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Simple Summary: Environmental factors, maternal inheritance, and feeding success are influential
factors in fish growth, especially during the larval stage, encompassing their early days of life. Growth
rates play a crucial role in larval survival, particularly in species with high energy requirements such
as the Atlantic bluefin tuna (ABFT). Our analyses of two patches of ABFT larvae collected in the
Gulf of Mexico’s spawning region during different years reveal variable larval growth, depending
on prey availability. Larval growth also shows a direct relationship to maternal feeding. Estimates
of larval trophic positions are primarily influenced by food web length and energy transmission
efficiency, leading to differences in larval growth and underscoring the importance of considering
trophic dynamics in interpreting results. These findings offer novel insights into how these factors
affect ABFT larval growth, potentially informing conservation efforts and fisheries management
strategies by governmental institutions.

Abstract: Two cohorts of Atlantic bluefin tuna (Thunnus thynnus) larvae were sampled in 2017
and 2018 during the peak of spawning in the Gulf of Mexico (GOM). We examined environmental
variables, daily growth, otolith biometry and stable isotopes and found that the GOM18 cohort
grew at faster rates, with larger and wider otoliths. Inter and intra-population analyses (deficient
vs. optimal growth groups) were carried out for pre- and post-flexion developmental stages to
determine maternal and trophodynamic influences on larval growth variability based on larval
isotopic signatures, trophic niche sizes and their overlaps. For the pre-flexion stages in both years,
the optimal growth groups had significantly lower δ15N, implying a direct relationship between
growth potential and maternal inheritance. Optimal growth groups and stages for both years showed
lower C:N ratios, reflecting a greater energy investment in growth. The results of this study illustrate
the interannual transgenerational trophic plasticity of a spawning stock and its linkages to growth
potential of their offsprings in the GOM.

Keywords: Atlantic bluefin tuna; larval growth; trophic ecology; isotopic signatures; maternal effects;
trophic niches

1. Introduction

Top predatory fishes in mid- to high-latitude marine ecosystems play crucial roles in
the stability of food web structure [1,2]. For Atlantic Bluefin Tuna (ABFT, Thunnus thynnus),
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cascading effects of population fluctuations can alter the structure and performance of the
lower food web [3–5].

ABFT is managed by the International Commission for the Conservation of Atlantic
tunas (ICCAT) as two, eastern and western, stocks [6] with different natal homing behaviors,
spawning areas, sexual maturity ages, and trophic dynamics [7–9]. The western stock feeds
principally in prey-rich waters of the north and northwestern Atlantic [10–13]. Displaying
a capital feeding strategy for reproduction [14,15], nutritionally replenished adults migrate
thousands of kilometers each year to reproduce in warm oligotrophic waters of the Gulf of
Mexico (GOM) [16,17].

While nutrient poor [18,19], oceanic waters in the GOM spawning grounds benefit
from proximity to richer shelf region with inflows from numerous rivers like the Missis-
sippi [20–25] and by the direct influence of the Loop Current, which forms eddies and gyres
and shapes mesoscale hydrographical circulation [26–28]. These mesoscale features serve
as ideal nursery habitats for bluefin tuna larvae [29], with spawning occurring from April
to June [30] when surface temperatures exceed 24 ◦C [17].

The two main environmental influences on the early life stages of tunas are tempera-
ture and food availability [31–35]. Temperature influences vital and metabolic rates that
in turn affect rates of growth and mortality [36,37]. Temperature enhances growth rate of
tuna larvae when food availably is sufficient [31,33,38] and is the main abiotic driver of
tuna distribution and recruitment [39]. Successful and frequent feeding during early life
history depends on adequate food resources and is essential for survival.

Knowledge of the relationship between growth and trophic ecology is fundamental for
understanding how larvae respond to varying spatio-temporal dynamics of their nursery
habitat [40,41]. Environmental impacts on the stock–recruitment relationship for ABFT
result in varying recruitment scenarios. Understanding larval survival rates and the stock-
recruitment relationship in their spawning grounds informs management decisions on
fishing pressure and stock recovery potential and is critical for effective management.

