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Simple Summary: This study investigates the impact of DNA methylation on collagen deposition
in the skin of Dezhou donkeys, a breed valued for its thick, flexible skin with medicinal properties.
Utilizing whole genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq), the research
analyzes the epigenetic landscape and gene expression profiles across three developmental stages of
Dezhou donkeys. The study identifies numerous differentially methylated genes related to collagen
deposition, such as COL1A1, COL1A2, and MMPs, highlighting an inverse relationship between gene
expression and DNA methylation near transcription start sites. The findings of our study reveal
the significant regulatory role of DNA methylation in skin collagen deposition, offering insights for
genetic improvement and selective breeding to enhance skin quality in Dezhou donkeys. Our current
research adds to the foundational knowledge of collagen deposition mechanisms, contributing to the
fields of molecular biology and animal husbandry.

Abstract: DNA methylation represents a predominant epigenetic modification with broad impli-
cations in various biological functions. Its role is particularly significant in the process of collagen
deposition, a fundamental aspect of dermal development in donkeys. Despite its critical involvement,
the mechanistic insights into how DNA methylation influences collagen deposition in donkey skin
remain limited. In this study, we employed whole genome bisulfite sequencing (WGBS) and RNA
sequencing (RNA-seq) to investigate the epigenetic landscape and gene expression profiles in the
dorsal skin tissues of Dezhou donkeys across three developmental stages: embryonic (YD), juve-
nile (2-year-old, MD), and mature (8-year-old, OD). Our analysis identified numerous differentially
methylated genes that play pivotal roles in skin collagen deposition and overall skin maturation,
including but not limited to COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, GLUL, SFRP2, FOSL1,
SERPINE1, MMP1, MMP2, MMP9, and MMP13. Notably, we observed an inverse relationship
between gene expression and DNA methylation proximal to transcription start sites (TSSs), whereas
a direct correlation was detected in regions close to transcription termination sites (TTSs). Detailed
bisulfite sequencing analyses of the COL1A1 promoter region revealed a low methylation status
during the embryonic stage, correlating with elevated transcriptional activity and gene expression
levels. Collectively, our findings elucidate key genetic markers associated with collagen deposition in
the skin of Dezhou donkeys, underscoring the significant regulatory role of DNA methylation. This
research work contributes to the foundational knowledge necessary for the genetic improvement and
selective breeding of Dezhou donkeys, aiming to enhance skin quality attributes.

Keywords: DNA methylation; transcriptome; collagen deposition; Dezhou donkey; COL1A1

1. Introduction

The Dezhou donkey is recognized as one of the five important donkey breeds in
China [1], renowned for its thick, flexible skin, which is not only valued for leather produc-
tion but also possesses medicinal properties. Notably, the dermal collagen is the primary
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ingredient in Ejiao, a revered traditional Chinese medicine known for its blood-enriching,
immunomodulatory, and anti-aging benefits [2–4]. However, as the demand for Ejiao
increases, the demand for donkey hides also increases sharply. With the advancement
of science and technology, the labor function of donkeys has been weakened, and due to
factors such as the long production cycle of donkeys and the slow progress in breeding
improvement, the donkey population has declined, resulting in the scarcity of donkey
skins in the Chinese market, requiring a large portion of donkey skins to be imported [5,6].
Consequently, enhancing growth rates to augment hide yield has emerged as a critical area
of research in Dezhou donkey husbandry.

Collagen plays a crucial role in skin development. As the primary component of the
dermal layer, it forms a fibrous network that provides robust structural support to the
skin [7]. Additionally, collagen contributes to elasticity, wrinkle resistance, wound healing,
moisturization, and protection [8]. By studying skin tissues at various developmental
stages, we can gain a better understanding of the role of collagen in skin development and
biological processes.

The evolution of science and technology has ushered in a transition from traditional
breeding techniques to molecular ones in animal husbandry, with marker-assisted and
genomic selection becoming the cornerstone of livestock molecular breeding [9]. RNA
sequencing (RNA-seq), a pivotal tool in transcriptomics, plays a crucial role in correlating
gene expression with phenotypic and functional attributes of animals [10], facilitating the
identification of genes linked to complex traits [11,12]. Furthermore, RNA-seq enables the
examination of dynamic gene expression changes and gene interactions [13]. Previous
studies, such as those conducted by Chai et al., leveraged RNA-seq to pinpoint candidate
genes implicated in enhancing meat quality in Dezhou donkeys, including MYH1, MYH7,
TNNC1, TNNI3, TPM3, ALDOA, ENO3, and PGK1 [14]. Other investigations have identified
key genes related to skin thickness, reproductive traits, muscle development, and coat color
in donkeys [15–18].

