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Simple Summary: Alfa-lipoic acid (ALA) is an important antioxidant that could be added to animal
feed as a nutritional supplement. To improve its stability in the digestive system, ALA was encap-
sulated in chitosan nanoparticles. The nanoparticles containing ALA were stable in stomach-like
conditions and were able to cross the intestinal barrier. Chitosan-based nanoparticles seem to be an
attractive administration method for antioxidants, or other sensible additives, in food.

Abstract: The addition of the antioxidant α-lipoic acid (ALA) to a balanced diet might be crucial
for the prevention of comorbidities such as cardiovascular diseases, diabetes, and obesity. Due to
its low half-life and instability under stomach-like conditions, α-lipoic acid was encapsulated into
chitosan nanoparticles (Ch-NPs). The resulting chitosan nanoparticles containing 20% w/w ALA
(Ch-ALA-NPs) with an average diameter of 44 nm demonstrated antioxidant activity and stability
under stomach-like conditions for up to 3 h. Furthermore, fluorescent Ch-ALA-NPs were effectively
internalized into 3T3-L1 fibroblasts and were able to cross the intestinal barrier, as evidenced by
everted intestine in vitro experiments. Thus, chitosan-based nanoparticles seem to be an attractive
administration method for antioxidants, or other sensible additives, in food.

Keywords: antioxidant; cell internalization; chitosan nanoparticles; everted intestine; lipoic acid

1. Introduction

Reactive oxygen species (ROS) are highly reactive molecules generated as by-products
of oxygen metabolism in aerobic organisms [1]. Several diseases, such as hypertension and
diabetes, amongst others, are associated with ROS generation [2,3]. Aging is one of the
known interrupters of the balance between ROS generation and antioxidant defenses [4],
and an age-related increase in oxidative damage to DNA, proteins and lipids was shown [5],
particularly in cardiac and vascular tissues [6]. To slow down this oxidation-related damage,
the antioxidant vitamins A, C, and E are popular nutritional supplements. However, clinical
studies have failed to confirm their benefits in the prevention of cardiovascular diseases [7–9].

α-Lipoic acid (ALA), also known as thioctic acid or 1,2-dithiolane-3-pentanoic acid,
is a natural antioxidant found in plants as well as in animal cells, where it is commonly
found in mitochondria and acting as co-factor for a number of enzyme complexes that are
involved in energy generation. Both existing forms of ALA—the oxidized (disulfide) and
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the reduced (dithiol; dihydrolipoic acid or DHLA) forms—showed antioxidant properties,
and the ALA/DHLA couple is often referred to as the “universal antioxidant” due to its
ability to not only improve but also restore intrinsic antioxidant systems after quenching
free radicals [10–13]. Besides its great antioxidant potential, ALA was shown to efficiently
remove heavy metals from the blood stream [11,13,14]. ALA has gained considerable
attention as a dietary supplement because of its antioxidant activity and considerable
anti-aging, anti-inflammatory, detoxifying, cognitive, cardiovascular, anti-cancer, and
neuroprotective properties [15]. Some studies indicate that ALA might play an important
role in the treatment of severe diseases such as diabetes mellitus [16–18], Alzheimer’s
disease [19–25], obesity [26–30], multiple sclerosis [31–33], and schizophrenia [34–36].

Our research group previously demonstrated that broilers fed a diet supplemented
with 40 mg/kg ALA for 7 weeks had significantly decreased liver levels of thiobarbituric
acid reactive substances and hydroxyl radicals, whereas their total glutathione pools were
increased compared to birds fed the same diet but without ALA [37]. We also demonstrated
that the mRNA expression levels of the genes encoding four enzymes involved in energy
metabolism (glutathione S-transferase theta 1 (GSTT1), oxoglutarate (alpha-ketoglutarate)
dehydrogenase (OGDH), pyruvate dehydrogenase (lipoamide) alpha 1 (PDHA1), and
dihydrolipoamide S-succinyl transferase (DLST)), as well as those encoding sirtuins 1 and
3, showed significant decreases in ALA-treated broilers compared to untreated controls
(p < 0.01). These results confirm that the responses of broilers to ALA were associated
with the down-regulation of certain liver enzymes, especially those involved in glucose
metabolism and the tricarboxylic acid (TCA) cycle [38].