Trophic studies in fish larvae have mostly focused on stomach content analyses which
give snapshots of prey consumed over relatively short feeding periods [42–45]. Stable iso-
tope analyses (SIA) complement traditional gut content examination with biogeochemical
information on the mean trophic characteristics of prey consumed over a longer time scale,
essentially the nutritional history of the larvae up to the point of capture [14,46,47].

Nitrogen (δ15N) and carbon (δ13C) SIA are often used to assess trophic position and
carbon flows to consumers in food webs [48–50]. Nitrogen δ15N is an indicator of the mean
N sources supporting consumer growth and enriches with each trophic transfer in the food
chain. Since C isotope ratios undergo small changes during trophic transfers, δ13C is mainly
used to assess how food sources with different mean δ13C values contribute to diet [49,51].
SIA has been previously applied to evaluate trophic influences on larval growth of ABFT
using size-fractionated zooplankton as baseline values [52].

Isotopic signatures (δ15N and δ13C) evolve as different prey types are selected by
larval of increasing size and developmental stage [53,54]. For pre-flexion stages, δ15N
signatures are derived principally from maternal transmission [55], corresponding to the
consumer isotopic signatures of adult breeding females. In contrast, δ15N for post-flexion
stages, increases with size and development and reflects larval dietary changes [53]. In
field samples, this trophic change is interpreted as a tendency toward larger prey-size
consumption with age [54,56]. These larval δ15N values, together with the baseline isotopic
signature of the micro-zooplankton community (0.05–0.2 mm in size), allow us to estimate
and compare TPs among populations and to understand the ecological roles of different
species in the system [50,57], their trophic structure and consumer–prey relationships [58].
Therefore, TP estimation is crucial for understanding trophodynamics and the influence of
trophic interactions on larval growth variability.

Stable isotopes are also used to estimate trophic parameters, such as maternal/trophic
isotopic niche widths and niche overlap, by applying stable isotope Bayesian inference
analysis [59]. These niches are measures of dietary diversity [60–62] and describe the iso-
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topic characteristics of the niches exploited by the breeders (maternal) and larvae (trophic)
of the species.

In this study, growth variability of two ABFT larval cohorts (2017 and 2018) are
compared from two complementary perspectives: inter and intra-population analysis. We
analyzed larval daily growth with trophodynamics characterized by SIA analysis and
isotopic niches considering both the total population (TOTAL) and the segregated groups
of pre-flexion (PRE) and post-flexion (POST) larvae, which reflect maternal and larval
trophodynamic influences, respectively.

2. Materials and Methods
2.1. Sampling and Processing of ABFT Larvae and Plankton

Samples of ABFT larvae and zooplankton prey were collected in the GOM spawn-
ing region at 9 stations on BLOOFINZ cruise NF1704 (May 2017) and at 19 stations on
BLOOFINZ cruise NF1802 (May 2018) aboard NOAA R/V Nancy Foster (Figure 1). On
each cruise, we first located a patch of significant larval abundance with preliminary net
tows, then marked the patch with a free-floating satellite-tracked drifter with a 3 m drogue
centered at 15 m in the surface mixed layer and repeatedly sampled the larvae and ambient
zooplankton prey in the same water over the course of 3–4 days [63]. Larval patches
GOM17 and GOM18 in Figure 1 were found at different locations; GOM18 being closer
to the richer continental margin than GOM17, which was well into oligotrophic waters of
the central GOM. However, both larval patches were found to have originated ~2–4 weeks
earlier at roughly the same location along the northwest continental margin of the GOM by
backtracking drift trajectories in a reanalysis of surface water circulation [63]. This study
therefore compares two groups of ABFT larvae originating from the same general location
in different years but experiencing different trophic conditions.
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Figure 1. Area of larval ABFT tuna sampling stations during the BLOOFINZ surveys 2017 and 2018.
Anticyclonic eddies (AG, dashed line) and cyclonic eddies (CG, dotted line) driven by extensions and
contractions; the Loop Current (LC) is highlighting the hydrodynamic features of the GOM (Modified
from [63]).