DNA methylation is a major epigenetic modification mechanism in eukaryotic or-
ganisms. It can influence gene expression and chromatin structure without altering the
DNA sequence. This modification induces heritable changes in gene function [19] and
impacts various biological processes, including tissue-specific gene expression, cell differ-
entiation, genomic imprinting, and diseases [20]. This modification, mediated by DNA
methyltransferases (DNMTs), involves the transfer of a methyl group to cytosine [21] and
is reversible [22]. DNMT1 catalyzes methylation modifications on newly synthesized
DNA strands, maintaining existing methylation states [23]. DNMT3A and DNMT3B, as
functional enzymes with methyltransferase activity, can add methyl groups to newly synthe-
sized DNA under the influence of histone modifications [24,25]. DNA methylation, a widely
studied epigenetic modification, represents a relatively stable state of modification that can
be inherited by subsequent generations of DNA. In the field of dermatology, epigenetic
modifications play a crucial role in the occurrence and progression of autoimmune-related
skin diseases [26]. Simultaneously, they also have found extensive applications in the
field of livestock breeding, particularly in modulating fat deposition by regulating gene
expression through the inhibition of transcription factor binding [27].

Contemporary research increasingly combines epigenetic and omic approaches to un-
ravel the molecular regulatory mechanisms of differentially expressed genes. For instance,
studies by Zhang et al. utilized DNA methylation and transcriptome sequencing technolo-
gies to identify differentially methylated regions (DMRs) and genes (DEGs) associated with
intramuscular fat deposition in chickens [28]. Another study by Zhang et al. integrated
genome-wide methylation and transcriptome analysis to investigate the methylation and
gene expression profiles in goose leg muscle tissues, revealing that DNA demethylation of
myogenic genes may contribute to variations in leg muscle development among embryonic
geese [29].

As an original local breed, the Dezhou donkey lacks a systematic breeding process.
Additionally, there is low intra-group uniformity in the collagen protein content of donkey
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skin. Furthermore, the gene expression and epigenetic mechanisms underlying collagen
deposition during donkey skin development remain unclear. Therefore, investigating key
factors such as gene expression and DNA methylation during the growth and development
of donkey skin tissues, from embryonic stages to adulthood, is essential. Such analysis can
help identify critical molecular regulatory mechanisms and lay the foundation for future
research on donkey skin development and genetic breeding.

2. Materials and Methods
2.1. Ethical Statement

The experimental procedures regarding experiments and animals care were performed
as per Animal Welfare and Ethics Committee of Institute of Animal Sciences, Liaocheng
University under Ethical number (LC2019-1).

2.2. Animals and Sample Collection

The Dezhou donkeys used in this study were sourced from a breeding base in Dezhou
City, Shandong Province, China. They had the same feeding conditions and breeding
management conditions. The nutrition of the donkeys in the entire donkey farm was
balanced with an abundant supply of clean water. The environment was well-ventilated
and dry, and the donkeys were free from any diseases. Back skin tissue samples were
collected from Dezhou donkeys at different stages: 8-month-old fetal stage (YD, n = 3),
2-year-old (MD, n = 3), and 8-year-old (OD, n = 3). All sampling sites were located in the
middle of the left back, between the sixth and seventh thoracic vertebrae. The samples in
the YD period were aborted after being squeezed by external force, and the skin sampling
was completed within 1 h. During the MD and OD periods, sample collection was carried
out through minimally invasive skin sampling. Before sampling, we used professional
tools to prepare the skin of the sampling site, then used procaine to reduce pain, and finally
used a 5 mm skin sampler (Acuderm, Fort Lauderdale, FL, USA) to collect samples. The
collected skin tissue samples were rinsed with PBS, quickly cooled in liquid nitrogen, and
stored in a −80 ◦C refrigerator for subsequent analysis. All the donkeys in this study were
healthy and had a good prognosis.

