
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4. Discussion
4.1. Antibacterial Properties

We examined the influence of widely used metal nanoparticles on biofilm formation
by mastitis pathogens. The analysis shows the high potential of nanomaterials, used both
separately and in combination, to treat bovine mastitis, which is currently challenging.
Overall, the Ag-Cu complex was more effective than either individual nanoparticle at
inhibiting biofilm formation by mastitis pathogens.

Both AgNPs and CuNPs have great potential as antibacterials for inhibiting microbial
growth [26]. The combination of AgNPs and CuNPs results in a synergy of effects, even
though the activity of separate nanoparticles (Ag or Cu) is distinct. This means that the
Ag-Cu complex is more promising than either nanoparticle used alone [27]. A similar
effect has been observed in an earlier study on mastitis pathogens, where AgNPs and
CuNPs caused a high degree of disruption to microbial viability [28]. We also found that
the Ag-Cu complex caused the greatest biofilm reduction (Figure 4). In all samples, even
the lowest concentration of the complex (50 ppm) disrupted biofilm growth more than
either individual component. In all samples, higher nanomaterial concentration caused
greater biofilm reduction. Interestingly, this was true not only for every nanomaterial but
also for every microorganism species (Figure 4).

The antibacterial properties of AgNPs and CuNPs are associated with various factors,
including their stability in hydrocolloids. Stable nanoparticle hydrocolloids tend not to
agglomerate; their surface area is not limited, resulting in stronger antibacterial proper-
ties [29]. This was observed in our studies, where AgNPs and the Ag-Cu complex were
more stable than CuNPs, and also had better antibacterial properties (Table 1). CuNPs had
a zeta potential value of −0.463 mV, whereas AgNPs reached −26.7 mV, which is close to
the limit value of colloidal stability (±30 mV). The value of the Ag-Cu complex was closer
to the limit than that of CuNPs (−9.09 mV vs. −0.463 mV).

In toxicological studies, certain molecular characteristics must be considered (e.g.,
shape or size), since they determine the impact of a nanomaterial on the in vitro model [30].
It is assumed that small nanoparticles penetrate deeper into cell structures, but agglomer-
ates, which reach a much greater average size, may have weaker interactions with cells [31].
Therefore, the low toxicity of CuNPs might result from their tendency to form large ag-
glomerates, while the other two nanomaterials did not agglomerate and had a smaller
diameter (Figure 1). Although the CuNPs hydrocolloid was composed of two fractions,
the average diameter was 345.6 nm, indicating that there were more agglomerates than
small nanoparticles (smaller than 100 nm). The toxicity of the nanoparticles is probably
determined by their size, not their shape, since all the nanoparticles used had a similar
shape (Figure 1). TEM analysis of nanoparticle shape yielded similar results to those
reported by Paszkiewicz et al. in 2016 [32], where the shape was also found to be spherical.

According to one of the latest reports, a combination of copper and silver nanoparticles
can be used in antibacterial therapies, although the main mode of action is related not to
bacterial species, but to cell type and growth, or to nanoparticle uptake ability [33]. Our
results confirm that cellular response does not depend on species, which is illustrated in
the MIC analysis, where there were no clear distinctions in the reduction of viability of
Gram-positive bacteria, Gram-negative bacteria, and yeasts (Table 2, Figure 2). However,
in terms of the reduction of biofilm formation, two Gram-negative species (Salmonella spp.
and E. coli) seemed to the most sensitive to the nanoparticles. For other species, biofilm
reduction was lower, but for the yeast C. albicans, the reduction was similar to that for
E. cloacae (Figure 4). This is probably the result of the high capacity of both species for
developing bacterial resistance [34,35]. The greater sensitivity of Gram-negative bacteria
can be explained by their cell wall structure. Their cell walls are much thinner than those
of Gram-positive bacteria, despite the presence of an external layer [36].
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4.2. Possible Mechanisms

The antibacterial properties of nanomaterials result mainly from the generation of
free radicals, which disturb the cell wall, membrane, or organelles of bacterial cells [37].
However, there are other mechanisms of microbial cell inactivation. Some of the commonly
reported ones include the disruption of intracellular ATP, damage to DNA structures, and
damage to other organelles [29]. It is known that metal nanoparticles kill major Gram-
positive and Gram-negative pathogens, and that they penetrate and eradicate biofilms;
however, the precise mechanism is not fully understood [2]. The interaction of metal
nanoparticles with bacterial cells is very complicated due to the enormous number of
characteristics that nanoparticles exhibit and to the fact that their mechanism of interaction
is still poorly understood. There are many plausible hypotheses for the interactions between
nanoparticles and biofilms. These interactions take place on several levels, including
disturbing the cell layer and producing reactive oxygen species that damage internal
structures [19]. Silver ions, which are generated from silver nanoparticles, bind to the
negatively-charged layer, causing cell perforation and cell death [38]. The accumulation of
metal nanoparticles around bacterial cells and in biofilm networks has been visualised in a
previous study [39]; the effect was dependent on nanoparticle type. Larger nanoparticles
(more than 10 nm in diameter) interact with the cell wall or membrane [21]. In our research,
the nanoparticles and their complex agglomerates had a diameter over 10 nm (AgNPs:
154.1 nm; CuNPs: 345.6 nm; Ag-Cu complex: 174.2 nm); therefore, they attacked the
internal parts of cell. Furthermore, even if nanoparticles or their agglomerates are too
large to penetrate through the entire biofilm, they interact with planktonic cells, which still
reduces biofilm formation. Dispersion is a critical step in biofilm formation because under
natural conditions it allows cells to spread to new areas [4]. By attacking planktonic cells,
nanoparticles prevent this spread.