Nevertheless, the amount of this antioxidant synthesized by the organism does not
meet bodily needs [39] unless supplementarily administered through diet. In addition, ALA
presents a low half-life and bioavailability due to hepatic degradation, reduced solubility,
and instability in the stomach environment [40]. Therefore, improving ALA administration
is the main challenge, and the encapsulation of ALA into biocompatible nanoparticles
seems to be a promising alternative.

Chitosan is a polymer produced after deacetylation of the natural polymer chitin,
which is the main component of the shells of crabs and other crustaceans. The United
States Food and Drug Administration (FDA) and the European Commission, among
others, have approved chitosan as safe for use in food and drugs. Chitosan has been
widely used for the encapsulation of proteins and therapeutical enzymes [41–44] or as
biocatalytic nanoparticles [45]. Importantly, among the biopolymers used as nanocarriers,
it has attracted significant attention since it is positively charged [46]. Therefore, this
polysaccharide can be customized for a wide variety of chemical and ionic side-chain
reactions [44]. Chitosan nanoparticles are known to easily achieve a sustained slow release
of the cargo as well as increase bioavailability and therapeutic efficiency, while being
biodegradable and non-toxic [47]. The production process for nanoparticles such as chitosan
NPs could be improved to gain the advantages of ease of production, high yield at low cost,
and larger loading capacity [48–52].

In this study, chitosan-α-lipoic acid nanoparticles (Ch-ALA-NPs) with antioxidant
activity were synthesized, and their stability under stomach-like conditions was assayed.
Furthermore, the cell internalization of chitosan nanoparticles in intestinal cells and fibrob-
lasts and the ability to cross the intestinal mucosal barrier in vitro by using the everted
intestine technique were demonstrated.

2. Materials and Methods
2.1. Synthesis of Chitosan-α-Lipoic Acid Nanoparticles (Ch-ALA-NPs)

The chitosan nanoparticles were prepared based on the protocol described by [53] with
the following modifications: Chitosan obtained from the deacetylation of shrimp shell chitin
was purchased from Future Foods (Tlalnepantla de Baz, Mexico). The preparation showed
90.4% deacetylation, a viscosity of 54 mPa·s in 1% acetic acid, and an average molecular
weight of 290 kDa. The chitosan solution was prepared by dissolving 2.5 mg mL−1 of
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chitosan in 2% acetic acid while stirring at approximately 200–300 rpm overnight at room
temperature, and then centrifuging for 15 min at 8000× g at 4 ◦C. The resulting supernatant
was again centrifuged for 20 min at 11,000× g at 4 ◦C. Then, the supernatant was filtered
through a 1.2 µm membrane, and the pH was adjusted to 4.5.

Nanoparticle synthesis was achieved using an automatic pipet system designed by our
research group and equipped with an insulin syringe to control the addition of reagents at a
constant rate. The reagent addition was performed at room temperature and constant agitation
of approximately 800 rpm. To 5 mL of the chitosan solution, 200 µL of α-lipoic acid solution
(6 mg mL−1 in 20% ethanol) were added at 0.09 mm/s. After 15 min, 1 mL of tripolyphos-
phate pentasodium (TPP; Sigma-Aldrich, St. Louis, MO, USA) solution (0.25 mg mL−1) was
added at 0.09 mm/s and left to react for 1 h. Then, 100 µL of 2.5% glutaraldehyde (Sigma-
Aldrich, USA) were added at 0.09 mm/s and again left for 1 h. Afterwards, the solution was
centrifuged for 30 min at 2000× g at room temperature (Sorvall Legend RT centrifuge) to
remove chitosan aggregates. The resulting supernatant was then ultracentrifuged for 2 h at
60,000× g at 4 ◦C (Beckman Coulter Optima XPN-100 ultracentrifuge). Subsequently, the
pellet, containing the chitosan-α-lipoic acid nanoparticles (Ch-ALA-NPs), was resuspended
in 100 mM phosphate butter (pH 6), filtered through a 0.2 µm membrane, and stored at 4 ◦C
until further modification.