2.3. Sequencing and Analysis of Methylomes

We independently extracted genomic DNA from nine skin tissues collected at three
different periods. DNA concentration and integrity were detected using a nanophotometer®

spectrophotometer (IMPLEN, Westlake Village, CA, USA) and Agarose Gel Electrophoresis,
respectively. After passing the test, they were sent to Genedenovo Biotechnology Co., Ltd.
(Guangzhou, China) for the construction of a bisulfite DNA library and whole-genome
sequencing. Genomic DNA samples were fragmented into 100–300 bp by sonication
(Covaris, Woburn, MA, USA) and purified with MiniElute PCR Purification Kit (QIAGEN,
Germantown, MD, USA). Next, a single “A” nucleotide was added to the 3′ end and ligated
with a methylation adapter. DNA fragments with adapters were bisulfite-converted by
Methylation-Gold kit (ZYMO, Irvine, CA, USA). Then, the converted DNA fragments were
sequenced by Illumina HiSeqTM2500 (Illumina, San Diego, CA, USA). Finally, the raw
reads were filtered to remove reads containing more than 10% unknown nucleotides and
low-quality reads, thereby obtaining clean reads, which were used for subsequent analysis.

2.4. Methylation Data Analysis

The clean reads we obtained were mapped to the Dezhou donkey reference genome
(ASM1607732v2) using BSMAP software (version: 2.90) [30] with default parameters. Pear-
son’s chi-square test (χ2) in methylKit (version: 1.7.10) [31] was employed to evaluate the
methylation status and ratio of the genome-wide DNA methylation profiles. In the context
of CG, when the GC number of each window was ≥5, the absolute value of the difference
in methylation rate was ≥0.25, and the q was ≤0.05, we regarded these methylated regions
as differential methylation regions. DMRs that overlapped with gene body, upstream 2 Kb,
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or downstream 2 Kb regions of the body were considered as differentially methylated genes
(DMGs).

2.5. Sequencing and Processing of Transcriptome Data

In our study, we used the transcriptome data published by Wang, X. et al. (2024) as the
basic data for this study [5]. The samples used for RNA sequencing were consistent with
those used for whole genome bisulfite sequencing (WGBS). Total RNA from skin tissue was
extracted using the Trizol reagent kit (Invitrogen, Carlsbad, CA, USA). After RIN was used
to evaluate the quality of the RNA sample, it was sent to Genedenovo Biotechnology Co.,
Ltd. (Guangzhou, China) for RNA library construction and sequencing. After sequencing
completed, we filtered the raw data to obtain clean reads for subsequent analysis. We then
employed HISAT2.2.4 [32] to align the paired-end clean reads with the reference genome
of the Dezhou donkey (ASM1607732v2). Finally, we normalized gene expression levels
using Fragments Per Kilobase of exon model per Million mapped fragments (FPKM) values.
This method effectively eliminates the influence of sequencing depth and gene length on
gene expression levels, allowing for direct comparison of gene expression levels between
different samples. This series of processing steps ensures the accuracy and reliability of our
transcriptome data. Differential expression analysis was undertaken using DESeq2 [33]
software (version: 1.20.0), which was employed to identify differentially expressed genes
(DEGs) meeting the criteria of a fold change ≥2.00 and an adjusted p-value of 0.05.

2.6. Correlation of DMRs and DEGs between Groups

In order to investigate the possible roles that DNA methylation plays in DEGs, com-
mon genes between DMRs related genes and DEGs were analyzed. Additionally, gene
ontology (GO) enrichment analysis and KEGG pathway enrichment analysis were con-
ducted. DMGs were mapped to GO terms in the Gene Ontology database (http://www.
geneontology.org/, accessed on 28 October 2023). Gene numbers were calculated for every
term, and significantly enriched GO terms in genes compared to the genome background
were defined by the hypergeometric test. KEGG annotation (http://www.genome.jp/kegg,
accessed on 28 October 2023) was used to subject DMGs to KEGG enrichment analysis.
False discovery rate (FDR) correction, specifically employing the Benjamini–Hochberg
adjustment method, was applied. GO and KEGG terms boasting p values below 0.05 were
identified as significantly enriched.

