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Simple Summary: Advanced diagnostic imaging techniques, such as CT, can provide helpful in-
formation on the specific structures of the head, such as the ocular bulb, due to their high spatial
resolution, avoidance of overlapping structures, and fast imaging acquisition. An adequate knowl-
edge of the eye bird anatomy is essential for clinicians, biologists, and researchers to understand
many aspects concerning its biology.

Abstract: Imaging diagnosis plays a fundamental role in avian medicine. However, there are few
publications regarding its use in ophthalmology. Seabirds, in particular, present a peculiar ecology
since their lives take place in very diverse environments: the aquatic, the terrestrial, and the aerial.
This fact implies a series of adaptations at a visual level that are necessary for adequate interaction
with the environment. Therefore, knowledge of eye particularities is of great importance for the
scientific community since it allows us to deepen our understanding of the ocular anatomy and
biology of these animals, which are increasingly present in veterinary and wildlife centers. In our
study, we performed a morphometric analysis of the ocular bulb and its internal structures in the
puffin (Fratercula arctica) using advanced imaging techniques such as CT.

Keywords: computed tomography; imaging; ocular morphometry; orbit; sclerotic ring; birds

1. Introduction

The Atlantic puffin (Fratercula arctica) is a member of the Alcidae family and one of
three species in the Fratercula genus, alongside the horned puffin (Fratercula corniculata)
and the tufted puffin (Fratercula cirrhata), which are typically found in the North Pacific [1].
These medium-sized alcids have a wingspan of approximately 50 cm and can weigh up to
half a kilogram. They possess dense black plumage on their head, neck, and dorsum, with
white patches on their chest, ventrum, and around the eyes. The puffin’s bill is large and
exhibits orange tones, which fade to less intense colors after the breeding season. Notably,
there is no distinct sexual dimorphism, although males are generally slightly larger than
females and their colors become more conspicuous during the mating season [2–6].

The Atlantic puffin has a wide distribution, inhabiting the entire northern Atlantic
Ocean region, from northwestern Greenland, Newfoundland, and Maine (USA) in the
west to northwestern Russia and the Canary Islands (Spain) in the east [1,7]. These birds
spend the majority of their lives in the ocean, returning to land solely for reproduction.
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They primarily nest on isolated islands and cliff sides, ranging from Brittany and the Bay
of Fundy (Canada) to the Arctic sea ice on both sides of the Atlantic. Puffins return to
their colonies in March to nest during April and May and then leave in July to return to
the open sea [5,8,9]. They are monogamous birds, typically selecting the same partner
and nesting location in successive breeding periods. Upon returning to the breeding area,
males primarily engage in nest construction, which involves shallow burrows, rocky ledges,
and crevices, sometimes, incorporating plant material [5,10,11]. Females, after laying a
single egg per season, dedicate themselves to incubating it and subsequently feeding the
chick [12–14]. Chicks are primarily fed with fish, particularly herring (Clupea harengus;
12–85%), hake (Urophycis spp., Merluccius spp.; 12–87%), or sand eel (Ammodytes spp.;
0–71%). Adult puffins are also piscivorous, with varying amounts of polychaetes and
crustaceans in their diet [5,14,15].

The Atlantic puffin is currently listed as a threatened species on the International
Union for Conservation of Nature (IUCN) Red List, categorized as vulnerable, due to a
significant population decline over most of its range [1]. Climate change, linked to ocean
temperature variations that impact plankton blooms and disrupt the food chain, is one
of the main factors contributing to their vulnerability [16,17]. Puffins are also sensitive to
extreme weather events, such as marine storms, which have been increasing in frequency
and intensity and are associated with mass mortality [18,19]. Human activities, including
hunting for consumption and oil spills or other pollutants, also negatively impact puffin
populations [20,21]. Therefore, the conservation of puffins and other seabirds is a globally
significant task. Efforts aimed at their conservation require a deeper understanding of their
anatomy and biology as they relate to their behavior and the threats they face.

Numerous studies have emphasized the importance of vision in the interaction of
these animals with their environment and their overall survival [22–24]. Bird vision ranks
among the sharpest in the animal kingdom. Avian eyes possess unique anatomical features,
such as the pecten and sclerotic ring, found only in birds and certain reptiles. These
adaptations enable birds to effectively interact and navigate across diverse environments,
encompassing aquatic, terrestrial, and aerial realms [25–27]. Consequently, comprehending
the ocular structures and functionality of the Atlantic puffin holds significant importance
for veterinarians, biologists, and the wider scientific community.