2.2. Synthesis of Chitosan-Green Fluorescent-Nanoparticles Ch-GFP-NPs

Chitosan nanoparticles labeled by encapsulating carboxylated green fluorescent pro-
tein (GFP) were synthetized as previously reported [44]. In brief, GFP was reacted with
malonic acid in the presence of carbodiimide (EDC) (N-(3-dimethyl-aminopropyl)-N′-
ethylcarbodiimide hydrochloride) and N-hydroxysuccinimide (NHS). The amount of mal-
onic acid was twice the amount of free carboxylic groups on the protein surface on a molar
basis, and the amounts of EDC and NHS were ten and five times the amount of malonic
acid, respectively. The mixtures were allowed to react for 3 h in rotation at room temper-
ature and then dialyzed against MES (50 mM, pH 6). The encapsulation of carboxylated
GFP was performed by ionic gelation with TPP as described above.

2.3. Morphological Analyses of the Nanoparticles

The hydrodynamic diameter and Zeta potential of all preparations were determined
by the DLS technique on a Zetasizer NanoZS (Malvern, UK). To confirm the size and
shape of the nanoparticles, high-resolution transmission electron microscopy (HR-TEM)
was performed using a JEOL JEM-2010. Five µL of a 1000 times diluted sample of the
nanoparticles were placed onto a carbon-coated 300 mesh copper grid (Ted Pella, Inc.;
Redding, CA, USA) and then stained with phosphotungstic acid (PTA).

2.4. Cargo Capacity and Antioxidant Activity of the Ch-ALA-NPs

To estimate the amount of encapsulated α-lipoic acid, HPLC analyses were per-
formed using the supernatant after ultracentrifugation. The resulting concentration of
free α-lipoic acid was subtracted from the initial α-lipoic acid concentration used for
nanoparticle synthesis.

Antioxidant activity of free and Ch-ALA-NPs was determined by using the inhibition
of pyrogallol autooxidation method reported by [54], with some modifications. First, 50 mM
Tris-HCl buffer (pH 8.2, containing 1 mM EDTA) was oxygenized with air. Pyrogallol
(2 mM) was dissolved in this oxygenized buffer. The capacity of the free ALA and Ch-ALA-
NPs to inhibit the spontaneous pyrogallol oxidation in the presence of atmospheric oxygen
was determined using equivalent concentrations of the nanoparticles and free α-lipoic acid
and monitored in a UV-vis spectrophotometer (Lambda 25, Perkin Elmer, Waltham, MA,
USA) at 420 nm.
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2.5. Release of α-Lipoic Acid from the Ch-ALA-NPs

The release of α-lipoic acid from the chitosan nanoparticles was determined in HCl
(pH 2) at 37 ◦C for 3 h, to simulate the stomach environment. A suspension of Ch-ALA-NPs
(10 mL) was added to a dialysis membrane with a molecular weight cut-off (MWCO) of
14 kDa. The dialysis membrane containing the nanoparticle suspension was transferred into
20 mL of HCl (pH 2). Under constant agitation at room temperature, 1 mL samples of HCl
were measured at 330 nm at different time points to determine the corresponding amounts
of released α-lipoic acid. The released ALA was quantified by using a standard curve.