2.7. Bisulfite Sequencing PCR (BSP)

DNA methylation levels in COL1A1 gene promoters were measured by the Bisulfite
sequencing PCR (BSP). In total, 200 ng of the donkey skin tissue genomic DNA was treated
with bisulfite. The DNA samples treated with sodium bisulfite were purified and recovered
to ensure the acquisition of high-quality DNA. Then, we designed primers targeting the
high CG content sequence in the promoter region of the COL1A1 gene. The DNA was
amplified using PCR. Finally, the PCR products were sent to Qingdao Biotech Co., Ltd.
(Qingdao, China) for sequencing. BSP primers were designed by the Primer 5.0 software
(Table 1). The methylation levels were visualized by MSRcall software (www.msrcall.com,
accessed on 28 October 2023).

Table 1. Primers of methylation trial.

Primer Sequence (5′-3′) Production

COL1A1-CpG1-F TTTTATTAAGATGGTATAAAAGGGG 163 bp
COL1A1-CpG1-R ATATCTAAACCCTAAACATATAAACTCTT

2.8. Statistical Analysis

Statistical analyses were performed using SPSS 26.0 software (Statistical Product and
Service Solutions, Version 26.0 Edition, IBM, Armonk, NY, USA). In the present study,

http://www.geneontology.org/
http://www.geneontology.org/
http://www.genome.jp/kegg
www.msrcall.com
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the results were presented as mean ± SEM and were subjected to statistical analysis by
two-tailed t-test. The level of significance was presented as * p < 0.05 and ** p < 0.01.

3. Results
3.1. The DNA Methylation Atlas of Skin Tissues of Dezhou Donkey at Different
Developmental Periods

In the present study, 74.24, 72.13, and 75.52 G of raw data were generated in the
skin tissues of Dezhou donkeys during the MD, OD, and YD periods, respectively. After
removing the low quality, adapter, and reads containing more than 10% N, we finally
acquired 518,959,330, 504,203,919, and 527,906,285 clean reads in MD, OD, and YD periods,
respectively. Totals of 90.21%, 89.50%, and 90.28% of the Dezhou donkey genome were
covered with the uniquely mapped reads in MD, OD, and YD periods, respectively. The
Q20 value was more than 0.95; these results indicated a reliable sequencing outcome
(Table 2). In addition, the Circos plot displayed the DNA methylation levels in the various
sequence contexts (mCG, mCHG, and mCHH) (where H is A, C, or T) in Dezhou donkey
chromosomes (1–30 and the X, Y chromosome; Figure 1).

Table 2. The summary of data generated by genome-wide bisulfite sequencing.

Sample Raw Data (bp) Clean Data Clean Data (%) Mapped Ratio (%) Q20 (%)

YD-1 72,478,223,100 70,905,443,678 97.83% 90.49 96.9
YD-2 83,599,930,500 81,884,673,906 97.95% 89.94 96.49
YD-3 81,479,674,800 79,816,131,823 97.96% 90.41 96.87
MD-1 75,431,070,600 73,914,308,509 97.99% 90.29 96.7
MD-2 80,349,082,500 78,746,354,773 98.01% 90.22 96.64
MD-3 77,751,545,400 75,957,186,447 97.69% 90.12 96.25
OD-1 79,657,478,400 77,820,858,668 97.69% 89.57 95.91
OD-2 75,182,412,600 73,607,402,411 97.91% 89.69 96.07
OD-3 72,051,872,400 69,294,945,450 96.17% 89.24 96.26
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Animals 2024, 14, 1222 6 of 16