For ABFT larvae, we used a Bongo 90 cm net frame with 500 µm mesh towed obliquely
from the surface to 25 m and back at approximately 2 knots for 10 min. Zooplankton
samples were collected on the same tows as the larvae, using a 20 cm Bongo net frame with
200 and 55 µm mesh nets attached to the Bongo 90 cm net frame [52]. Each of the Bongo
90 and Bongo 20 nets were equipped with a General Oceanics flowmeter to measure the
volume of water filtered during each tow (m3). Temperature (◦C) and salinity (psu) profiles
for the upper 25 m were determined from CTD casts conducted concurrently at each station
(see [64] for hydrographic sampling details).

ABFT larvae were sorted, preserved and processed on board following standard
protocols [65] to obtain standard length (SL, mm) and dry weights (DW, mg). Specimens
were freeze-dried and placed in individual tin capsules (0.2–2 mg) for SIA analyses.
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Zooplankton from each net were spilt in two subsamples [45]. From the 55 µm mesh,
one subsample was frozen at −20 ◦C for biomass and SIA, and the other preserved with
4% formaldehyde for community analysis. The two subsamples from the 200 µm mesh net
were concentrated and frozen at −20 ◦C and preserved in ethanol 96%, respectively.

2.2. Otolith Analyses

Otoliths were removed, cleaned with distilled water and fixed on slides with one
drop of nail lacquer [65]. Sagittal otoliths were digitalized as stacks of focal-depth images,
varying in number depending on otolith size. Otoliths were excluded if they were broken,
not saggitae or had fixation artifacts. Otolith radius (RADIUS, µm), daily increments
(AGE, days) and mean increment widths (MIW, µm) were also measured by Leica im-
age analysis software. Reading criteria for ABFT larval age estimations were previously
applied [34,65,66] and detailed by Malca et al. [64].

2.3. SIA Analyses of Larvae and Zooplankton

Natural abundance of N (δ15N) and C (δ13C) were measured with an isotope-ratio spec-
trometer (Thermo-Finningan Deltaplus) coupled to an elemental analyzer (FlashEA1112
Thermo-Finningan) at the Instrumental Unit of Analysis of the University of A Coruña.
Ratios of 15N:14N and 12C:13C are expressed in conventional delta notation (δ), relative to
the international standard [atmospheric air (N2) and Pee-Dee Belemnite (PDB), respectively,
using acetanilide as standard]. The analytical precision for δ15N and δ13C were 0.13 and
0.11‰, respectively, based on the standard deviation of internal references (repeatability of
duplicates). A posteriori corrections of δ13C values for lipid content were carried out based
on C:N ratios for micro- and meso-zooplankton size fractions according to the equations
and parameters for invertebrates [67] and for muscle tissue of ABFT larvae [52].

2.4. Estimation of Isotopic Maternal Signatures

We estimated isotopic maternal values using the model of Uriarte et al. [53]:

δ15Nmaternal = δ15Nlarvae + (δ15Negg − δ15Nlarvae)

δ13Cmaternal = δ13Clarvae + (δ13Cegg − δ13Clarvae)

where δ15Nlarvae and δ13Clarvae are bulk SIA values for each larva. To calculate the factors
(δ15Negg − δ15Nlarvae) and (δ13Cegg − δ13Clarvae) required for estimating maternal isotopic
values, we used the isotopic values for each pre-flexion larva on each survey to determine
a linear relationship of isotope variability with age (Table 1).

Table 1. Maternal isotopic signature equations derived from larvae captured in the field (GOM17 and
GOM18). NS = Non-significant; * p < 0.05; ** p < 0.01.