2.6. Fluorophore Labeled Nanoparticles

In order to monitor and quantify the nanoparticles containing α-lipoic acid in the
everted intestine experiments, the nanoparticles were conjugated with a fluorophore (Flu-
orescein isothiocyanate, FITC), and produced as follows: One mL of ALA solution in
isopropanol (100 mg/mL) was added to 35 mL solution of chitosan (2%) in acetic acid,
pH 5.5. The ALA solution was added at a rate of 0.09 mm/s using the automatic pipet
system designed by our research group and described above. After 15 min, 250 µL of a
solution of FITC in methanol (10 mg/mL) were added at a rate of 0.03 mm/s. Then, 7 mL
of 0.25 % TPP were added at a rate of 0.09 mm/s, and the mixture was shaken for 1 h
to produce Ch-ALA-FITC-NPs by ionic gelation. Finally, 1 mL of glutaraldehyde (2.5%)
was added with the same system and shaken for 1 h. The nanoparticle suspension was
centrifuged at 3500 rpm for 30 min to eliminate the bigger particles, and the supernatant
was then centrifuged at 60,000× g for 2 h. The pellet containing the Ch-ALA-FITC-NPs
was resuspended in Milli Q water.

2.7. Internalization of Ch-GFP-NPs into Fibroblasts 3T3-L1

Fibroblast 3T3-L1 (CL-173, ATCC) cells (1 × 105) were cultivated in DMEM containing
10% fetal bovine serum, 1% penicillium and 1% streptomycin in 6-well plates (Corning, NY,
USA) containing microscope glass slides and incubated at 37 ◦C and 5% CO2. Once they
reached a confluence of 80–85%, Ch-GFP-NPs were added in different concentrations (5, 10,
20 and 50 µL mL−1) to the medium and incubated for 24 and 48 h. Afterward, the glass
slides, on which cells adhered, were washed with PBS, stained for 15 min with MitoTracker
Red CMXRos (Invitrogen, Waltham, MA, USA), and fixed with 4% PFA. Cell nuclei were
stained with 4′,6-diamidino-2-phenylindole (DAPI) (Invitrogen, Carlsbad, CA, USA). Cells
were then analyzed with a confocal laser scanning microscope (LSM 780, Carl Zeiss Inc.,
Oberkochen, Germany) using a DPSS laser with emission at 561 nm and a HeNe laser with
emission at 633 nm. Obtained images were analyzed using the software ZEN Blue Edition
(Zeiss, Jena, Germany) and ImageJ (NIH, Bethesda, MD, USA).

The 3D reconstruction was performed with Amira software (Thermo Fisher Scientific,
Waltham, MA, USA) by visualizing, processing, and analyzing data obtained by 780 LSM
confocal microscope (Zeiss, Jena, Germany). Nuclei were seen in blue and mitochondria in
red, while nanoparticles were in green; the observed signal was processed by the isosurface
and volume rendering module. This visualization was carried out using immersive reality
within the Cave Automatic Virtual Environment (CAVE) of the LAVIS-UNAM laboratory.

2.8. Intestine Barrier Crossing of Ch-ALA-FITC-NPs by In Vitro Everted Intestine

Intestinal tissues were taken from Wistar rats and chickens (Gallus gallus) (donated
from a local farm), to compare NP translocation through the intestine barrier in two species
by everted intestine experiments. Wistar rats were housed and used at Universidad Na-
cional Autónoma de México (UNAM) according to regulations of the Mexican government
regarding the use of laboratory animals for research purposes (CICUAL-UNAM, NOM-
062-ZOO-1999 4.2.2). Animals were sacrificed with CO2 and by cervical dislocation by
trained personnel. This protocol was approved by the Institute’s Research Ethics Com-
mittee (Comité de Ética en la Investigación, INB-UNAM) with register #065. Intestinal
tissue was obtained from 20–21 day old male rats, and 6-month-old chickens. Twelve cm
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of intestine from each rat or 10 cm from each chicken were dissected and placed in a Petri
dish containing Krebs-Ringer buffer at 37 ◦C. Immediately, the eversion of the intestine
was carefully realized using a Pasteur pipette. The intestinal content was removed, and the
tissue was washed with the same buffer. The lower end of the intestine was closed using a
nylon thread, 600 µL Krebs-Ringer buffer were added, and the other end of the intestine
was closed as well. The sealed intestine was then transferred into a 15 mL Falcon tube, pre-
viously gasified with CO2, containing 50 µL/mL Ch-ALA-FITC-NPs in Krebs-Ringer buffer,
and incubated for 60 min at 37 ◦C under agitation. Subsequently, the intestinal content
was centrifuged for 1 min, and fluorescence of the supernatant was spectrofluorimetrically
measured at an excitation of 495 nm and an emission of 519 nm. Control experiments were
carried out in the same conditions but without adding nanoparticles. The percentage of
nanoparticle internalization was estimated by comparing the fluorescence of the samples
to the fluorescence of the initial nanoparticle solution. All experiments were performed
in triplicate.