3.2. Global DNA Methylation Patterns of Skin Tissues in Dezhou Donkey

The analysis of Pearson correlation for the CpG base indicated that our samples
exhibit strong data repeatability (r > 0.7) (Figure 2A). To investigate the differences of
global DNA methylation profiles between the three groups, DNA methylation levels
in three contexts—CG, CHG, and CHH (where H is A, C, or T)—were analyzed in the
present study. The data shown in Figure 2B indicated that a majority of cytosines (75%)
were methylated in the CpG context, whereas a relatively minor percentage (1.6%) were
methylated in the GHG and CHH contexts (where H is A, C, or T). At the same time, in
gene regulatory regions and transcriptional elements, CG context accounted for the highest
proportion (62.40% on average), while CHG and CHH background methylation rates were
low (1.6%) (Supplementary Table S1, Supplementary Figure S1). In order to investigate
the methylation patterns of cytosines in Dezhou donkey skin tissue, we conducted an
analysis of the genome-wide preferences for mC sequences in various sequence contexts.
Based on our results, methylated cytosines were more often found in CG, CHG, and CHH
(where H = A > T) (Figure 2C). Therefore, we focused on CG methylation patterns in this
study. In the MD-vs.-OD group, the DMRs of the CGI were mainly located in the open
sea (65.1%) and the shelf (23.3%). The DMRs were mainly located in the intergenic region
(48.8%), followed by the introns (41.1%) and the promoter region (4.6%) (Figure 2D). The
characteristics of the YD-vs.-MD and YD-vs.-OD groups are shown in Supplementary
Figure S2. Moreover, the CG methylation levels of YD were higher than MD and OD
periods. Additionally, we observed a dramatic decrease in DNA methylation in the TSS
region, a sharp increase in the initial stage of gene body, and a plateau until the TTS
(Figure 2E).

3.3. WGBS-Transcriptomic Data Integration

To learn more about how DNA methylation affects gene expression, the DNA methy-
lation level (CG) of the gene regulatory region (upstream 2 Kb, gene body, and downstream
2 Kb) was detected. Based on RNA-seq data, genes were classified as high expression,
middle expression, low expression, or no expression. The results in Figure 3 show that, in
the upstream 2 Kb region, especially the region near the TSS, there is a negative correlation
between gene expression levels and DNA methylation. The same results are also found in
the downstream 2 Kb except for no expression. This suggests that higher gene expression
in this region is associated with lower DNA methylation levels. In addition, except for the
high expression group, positive correlations were found in the gene body close to TTS in
the other expression groups. In summary, gene expression and DNA methylation levels in
different gene regions are not always similarly correlated in Dezhou donkey skin tissues at
different developmental stages.

3.4. Analysis of the Relationship between DEGs and DNA Methylation in Skin Tissues at Different
Developmental Stages

To further identify genes regulated by DNA methylation during Dezhou donkey skin
development, the DMR-regulated genes and DEGs in gene regulatory regions
(upstream 2 Kb, gene body, and downstream 2 Kb) of Dezhou donkey skin were studied at
three different stages in this work. In the YD-vs.-MD and YD-vs.-OD groups, the number
of DMR-related genes and DEGs changed slightly, whereas in the MD-vs.-OD group, the
number of DMR-related genes and DEGs was greatly reduced. There were 3881, 3878, and
10 genes that were both DMR-related genes and differentially expressed genes discovered
in the three comparison groups of YD-vs.-MD, YD-vs.-OD, and MD-vs.-OD, respectively
(Figure 4A). Among these three groups, a large number of genes were classified as up-
regulated expression and downregulated DNA methylation (E+&M−). In the YD-vs-MD
group and the YD-vs.-OD group, downregulated expression and downregulated DNA
methylation (E−&M−) was the second most common genotype, whereas in the MD-vs.-OD
group, downregulated expression and upregulated DNA methylation (E−&M+) was the
second most common genotype (Figure 4A).
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Figure 2. The DNA methylation characteristics of skin tissue in Dezhou donkeys. (A) The correlation
analysis of the methylation between samples. (B) Comparison of DNA methylation patterns in
different samples. (C) Sequence preferences for methylation in sequence contexts; 9 bp base informa-
tion around the position of mCG, mCHG, mCHH at highest or lowest methylation levels, in which
the methylation cytosine is in the fourth position. (D) The frequency distribution histogram of the
distance from DMR to CGI and the distance from DMR to TSS. The DMR annotation in CGI function
elements (island, shore, shelf, and open sea) and genome functional regions (5′UTR, 3′UTR, exon,
intron, promoter, intergenic). (E) Average CG methylation levels in different function regions between
different samples.
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Figure 3. WGBS-transcriptomic data integration in gene regulatory regions in Dezhou donkey skin
tissues at different developmental stages. According to RNA-seq data, genes were considered as
differentially expressed (DEGs) if |log2(FC)| ≥ 1 and p-value ≤ 0.05. FPKM ≥ 100 was regarded
as high expression; 10 ≤ FPKM < 100 was regarded as middle expression; 0 ≤ FPKM < 10 was
regarded as low expression; FPKM = 0 was regarded as no expression. CG methylation levels in gene
regulatory regions (upstream 2 Kb, gene body, and downstream 2 Kb) were analyzed in each group.