Population n Maternal Isotopic Signature Estimation Equation p R2

GOM17 49
(δ15NEGG − δ15NLARVAE) = (7.206 + 0.047 * AGE) NS 0.01
(δ13CEGG − δ13CLARVAE) = (0.467 + 0.091 * AGE) * 0.09

GOM18 52
(δ15NEGG − δ15NLARVAE) = (0.975 + 0.527 * AGE) ** 0.52
(δ13CEGG − δ13CLARVAE) = (2.423 – 0.200 * AGE) ** 0.45

The δ15N and δ13C values for eggs were obtained from newly spawned eggs and
lecithotrophic larvae (n = 20 pooled) from aquaculture rearing experiments [53]. For
wild ABFT larvae, the isotopic values of eggs were calculated using a random variable
originating from the mean and standard deviation of egg and lecithotrophic larvae of the
rearing experiment [65].
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2.5. Larval Trophic Positions

The trophic position (TP) of each ABFT larvae was calculated following Equation (1):

TP = ((δ15Nlarvae − δ15Nmicro)/∆15N) + TPbasal (1)

where δ15Nlarvae is the larval N isotopic signature and δ15Nmicro is the isotopic value for
micro-zooplankton at the same station. We applied a basal trophic position (TPBASAL) of
2, assuming micro-zooplankton are primary consumers [68]. For the nitrogen isotopic
discrimination factor (∆15N), we used the muscle tissue value for juveniles ABFT (1.46‰)
proposed by [69] and previously applied to ABFT larvae by [64].

2.6. Maternal and Larval Isotopic Niche Widths and Overlaps

Maternal isotopic niches widths were estimated from δ15Nmaternal and δ13Cmaternal
values, calculated from the isotopic values of pre-flexion larvae. Larval isotopic niche
widths were calculated from δ15N and δ13C values of post-flexion specimens’ stages to
avoid the maternal influence. The isotopic niche widths were estimated by standard
Bayesian ellipse areas and associated credible intervals were adjusted for small sample size
(SEAc) [59,67]. Isotopic niche widths and overlap analyses were conducted using the R
package SIBER (Stable Isotope Bayesian Ellipses in R) v.3.3.0 ([59], R Development Core
Team 2012). Standard ellipses were calculated from the variance and covariance of 40% of
the bivariate data.

2.7. Statistical Analyses

Environmental variables were compared with the non-parametric Mann–Whitney
U test as the variables did not meet parametric assumptions. Significance tests for the
differences’ growth, isotopic signatures, C:N values and otolith metrics between GOM17
and GOM18 larval groups were performed by ANCOVA using AGE as the covariable.
The variables were Log transformed prior to statistical analyses when it was necessary to
obtain linearity and variance homogeneity [70]. When there was no linear relationship of a
variable with AGE, an ANOVA analysis was used to determine differences between groups.

We used linear equations (y = a + x*b) for LogSL and LogDW vs. AGE to define
the daily growth pattern of each larval cohort, and their residual values were obtained
with respect to the whole population. GOM17 and GOM18 cohorts were divided into
four groups according to their residual values of length (SL) and weight (DW) controlled
by AGE. Larger and heavier than expected larvae were in the OPT group, with positive
residuals for both fits, while smaller and lighter than expected larvae were in the DEF
group, with negative residuals for both fits. Two intermediate groups (shorter SL but
heavier and vice versa) were not considered in this study. Following the method of [71],
the residual analysis defined groups according to the optimal (OPT) and deficient (DEF)
growth patterns in length (SL) and weight (DW) of individual larvae. For intra-population
comparisons, these groups were compared through an ANCOVA analysis controlled by
AGE [65].

For isotopic niche widths, the color scale (dark, medium and light) represents con-
fidence intervals of 50%, 75% and 95%, respectively. Isotopic niche widths and overlap
analyses were conducted using the R package SIBER (Stable Isotope Bayesian Ellipses in R)
v.3.3.0 ([59], R Development Core Team 2012).

Statistical analyses were carried out using R version 4.2.1 (R Core Team 23-6-22 ucrt)
through the integrated development environment RStudio, with α = 0.05.