2.9. Statistical Analysis

Significant differences in all determinations were analyzed by one-way ANOVA test,
followed by post hoc Tukey rank test. Statistical significance was set at p < 0.05 and
expressed as compact letter display. Statistical analysis was performed on five independent
replicates using the software STATISTICA 8.0™ (StatSoft Inc., Tulsa, OK, USA).

3. Results

Chitosan nanoparticles were produced by ionic gelation in the presence of ALA. Pre-
liminary experiments to determine the maximal ALA loading in the chitosan nanoparticles
were performed. A fixed amount of chitosan (12.5 mg) and different concentrations of ALA
from 0.5 to 5 mg were used to produce chitosan ALA-loaded nanoparticles (Ch-ALA-NPs).
The ALA content was then determined spectrophotometrically. Higher ALA concentrations
than 5 mg induced precipitation and no nanoparticle formation.

The aim of this work was to produce chitosan nanoparticles as carriers for ALA. Four
different preparations were synthetized: control nanoparticles without ALA (Ch-NPs),
chitosan nanoparticles containing green fluorescent protein (Ch-GFP-NPs) to monitor cell
internalization of nanoparticles by confocal microscopy, FITC-modified and -containing
ALA particles (Ch-ALA-FITC-NPs) to evaluate intestinal barrier crossing by the everted
intestine technique by fluorescence, and the ALA-containing chitosan nanoparticles (Ch-
ALA-NPs) (Table 1). The nanoparticles formed with a Ch:ALA ratio of 2.5:1 showed an
ALA content of 20% w/w, and this ratio was selected for further experiments.

Table 1. Hydrodynamic diameter and Zeta potential of different preparations of chitosan-based
nanoparticles.

Nanoparticle Preparation Hydrodynamic Diameter
(nm)

Zeta Potential
(mV)

Ch-NPs 88.4 (±28.2) a 49 (±1.9) a

Ch-GFP-NPs 96.7 (±35.2) a 45 (±2.2) b

Ch-ALA-NPs 44.1 (±20.8) b 32 (±0.8) c

Ch-ALA-FITC-NPs 84.6 (±28.2) a 28 (±0.2) d

a,b,c,d Significant differences from four independent determinations were analyzed by one-way ANOVA test,
followed by post hoc Tukey rank test. Statistical significance was set at p < 0.05.