Studying internal animal anatomy can be highly intricate. While dissection has
traditionally been the conventional approach, contemporary diagnostic imaging techniques
such as magnetic resonance imaging (MRI) and computed tomography (CT) offer minimally
invasive and efficient means to obtain precise anatomical information [28]. Although
primarily employed in human medicine, smaller versions of these imaging modalities,
such as micro-computed tomography, have been developed to minimize image distortion,
proving helpful for investigating the anatomy of small animals [29–31].

In the case of puffins, the existing literature predominantly focuses on various aspects
of their biology and ecology [9,14,21,32] or approaches ophthalmology from a clinical
standpoint [33]. However, conducting anatomical and morphobiometric analyses of the
puffin’s eye and associated structures can yield valuable insights into animal behavior
patterns. This has been demonstrated in studies exploring the fossils of extinct marine
reptiles belonging to the Ichthyosaur order [34] and non-passerine birds [35]. Similar
investigations have also been conducted on live animals, encompassing both domestic and
wild species [36–38].

Therefore, the objective of this study was to employ non-invasive examinations, such
as computed tomography, to measure the size and characteristics of the puffin’s eye and its
associated structures.

2. Materials and Methods
2.1. Animals

In order to conduct this study, a total of 29 Atlantic puffin carcasses were obtained
by the Consejeria de Área de Medio Ambiente, Clima, Energía y Conocimiento of the
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Cabildo de Gran Canaria (Gran Canaria, Canary Islands, Spain). The weight of the animals
ranged from 0.185 kg to 0.251 kg, with a mean weight of 0.251 kg. Since the physical
examination alone did not provide sufficient information to determine the precise cause
of the stranded individuals, modern non-invasive imaging techniques were employed to
assess their appendicular skeleton, identify potential metabolic bone diseases, and exclude
the presence of foreign bodies and internal organ injuries. Prior consent was obtained from
the responsible person at the Cabildo de Gran Canaria to include the puffins in this study.
The scanning procedures were carried out at the Veterinary Hospital of Las Palmas de Gran
Canaria University.

2.2. CT Technique

CT examinations of the skull were conducted on the thawed carcasses of these speci-
mens after a 12-h defrosting period at room temperature. Sequential slices were acquired us-
ing a 16-slice helical CT scanner (Toshiba Astelion, Canon Medical System®, Tokyo, Japan).
The animals were positioned symmetrically in a prone position on the stretcher, employing
a craniocaudal entry. A standard clinical protocol was employed, utilizing parameters of
120 kVp, 80 mA, a 512 × 512 acquisition matrix, an 1809 × 858 field of view, a pitch of 0.94,
and a gantry rotation of 1.5 s. The resulting images had a thickness of 0.6 mm. CT scans
were obtained in the dorsal, transverse, and sagittal planes with both bone and soft tis-
sue windows. Subsequently, all the acquired images were imported into an image viewer
(OsiriX MD, Apple, Cupertino, CA, USA) to facilitate data manipulation and measurements
of the puffin ocular bulb and its associated structures.

2.3. Measurements

We conducted measurements on the head length, width, and orbit depth. Additionally,
measurements of both eyes (n = 58) were analyzed by two observers using oblique sagittal,
transverse, and dorsal CT images obtained from all the skulls. A soft tissue attenuation
window was utilized for image analysis. The measurement methodology followed a
protocol previously described in studies on the loggerhead turtle [39], as well as in dogs
and cats [36–38], with some modifications based on studies conducted on non-passerine
birds [35]. The parameters and specific measurements taken are described as follows:

(A) Measurements in the transverse plane relative to the ocular bulb:

- Lens diameter: This parameter refers to the maximum distance between the
lateral and medial edges of the lens, also known as the equatorial diameter
(Figure 1A);

- Internal diameter of the sclerotic ring, which represents the maximum distance
between the inner lateromedial edges of the ring close to the cornea (Figure 1A);

- External diameter of the sclerotic ring, which corresponds to the maximum
distance between the outer lateromedial edges of the ring close to the sclera
(Figure 1A);

- Thickness of the sclerotic ring, defined as the distance between the internal
diameter of the sclerotic ring and the external diameter, measured in the dorsal
arch (Figure 2).