3. Results
3.1. Environmental and Abiotic Variables

Environmental variables showed significant differences between years with higher
temperatures and lower salinities for GOM18. The isotopic signatures of micro and meso-
zooplankton fractions were higher in δ15N and lower in δ13C for GOM18 (Table 2).
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Table 2. Mean values (Mean ± SD) of temperature (TEMP, ◦C), salinity (SAL, ppt), and δ15N and
δ13C of micro-zooplankton and meso-zooplankton. U Mann–Whitney Test. ** p < 0.01.

GOM17 GOM18 MW—U test

Mean ± SD Mean ± SD Z-adjusted p

TEMP (C◦) 24.69 ± 0.67 25.53 ± 0.47 −2.72 **

SAL (ppt) 36.38 ± 0.06 36.02 ± 0.32 3.30 **

δ15Nmicro 0.56 ± 0.42 3.61 ± 0.39 −3.00 **
δ13Cmicro −18.1 ± 0.47 −19.3 ± 0.27 3.00 **

δ15Nmeso 1.75 ± 0.51 4.69 ± 0.42 −2.74 **
δ13Cmeso −17.7 ± 0.52 −19.6 ± 0.25 2.74 **

3.2. Larval Growth

Larval growth showed a normal distribution with a common size range (4–9 mm) for
both groups (Figure A1). For the TOTAL group, somatic and otolith biometrics differed
between years, with higher values of SL, DW, RADIUS and MIW in GOM18 (Figure A2
and Table 3).

Table 3. Larval somatic data (SL, DW) and biometric otoliths (RADIUS, MIW) for GOM17 and
GOM18 grouped by stage (PRE, POST, TOTAL). ANCOVA results (F, p) using AGE as covariate.
NS = Non-significant; * p < 0.05; ** p < 0.01.

GOM17 GOM18 ANCOVA

n Min Max Mean ± SD n Min Max Mean ± SD F1,154 p

TOTAL

SL (mm)

83

4.28 9.01 6.04 ± 1.10

74

4.1 9.87 6.23 ± 1.43 5.42 *
DW (mg) 0.1 2.89 0.49 ± 0.45 0.07 2.51 0.70 ± 0.61 26.78 **

RADIUS (µm) 16.7 95.4 30.5 ± 13.50 13.8 89.3 33.00 ± 18.40 3.24 NS
MIW (µm) 1.28 4.15 2.03 ± 0.60 1.06 4.64 2.16 ± 0.83 6.01 *

n Min Max Mean ± SD n Min Max Mean ± SD F1,82 p

PRE

SL (mm)

49

4.28 7.06 5.34 ± 0.68

36

4.1 6.36 5.06 ± 0.57 0.04 NS
DW (mg) 0.1 0.52 0.27 ± 0.12 0.07 0.64 0.30 ± 0.14 6.33 *

RADIUS (µm) 16.7 33.4 23.26 ± 4.08 13.8 28 20.10 ± 3.61 5.66 *
MIW (µm) 1.28 2.22 1.70 ± 0.25 1.06 2.06 1.53 ± 0.27 3.87 NS

n Min Max Mean ± SD n Min Max Mean ± SD F1,69 p

POST

SL (mm)

34

6.08 9.01 7.04 ± 0.75

38

5.83 9.87 7.39 ± 1.01 11.02 **
DW (mg) 0.21 2.89 0.81 ± 0.56 0.37 2.51 1.08 ± 0.63 20.9 **

RADIUS (µm) 27.4 95.4 40.93 ± 15.36 23.5 89.3 44.85 ± 18.38 7.91 **
MIW (µm) 1.78 4.15 2.51 ± 0.63 1.76 4.64 2.77 ± 0.73 6.52 **

For pre-flexion larvae, the SL did not differ between the years, while GOM18 had
higher DW and GOM17 had larger RADIUS and MIW (Figure A3 and Table 3). In contrast,
somatic and otolith variables were both consistently higher in GOM18 for post-flexion
(Figure A4 and Table 3). At the intra-population level, every growth pattern differed for
both development stages, showing higher mean values for OPT larvae (Figures A3 and A4
and Table 4).