Heatmaps of gene expression patterns were constructed to analyze the 7769 genes
that were both DMR-related genes and DEGs (Figure 4B). In the clustering heat map, some
genes in the YD period are higher in the upstream 2 K and gene body regions than in the
MD and OD periods, but the results are the opposite in the downstream 2 K region. These
results suggest that DEGs related to DNA methylation showed different expression and
DNA methylation patterns during these three periods. The different expression patterns
of these DMR-related differentially expressed genes may have different regulatory effects
during skin development in Dezhou donkeys.
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Figure 4. The identification of differentially expressed genes (DEGs) regulated by DNA methylation
during skin development in Dezhou donkeys. (A) Venn diagram of DMR related genes and DEGs in
YD-vs.-MD, YD-vs.-OD, and MD-vs.-OD groups together with statistical results of genes involved in
different modes of DNA methylation and gene expression correlation. (B) Heatmap of gene expression
patterns of genes that were both DMR-related genes and DEGs in upstream 2 Kb, gene body, and
downstream 2 Kb regions (hierarchical cluster analysis on the left panel and non-hierarchical cluster
analysis on the right panel). E, gene expression level; M, DNA methylation level; +, upregulation;
−, downregulation.

3.5. Enrichment Analysis of Methylation-Related DEGs

To look into the biological functions of methylation-related DEGs, GO analysis and
KEGG pathway analysis were conducted in three comparison groups. Our results indicated
that the DMGs were mainly enriched in the cellular process, the biological regulation,
the developmental process, the cellular anatomical entity, and the binding terms in the
three comparison groups (Figure 5A). These biological processes play an important role
in collagen deposition and skin health and function. The KEGG pathway analysis found
some pathways related to collagen in the skin in the three comparison groups, such as
ECM–receptor interaction, the MAPK signaling pathway, renin secretion, and the relaxin
signaling pathway (Figure 5B).

3.6. Candidate DMGs Associated with Collagen in Dezhou Donkey Skin

Although DMGs were found in the three comparison groups, the relevant mechanisms
affecting collagen deposition and regulation in Dezhou donkey skin were unclear. There-
fore, to explore whether candidate DMGs are related to collagen in Dezhou donkey skin,
we integrated RNA-seq and WGBS data to reveal the methylated candidate genes related
to collagen deposition and regulation in Dezhou donkey skin. In Figure 6A, there are
265 DMGs with high methylation levels and differential expression downregulation and
1382 DMGs with low methylation levels and differential expression upregulation during
the collagen deposition and regulation process in the YD-vs.-OD group. We found several
genes related to collagen deposition and degradation in skin, such as COL1A1, COL1A2,
COL3A1, COL4A1, COL4A2, GLUL, SFRP2, FOSL1, SERPINE1, MMP1, MMP2, MMP9, and
MMP13 (Figure 6B). We also found genes related to collagen deposition and degradation in
skin in the YD-vs.-MD group, but not in the MD-vs.-OD group (Supplementary Figure S3).
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Some genes were enriched in the ECM–receptor interaction, the relaxin signaling pathway,
the MAPK signaling pathway, and the Hippo signaling pathway. Moreover, the protein–
protein interaction (PPI) network analysis showed that the DMGs were highly correlated
with each other (Figure 6C). The DNA methylation and gene expression levels of three
DMGs, COL1A1, COL3A1, and MMP9, are shown in Figure 6D. In order to gain a deeper
understanding of the expression patterns of collagen genes at different life stages, we
analyzed and visualized the average DNA methylation levels near the transcription start
sites (TSS) regions and the gene bodies of several collagen genes during three periods in
Dezhou donkeys using IGV software (version: 2.3.26) (Figure 6E).
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3.7. DNA Methylation of COL1A1 Promoter Region