(B) Transverse plane concerning the puffin’s body

Height of the ocular bulb, which corresponds to the distance between the dorsal part
of the os frontale and the os quadratojugale, indicating the vertical dimension of the ocular
bulb (Figure 5B).

- Attenuation of the sclerotic ring and lens: This measurement was taken in the dorsal
area and expressed in Hounsfield Units, providing information about the radiodensity
of the sclerotic ring, lens, and vitreous humor (Figure 3).



Animals 2023, 13, 2418 4 of 11

(C) Dorsal plane

- Width of the ocular bulb: This measurement represents the lateromedial length of
the ocular bulb, extending from the os lacrimale to the inner face of the os frontale
(Figure 5A);

- Length of the ocular bulb: This measurement refers to the distance between the
most rostral and caudal portions of the ocular bulb, spanning from the septum
interorbitale to the processus antorbitalis (Figure 5A).

(D) Three-dimensional reconstruction

- Head length: This measurement is obtained from the centre point of the junction
between the beak joint to the prominentia cerebellaris, providing the length of the
head (Figure 4A);

- Depth of the orbit: This measurement represents the distance between the mid-
point of the orbital diameter and the foramen opticum, indicating the depth of the
orbit (Figure 4B).
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Figure 4. Volume rendering image of the F. Arctica skull with measurements of head length (A) and
orbit depth (B). Image (B) has been modified by removing the cranial vault in order to measure the
depth of the orbital basin.
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2.4. Statistical Analysis

The statistical analysis was performed using commercially available software (SPSS 19,
Statistical Package for the Social Sciences, Chicago, IL, USA). Descriptive statistics, in-
cluding the mean, median, range, and standard deviation (SD), were calculated for each
measurement. The Shapiro-Wilk test was used to assess the normal distribution of quanti-
tative data. The Mann-Whitney U test was employed to compare measurements between
the right and left eyes. Furthermore, Spearman correlation was utilized to analyze the
relationship between different ocular bulb variables and head length, as well as other
quantitative variables. The statistical significance level was set at p < 0.05.

3. Results

In the computed tomography images, the sclerotic rings are visible from the anterior
view of the respective eyes as circular structures with continuous morphology, distinct
from the surrounding elements of the skull. The ellipsoid-shaped ocular bulbs exhibit
well-defined soft tissue margins that likely correspond to the sclera. Various components
of the eye, including the lens, vitreous and aqueous humors, and the anterior and posterior
chambers, are also well distinguished in the images (Figures 1–5). From these images, we
acquired the different measurements corresponding to both eyes (Table 1).

Table 1 presents the measurements of internal structures for the left, right, and both
eyes of all 29 puffins included in the study. The mean, median, and standard deviation
of the head length were 5.10 cm, 5.07 cm, and 0.13 cm, respectively, with a range of 4.8 to
5.32 cm. The average lens diameter for all eyes was 3.32 mm, with a range of 2.7 to 4.2 mm.
The average internal diameter of the sclerotic ring was 0.63 cm, ranging from 0.59 to 0.7 cm.
Additionally, the average external diameter of the sclerotic ring was 1.44 cm, ranging from
1.38 to 1.49 cm. The sclerotic ring thickness had a mean value of 2.16 mm, with a range of
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2.04 to 2.29 mm. Regarding the ocular bulbs, they had an average height of 1.53 cm (range:
1.41–1.61 cm), an average width of 1.28 cm (range: 1.1–1.42 cm), and an average length of
1.61 cm (range: 1.46–1.71 cm). Additionally, the orbit depth had a mean of 8.19 mm (range:
7.9–8.5). Some variables exhibited a non-normal distribution. The Mann–Whitney U test
indicated no significant differences between the measurements of the right and left eyes.
Likewise, the same analysis demonstrated no statistically significant differences between
the right and left eyes when considering all variables collectively.

Table 1. Measurements of the right and left eyes of the Atlantic puffin.