Dynamic light scattering (DLS) analyses (Table 1) revealed a hydrodynamic diameter
of approximately 44.1 (±20.8) nm, which was confirmed by high-resolution transmission
electron microscopy (HR-TEM) (Figure 1). The nanoparticle size was half that of the
nanoparticles without ALA (Ch-NPs) and could be due to a strong interaction between
the carboxylic group of ALA and the amino group of glucosamine monomers of chitosan.
This interaction was also supported by the reduction of zeta potential from 49 mV to 32 mV
when the ALA was loaded into nanoparticles (Table 1).
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Figure 1. HR-TEM images of synthesized Ch-ALA-NPs reveal an average diameter of 44 nm. Scale
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The antioxidant activity of both free and nano-encapsulated ALA was also determined
(Figure 2). The inhibition of the spontaneous oxidation of pyrogallol in the presence of
atmospheric oxygen was used as the antioxidation assay. The antioxidant activity was not
significantly affected by the encapsulation, Ch-ALA-NPs being slightly more efficient than
free ALA, and both preparations were able to completely inhibit this reaction at the same
ALA equivalents. Chitosan-only nanoparticles (Ch-NPs) showed some antioxidant activity
in the oxidation of pyrogallol.
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Figure 2. Antioxidant activity of Ch-NPs, CH-ALA-NPs and free ALA. The antioxidant activity was
determined by using the inhibition of pyrogallol autooxidation method reported by Marklund and
Marklund [54]. The average values from five independent experiments and the standard deviation as
error bars are shown.
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As mentioned above, the low half-life and bioavailability of ALA, as well as its
instability in the stomach, represent disadvantages for its administration as a dietary
supplement. Thus, the stability of Ch-ALA-NPs and liberation of ALA in a stomach-like
environment (HCl solution at pH 2) were determined. Free ALA was measured via UV-vis
spectrophotometry every 5 min for 3 h (Figure 3). A sustained release of ALA was found,
but the percentage of released ALA from the NPs was very low according to the total
ALA content in the NPs, implying that the Ch-ALA-NPs remained stable and intact in the
stomach until further intestinal absorption. Unmodified chitosan is fully soluble at low pH.
Nevertheless, the glutaraldehyde crosslinking of chitosan nanoparticles made them stable
even in very acidic conditions, thus retaining the ALA inside.
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Figure 3. ALA release from Ch-ALA-NPs in a stomach-like environment (HCl, pH 2).

Cell internalization of nanoparticles in 3T3 cells of mouse embryonic fibroblasts was
assayed using synthesized fluorescent NPs containing the green fluorescent protein (Ch-
GFP-NPs) (Figure 4). These fluorescent chitosan nanoparticles showed hydrodynamic
diameter and zeta potential similar to non-labeled nanoparticles (Ch-NPs). A culture of
3T3 cells of mouse embryonic fibroblasts was incubated with different concentrations of
Ch-GFP-NPs; after 48 h of incubation, the cells were washed three times with PBS and
analyzed by confocal laser scanning microscopy (see Video S1, supplementary information).
The cell nuclei were stained with DAPI, and the mitochondria with MitoTracker Red. The
confocal analysis showed clear evidence of chitosan nanoparticle cell internalization.

The capacity of chitosan nanoparticles loaded with α-lipoic acid to cross the intesti-
nal barrier was evaluated by using the everted intestine technique. To achieve this, the
nanoparticles were labeled with FITC (Ch-ALA-FITC-NPs) to be monitored and quantified.
Because the FITC was covalently bonded to the amino groups of glucosamine monomers
of chitosan, the zeta potential was reduced to 28 mV (Table 1), but still positive. The
everted intestine technique is widely used to evaluate intestinal absorption of nutrients,
drugs, and toxicants [55–57]. Everted intestines from rats and chickens were incubated
with Ch-ALA-FITC-NPs, and the fluorescence was measured in samples taken from both
inside and outside of the everted intestine (Figure 5). Although the absorption rate was low
(~0.5%/h), a significant level of fluorescence could be observed compared to the control
without NP treatment.
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Figure 5. Internalization through the intestinal barrier of Ch-ALA-FITC-NPs assayed in vitro by the
everted intestine technique. Fluorescence in arbitrary units (AU) in the control experiments without
nanoparticles and after 60 min incubation with Ch-ALA-FITC-NPs. The experiments were carried out
at 37 ◦C, and average values from five independent experiments and the standard deviation as error
bars are shown. Significant differences in all determinations were analyzed by one-way ANOVA test,
followed by post hoc Tukey rank test. Statistical significance was set at p < 0.05. The meaning of a,b,c
in figure is the statistical significance expressed as compact letter display.
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4. Discussion

α-Lipoic acid is synthesized in human and animal cells at a low rate, and thus it should
be consumed as a dietary supplement. However, ALAs’ instability in the stomach and low
bioavailability represent challenges for efficient administration to the animal organism [40].
To overcome these obstacles, ALA was encapsulated in chitosan nanoparticles. This natural
biopolymer is approved by most agencies around the world as safe for use in food and
drugs, and it is known to easily achieve a sustained slow release of its cargo as well as
increase bioavailability and therapeutic efficiency [47].