Because COL1A1 is essential for collagen deposition, DNA methylation patterns of
the promoter and first exon regions at each stage from Dezhou donkeys were visualized
by IGV software (version: 2.3.26) to analyze the correlation with COL1A1 expression
(Figure 6E). It was found that the average methylation level of the COL1A1 gene in the
promoter region was significantly higher in the MD and OD periods than in the YD
period during the three periods. Combined with the COL1A1 gene transcriptome level
(Figure 7A), we speculated that the methylation of the COL1A1 gene promoter region is
negatively correlated with gene expression. Furthermore, pyrosequencing was performed
to analyze DNA methylation levels in the COL1A1 promoter region to validate the WGBS
data (Figure 7B). The BSP results showed that, among the average methylation levels in the
three periods, the average methylation level in the OD period was the highest, followed
by the MD period, with the average methylation level in the YD period being the lowest,
consistent with the WGBS results.
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Figure 6. Candidate DMGs associated with collagen deposition. (A) The differential genes (DEGs)
overlapped with differentially methylated genes (DMGs) in YD-vs.-OD group. (B) Integrated analysis
of DNA methylation levels and gene expression levels. (C) Protein–protein interaction (PPI) network
analysis of candidate DMGs associated with collagen deposition. (D) The DNA methylation levels
(WGBS) and gene expression levels (RNA-seq) (IGV tracts) of three candidate DMGs (COL1A1,
COL3A1, and MMP9). (E) The DNA methylation levels in the promoter region of candidate genes
(COL1A1 and MMP9). CpG regions around TSSs are marked in shadow area. Bar graph showing the
average methylation level of gene at each period. * p < 0.05.
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4. Discussion

Ejiao, recognized for its traditional medicinal properties in Chinese culture, plays a
pivotal role in fortifying the body’s overall health and bolstering immunity. The cornerstone
of Ejiao production lies in the extraction of collagen from donkey skin, a process heavily
influenced by the concentration of collagen present. Recent studies have elucidated that
the biodeposition of collagen is intricately regulated by specific genes [34]. Furthermore, an
expanding body of research indicates that DNA methylation exerts a multifaceted influence
on gene expression regulation. Despite the burgeoning interest in this field, the exploration
of DNA methylation’s impact on gene transcription remains in its nascent stages [35], with
a notable absence of such studies in donkey-specific research.

DNA methylation plays a key role in determining genome structure and function,
including regulating cell differentiation and coordinating gene expression. In studies of
human early embryonic development, gametes exhibited elevated levels of methylation in
certain gene regions. During the embryonic stage, they maintained low methylation levels.
In the zygote, parental methylation information was extensively erased, leading to the
establishment of a novel methylation pattern. In mice and other mammals, similar DNA
methylation dynamics occurred [36,37]. In studies related to different developmental stages
in poultry, it was observed that DNA demethylation of myogenic genes may contribute to
the differential leg muscle development in Wuzong geese and Shitou geese embryos [29].
This investigation embarked on a thorough examination of the DNA methylation patterns
within the skin of the Dezhou donkey across various developmental stages. It posited that
DNA methylation could significantly impact the deposition of collagen in donkey skin.
The primary objective was to unearth methylated genes that could potentially influence the
deposition of collagen within donkey skin.

The WGBS data revealed that, in this study, 75% of methylcytosines (mCs) were
located within the CG context, with 1.6% in the CHG and CHH contexts. A notable pattern
emerged showing a marked decrease in DNA methylation levels upstream of the TSS,
a substantial increase across the gene bodies, and a stabilization towards the TTS. This
pattern aligns with findings from other species, such as geese [29] and chickens [28]. Our
analysis further demonstrated a negative correlation between gene expression and DNA
methylation in regulatory regions proximal to TSS with a positive correlation observed
near the TTS within gene bodies, corroborating findings in other species, such as pigs [38],
humans [39], and cattle [40]. The donkey genome’s intergenic and intronic regions were
predominantly composed of DMRs with a minor fraction associated with the 5′UTR and
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3′UTR. A significant discovery was the identification of DMGs primarily in the YD-vs.-MD
and YD-vs.-OD group comparisons, with a minimal number in the MD-vs.-OD comparison.
Heatmap clustering analysis of gene functional regions highlighted variances in gene
expression across different developmental stages, suggesting age-related changes in DNA
methylation patterns within these regions that could influence gene expression. This
hypothesis is supported by parallel findings in human studies [41]. This research posits
that variations in gene expression within the upstream 2 Kb (up2k) and gene body regions
may be attributed to decreased methylation levels, thereby enhancing the transcriptional
activity of genes during the YD stage. Conversely, the downstream 2 Kb (down2k) region
exhibited reduced gene expression at the YD stage, potentially due to increased methylation,
which could impede gene expression. A comprehensive functional enrichment analysis
was conducted on the DMGs across three comparative groups. Notably, in the YD-vs.-MD
and YD-vs.-OD groups, an array of skin collagen-related pathways was identified within
the KEGG pathway analysis, including ECM–receptor interaction, the relaxin signaling
pathway, the MAPK signaling pathway, and the Hippo signaling pathway. However, such
pathways were not discernible in the MD-vs.-OD group, likely due to the limited number
of DMGs, precluding their detection in the functional enrichment analysis.