Right Eye Left Eye Both Eyes

Mean Median Range SD Mean Median Range SD Mean Median Range SD

Lens diameter
(mm) 3.34 3.3 2.7–4.2 0.36 3.30 3.2 2.8–3.9 0.29 3.32 3.3 2.7–4.2 0.32

Internal
diameter of
the sclerotic
ring (cm)

0.64 0.63 0.59–0.69 0.03 0.63 0.63 0.59–0.7 0.03 0.63 0.63 0.59–0.7 0.03

External
diameter of
the sclerotic
ring (cm)

1.44 1.44 1.38–1.48 0.03 1.43 1.43 1.38–1.49 0.03 1.44 1.44 1.38–1.49 0.03

Sclerotic ring
thickness
(mm)

2.15 2.14 2.04–2.28 0.07 2.18 2.195 2.08–2.29 0.06 2.16 2.16 2.04–2.29 0.06

Ocular bulb
height (cm) 1.54 1.52 1.47–1.61 0.04 1.52 1.52 1.41–1.61 0.05 1.53 1.52 1.41–1.61 0.05

Ocular bulb
width (cm) 1.29 1.29 1.1–1.42 0.09 1.27 1.28 1.1–1.39 0.08 1.28 1.29 1.1–1.42 0.08

Ocular bulb
length (cm) 1.62 1.64 1.46–1.7 0.07 1.60 1.6 1.48–1.71 0.07 1.61 1.62 1.46–1.71 0.07

Orbit depth
(mm) 8.16 8.2 7.9–8.4 0.16 8.23 8.3 7.9–8.5 0.18 8.19 8.2 7.9–8.5 0.18

Lens
attenuation
(HU)

70.14 71 64–79 2.95 68.93 69 64–74 2.72 69.53 69.5 64–79 2.88

Vitreous
humor
attenuation
(HU)

35.17 35 31–41 3.06 35.59 36 31–45 3.76 35.38 35.5 31–45 3.40

Sclerotic ring
attenuation
(dorsal arch)
(HU)

721.21 725 687–752 18.39 719.79 723 687–745 17.64 720.50 723 687–752 17.87

The Spearman correlation analysis conducted to examine the relationship between
eye measurements and head length did not reveal any statistically significant findings.
However, significant correlations were observed in other aspects. There was a strong
correlation between ocular bulb height and width (rho = 0.661; p < 0.001), indicating a
substantial relationship between these variables. Additionally, moderate correlations were
observed between ocular bulb height and length (rho = 0.403; p = 0.002), as well as between
ocular bulb width and length (rho = 0.449; p = 0.002), suggesting meaningful associations
between these measurements. Moreover, a good correlation was found between the external
and internal diameters of the sclerotic ring (rho = 0.431; p < 0.001), indicating a relationship
between these variables.

Correlations involving the internal diameter of the sclerotic ring showed statistical
significance with ocular bulb height (rho = 0.601; p < 0.001), length (rho = 0.496; p < 0.001),
but not with width (rho = 0.203; p = 0.127). In a similar way, the external diameter of
the sclerotic ring exhibited significant correlations with ocular bulb height (rho = 0.688;
p < 0.001) and width (rho = 0.642; p < 0.001), while in this case no significant correlation
was found with ocular bulb length (rho = −0.059; p = 0.662). Significant correlations
were observed when comparing the orbit depth with ocular bulb measurements: height
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(rho = −0.484; p < 0.001) and width (rho = −0.294; p = 0.025). However, no significant
correlation was observed with ocular bulb length (rho = −0.114; p = 0.395).

In terms of attenuation, the regions of interest (ROI) for measuring the attenuations of
the sclerotic ring, vitreous humor, and lens were indicated by the green, yellow, and purple
circles, respectively (Figure 3). It is noteworthy that the vitreous chamber exhibited hypoat-
tenuation compared to the sclerotic ring. Conversely, the lens displayed hyperattenuation
in relation to the surrounding aqueous humor. The mean lens attenuation was determined
to be 69.53 Hounsfield units (HU), with a range of 64–79 HU. The vitreous humor exhibited
an average attenuation of 35.38 HU (range: 31–45 HU), while the sclerotic ring displayed
an attenuation of 720.50 HU (range: 687–752 HU).