Chitosan-based nanoparticles containing ALA were produced (Figure 1 and Table 1).
Due to the solubility of chitosan at low pH, the nanoparticles were stabilized by glutaralde-
hyde crosslinking. However, the glutaraldehyde molecules were covalently conjugated
to the glucosamine moieties and not in free form, and thereby reducing their potential
toxicity. The antioxidant activity of ALA was slightly higher when encapsulated in chitosan
nanoparticles, while the NPs without ALA showed some antioxidant activity (Figure 2).
The slight antioxidant capacity of chitosan is well known [58–60].

The chitosan nanoparticles were internalized by mouse embryonic fibroblasts (Figure 4
and Video S1). Chitosan nanoparticle uptake by different cells has been clearly demon-
strated [61–63]. The Ch-ALA-NPs showed a positive Zeta potential of 35.7 ± 3.1 at pH of 6.
The positive charge promoted the cell internalization rate in different cell lines, increasing
the cellular uptake of NPs. In addition, an intracellular trafficking study indicated that
positively charged NPs exhibit perinuclear localization and escape from lysosome [60].

Using the everted intestine technique, the capacity of chitosan nanoparticles contain-
ing α-lipoic acid to cross the intestinal barrier was demonstrated (Figure 5). Nanoparticles
in a size range of 0.1 to 100 nm can quickly enter the digestive tract [64]. Due to their size
(84 nm), the chitosan nanoparticles showed the ability to cross the mucosal barrier and in-
teract with the subjacent absorbent epithelial tissue [65,66]. On the other hand, chitosan is a
polymer that can help the absorption and increase the permeation capacity of drugs through
the paracellular pathway by the reversible opening of the narrow epithelial bonds [67]. In
addition, chitosan is muco-adhesive, and thus can adhere to the intestinal mucosa through
ionic interactions between its positively charged amino groups and the negative charges
found on the surfaces of intestinal cells, promoting intestinal absorption [68]. It is well
known that chitosan nanoparticles can increase the drug concentration at the absorption
sites [65,66]. In addition, it has been demonstrated that chitosan nanoparticles increase
the intestinal absorption in vitro [69] of diverse bioactive compounds including, pheno-
lic compounds [70], catechins and epigallocatechin from green tea [71], resveratrol and
cumarin-6 [72].

The results obtained in the present study indicate that the administration of α-lipoic
acid in the form of Ch-ALA-NPs as a supplement to a balanced diet might be beneficial
for, the prevention and/or treatment of severe diseases such as cardiovascular diseases,
diabetes and obesity, amongst others. ALA may play an important role in the treatment
and/or prevention of diverse severe diseases including diabetes, Alzheimer’s, multiple
sclerosis, schizophrenia, and obesity [16,17,21,22,25–28,31,32,35].

5. Conclusions

Chitosan nanoparticles containing α-lipoic acid with antioxidant activity were effi-
ciently synthesized in a size average of 44 nm. The nanoparticles proved to be stable under
stomach-like conditions for up to 3 h. Furthermore, the cell internalization of chitosan
nanoparticles into fibroblasts cells was demonstrated. Finally, the nanoparticles were able
to cross the intestinal barrier as confirmed by the everted intestine technique, suggesting
an efficient method to supply ALA. From our results, we concluded that chitosan-based
nanoparticles containing ALA were stable in stomach-like conditions and able to cross
the intestinal barrier and release their antioxidant cargo. Thus, the use of α-lipoic acid
in a nanoparticulate form as a dietary supplement seems to be an attractive method of
administration. However, the results shown here are from in vitro experiments; thus, to
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determine potentially better bioavailability than the native compound, adequately designed
pharmacokinetic trials in animal models should be carried out.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12040417/s1, Video S1: Chitosan-ALA-NPs.
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