In our research, LDH release was dose-dependent in all samples (Figure 3), which
supports our hypothesis about the interaction of nanomaterials with the outer part of
microbial cells. The mechanism of this interaction is well-known, but biofilms show
entirely different phenotypes from planktonic forms [40]. The penetration of antimicrobials
and their impact on microbial cells in biofilms is hampered, mainly due to the presence
of exopolysaccharide (EPS), which presumably binds directly to antimicrobial agents [40].
The presence of EPS and the complex structure of biofilms contribute to the acquisition
of resistance, and thus make treatment of infections more difficult [9]. This is affected by
the location of cells in the biofilm, where metabolically active cells are located in the other
parts of the structure [5], and this microbial heterogeneity makes it possible for resistance
characteristics to spread throughout the entire biofilm [3]. It is believed that nanomaterials
may damage signalling molecules, leading to the inhibition of gene expression pathways
required to develop and modify the biofilm structure. This can cause the biofilm to lose its
resistant traits [41].

The positive effects of metal nanoparticles on the inhibition of biofilms made up of
certain bacteria species have been observed in research by Gurunathan et al. [42], who
suggest that AgNPs may constitute an adjuvant for curing bacterial infections. The same
was demonstrated by Martinez-Gutierrez et al. [43], who found that AgNPs not only
inhibited biofilm formation, but also induced cell death.

Thanks to their high antibacterial potential, nanoparticles are considered one of
the most promising agents for preventing bovine mastitis [44–46]. However, despite
their excellent properties, a great number of aspects must be considered before use, such
as their influence on mammalian tissues and on whole organisms [47]. Nevertheless,
the proposed solution for treating mastitis infections might alleviate serious hazards for
animals, entrepreneurs, and the human population [10,11].

5. Conclusions

This research (and its possible follow-up studies) proposes a promising treatment for
mastitis, an illness caused to a large extent by biofilm formation by microorganisms. The
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presented results show that metal nanoparticles are able to disrupt the biofilm. Particularly
noteworthy is the combination of AgNPs and CuNPs, which yielded the best results. These
results are important, especially since the threat of mastitis may be more serious than it
seems at first glance.
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Sr. 2008, 2, 71–75. (In Polish)

9. Venkatesan, N.; Perumal, G.; Doble, M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol. 2015, 10, 1743–1750.
[CrossRef] [PubMed]

10. Melchior, M.B.; Vaarkamp, H.; Fink-Gremmels, J. Biofilms: A role in recurrent mastitis infections? Vet. J. 2006, 171, 398–407.
[CrossRef] [PubMed]

11. Hossain, M. Bovine Mastitis and Its Therapeutic Strategy Doing Antibiotic Sensitivity Test. Austin J. Vet. Sci. Anim. Husb. 2017, 4,
1030. [CrossRef]

12. Dufour, S.; Labrie, J.; Jacques, M. The Mastitis Pathogens Culture Collection. Microbiol. Resour. Announc. 2019, 8, e00133-19.
[CrossRef]

13. Raza, A.; Muhammad, G.; Sharif, S.; Atta, A. Biofilm Producing Staphylococcus aureus and Bovine Mastitis: A Review. Mol.
Microbiol. Res. 2013, 3. [CrossRef]

14. Oliveira, M.; Bexiga, R.; Nunes, S.F.; Carneiro, C.; Cavaco, L.M.; Bernardo, F.; Vilela, C.L. Biofilm-forming ability profiling of
Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet. Microbiol. 2006, 118, 133–140. [CrossRef] [PubMed]

15. Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial
biofilms. Pathog. Dis. 2016, 74, 1–7. [CrossRef] [PubMed]

16. Oliver, S.P.; Murinda, S.E. Antimicrobial Resistance of Mastitis Pathogens. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 165–185.
[CrossRef]

17. Malina, D.; Sobczak-Kupiec, A.; Wzorek, Z. Nanobiotechnologia—Dziś i jutro. Chemik 2011, 65, 1027–1034. (In Polish)
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