The study unveiled multiple genes integral to the deposition and degradation of
collagen within the skin, encompassing COL1A1, COL1A2, COL3A1, COL4A1, COL4A2,
GLUL, SFRP2, FOSL1, SERPINE1, MMP1, MMP2, MMP9, and MMP13. These genes were
predominantly enriched in pathways such as ECM–receptor interaction, the relaxin sig-
naling pathway, the MAPK signaling pathway, and the Hippo signaling pathway. The
genes COL1A1 and COL1A2 are pivotal for synthesizing type I collagen, fundamental to
the structural integrity of the body [42]. The COL3A1 gene, responsible for type III collagen
deposition, is vital for skin’s structure and function [43]. Type IV collagen, encoded by
the COL4A1 gene, plays a crucial role in wound healing and embryogenesis [44]. Overex-
pression of FOSL1 affects cell adhesion to fibronectin and collagen, impacting cell cycle
progression [45]. SERPINE1 contributes to fibrotic adhesions in injured flexor tendons by
inhibiting MMP activity [46]. The matrix metalloproteinases (MMPs) family, including
MMP1, MMP2, MMP9, and MMP13, degrades various extracellular matrix (ECM) protein
substrates, including collagen [47]. Overexpression of MMP1 leads to the degradation of
ECM components, affecting the normal structure of collagen and elastic fibers, which may
result in skin aging manifestations such as wrinkles [48].

This investigation revealed that the expression of collagen-related genes in donkeys
is modulated by DNA methylation patterns. Specifically, the COL1A1 gene exhibited the
lowest average methylation level during the YD period, differing significantly from the
MD and OD periods. The reduced methylation level of the COL1A1 gene during the fetal
period might be necessitated by the demand for heightened gene expression to support fetal
growth and development, a phenomenon also observed in humans [37]. The methylation
level of the MMP9 gene remained consistent across the three periods, suggesting that
methylation might not be the primary factor influencing MMP9 gene expression in collagen
deposition and degradation. Other epigenetic mechanisms, such as histone modifications
and transcription factor regulation, may also play roles [49].

Although the pivotal role of COL1A1 in collagen deposition is well documented, the
specific regulatory mechanisms, particularly the role of promoter DNA methylation in
varying developmental periods of donkey skin collagen deposition, remain elusive. Future
research endeavors will aim to explore the functionality of potential genes in collagen
deposition within donkey skin more comprehensively. Additionally, there is a need to
elucidate the variations in DNA methylation of regulatory elements associated with crucial
genes involved in collagen deposition and deposition, encompassing both in vivo and
in vitro studies.
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5. Conclusions

In conclusion, this research provides a detailed DNA methylation atlas for Dezhou
donkey skin, the first of its kind. By integrating DNA methylation data with transcriptomic
analyses, the study identified a number of key genes potentially involved in the regulation
of skin collagen deposition. These include COL1A1, COL1A2, COL3A1, COL4A1, COL4A2,
GLUL, SFRP2, FOSL1, SERPINE1, MMP1, MMP2, MMP9, and MMP13. The findings from
this study are expected to significantly contribute to advancing our understanding of
the epigenetic mechanisms governing collagen deposition in Dezhou donkey skin at the
genomic level.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani14081222/s1, Figure S1: DNA methylation trends upstream and
downstream of genome-specific elements in every sample; Figure S2: The frequency distribution
histogram of the distance from DMR to CGI and the distance from DMR to TSS; Figure S3: The figure
of differentially expressed genes (DEGs) overlapped with differentially methylated genes (DMGs)
and the figure of integrated analysis of DNA methylation levels and gene expression levels; Table S1:
Statistical table detailing the methylation levels of C bases across different gene regions.
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