4. Discussion

In this study, we conducted computed tomography to assess the ocular bulb and
associated hard tissues of the Atlantic puffin. To the best of the authors’ knowledge, this
is the first report describing measurements of Atlantic puffin eyes using a CT scan. This
technique has proven quite useful in the evaluation of the morphological knowledge of
the normal eye and associated structures in different species, such as dogs [36,37], cats [38],
and reptiles [39,40]. CT facilitates the view of body sections from different tomographic
planes, offering images with high anatomic resolution without tissue overlapping, ad-
equate contrast between different structures, and excellent tissue differentiation [41,42].
Consequently, modern imaging techniques like CT have significantly improved the image
quality, enabling exceptional evaluation of eye dimensions and different structures of the
puffin ocular bulb, including the sclerotic ring, vitreous chamber, and lens. This anatomical
knowledge is crucial for understanding the biology and ophthalmology of seabird species.
Thus, the tissue structures related to the ocular bulb, including the sclerotic ring and the
orbit, play a vital role in inferring the size and shape of the ocular bulb, which have been
linked to the bird’s activity patterns [35]. It is crucial to emphasize that mammals lack a
sclerotic ring, and therefore, the sole bone correlation lies in the morphology of the orbit
itself [35]. Nevertheless, studies on primates have indicated that as body size increases,
the volume of the primate orbit increases at a higher rate compared to the volume of
the eye. Consequently, in larger bodies, the dimensions of the orbit may not accurately
predict the size or shape of the eye [43–46]. Our study does not compare body size with
eye measurements. Instead, we focused on the correlation between head length and eye
measurements, as previous studies on birds have established this association [35]. However,
we did not observe any significant correlation between the eye measurement and head
length in Atlantic puffins.

The morphometric analysis of the internal diameter of the sclerotic ring provides
valuable insights into the relative size of the dilated pupil and the cornea, as this bone
correlates well with the cornea. This relationship enables the estimation of the light-
capturing capacity of the eye and consequently deduces the behavior pattern, whether
diurnal or nocturnal [25,35]. However, it is important to note that this correlation may
not be reliable if analyzed in isolation. In bird species that do not exhibit distinct activity
patterns strongly skewed towards day or night, it becomes necessary to combine these
measurements with those of the orbit depth to obtain more accurate and reliable results
because just the dimensions of the sclerotic ring alone have not separated nocturnal and
diurnal birds well [35].

Our CT studies have also revealed a significant and positive statistical correlation
between the internal and external diameters of the sclerotic ring and the width, height,
and length of the ocular bulb. These findings suggest a potential relationship between
these parameters, visual acuity, and the diurnal pattern observed in the Atlantic puffin.
Similar associations have been documented in extinct and extant bird species [35] and sea
turtles [39]. However, further investigations focusing on the influence of water pressure
during diving or air pressure on the Atlantic puffin’s ocular bulb sclerotic ring should be
performed to deepen our understanding in this area.
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The assessment of orbit depth, from the midpoint of the orbital diameter to the op-
tic foramen, has been previously investigated by other researchers in extinct and extant
birds [35]. In those studies, the measurements were performed directly on the carcasses
rather than indirectly, as in our study, where three-dimensional reconstruction techniques
and specialized computer programs were employed. In our animals, significant correla-
tions were observed when comparing the orbit depth with ocular bulb height and width,
suggesting relevant animal visual acuity and sensitivity to low light. Close findings were
observed in extinct aquatic reptiles such as Ichthyosaurus and Ophtalmosaurus with large
eyes and similar feeding habits to Atlantic puffins [34], which spend part of the day feeding
on small, fast-moving preys at depths ranging from 30–60 m [1,2]. However, it is essential
to acknowledge that these measurements may vary and could be influenced by operator-
dependent factors during the contouring of CT images, as previously reported in other
studies [36,38].

The quality of the acquired tomographic images presented here could be influenced
primarily by two factors: the utilization of conventional CT instead of micro-CT and the
small size of the birds included in the study. Previous studies have demonstrated that
micro-CT offers high contrast and superior image quality for small animals and tissues [47].
However, it is important to highlight that, despite using a conventional CT scanner, we
obtained the essential information required to fulfill the study objectives.

5. Conclusions

In this study, the CT images obtained in different planes provided relevant information
about the morphometric characteristics of the ocular bulb and the sclerotic ring in the
Atlantic puffin. The reference values established included the presumed normal diameters
of the ocular bulb and lens, as well as various measurements of the sclerotic ring, which
may be associated with the visual capabilities and activity patterns of these seabird species.
However, it is essential to note that further investigations involving live animals are
necessary to evaluate potential differences compared to data obtained from carcasses.
Additionally, it is essential to consider the inherent operational error associated with the
manual contouring of computed tomography images.
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