3.3. Larval Trophic Variables

The inter-population δ15N and δ13C values were higher for GOM18 for both pre- and
post-flexion stages and TOTAL larvae (Figure 2 and Table A1). Despite GOM18 larvae
having higher δ15N (6.60 ± 0.78 vs. 4.47 ± 0.60), TP values were higher for GOM17
(4.12 ± 0.25 vs. 3.47 ± 0.22) (Figure 2 and Table A1). At the intra-population level for both
GOM17 and GOM18, DEF larvae had higher levels of δ15N and C:N, while δ13C levels were
higher for OPT (Figure 2 and Table A2). We found no intra-population TP differences for
either year (Figure 2 and Table A2).
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Table 4. Larval somatic data (SL, DW) and biometric otoliths (RADIUS, MIW) of intra-population
(OPT, DEF) grouping by stage (PRE, POST, TOTAL) and years (GOM17, GOM18). ANCOVA analysis
result (F, p) using AGE as covariate.** p < 0.01.

OPT(+) DEF(-) ANCOVA ANOVA

TOTAL

GOM17

n Min Max Mean ± SD n Min Max Mean ± SD F1,52 p
SL (mm)

27

5.4 8.71 6.78 ± 0.78

28

4.3 9.01 5.52 ± 1.05 115.3 **
DW (mg) 0.3 2.13 0.69 ± 0.38 0.1 2.89 0.36 ± 0.54 140.8 **

RADIUS (µm) 23 79.3 36.30 ± 12.20 17.3 95.4 26.90 ± 15.20 63.98 **
MIW (µm) 1.8 4.14 2.41 ± 0.57 1.28 4.01 1.73 ± 0.54 34.14 **

GOM18

n Min Max Mean ± SD n Min Max Mean ± SD F1,59 p
SL (mm)

36

4.8 8.98 6.86 ± 1.03

26

4.1 9.87 5.77 ± 1.77 180.8 **
DW (mg) 0.29 2.42 0.85 ± 0.43 0.09 2.51 0.64 ± 0.83 132.4 **

RADIUS (µm) 15 77.5 36.90 ± 13.50 15.8 89.3 32.00 ± 25.20 79.73 **
MIW (µm) 1.3 4.64 2.51 ± 0.69 1.06 4.22 1.89 ± 0.96 40.56 **

PRE

n Min Max Mean ± SD n Min Max Mean ± SD F1,27 p

GOM17

SL (mm)

15

4.3 7.06 5.79 ± 0.78

15

4.3 5.6 5.05 ± 0.36 55.85 **
DW (mg) 0.2 0.52 0.37 ± 0.11 0.1 0.25 0.18 ± 0.05 77.96 **

RADIUS (µm) 17 33.4 25.70 ± 4.25 17.9 26.8 21.78 ± 2.59 29.5 **
MIW (µm) 1.52 2.22 1.91 ± 0.18 1.28 1.83 1.53 ± 0.17 37.62 **

n Min Max Mean ± SD n Min Max Mean ± SD F1,23 p F1,23 p

GOM18

SL (mm)

11

4.8 6.2 5.59 ± 0.42

14

4.1 5.04 4.66 ± 0.27 152.18 **
DW (mg) 0.3 0.64 0.44 ± 0.12 0.09 0.38 0.20 ± 0.08 34.08 **

RADIUS (µm) 15 26.4 22.74 ± 3.32 15.8 22.4 18.29 ± 2.29 54.73 **
MIW (µm) 1.26 2.06 1.79 ± 0.22 1.06 1.64 1.32 ± 0.17 51.11 **

POST

GOM17

n Min Max Mean ± SD n Min Max Mean ± SD F1,26 p
SL (mm)

14

6.6 8.71 7.42 ± 0.68

11

6.08 9.01 6.78 ± 0.87 45.46 **
DW (mg) 0.5 2.13 0.97 ± 0.50 0.21 2.89 0.70 ± 0.77 45.38 **

RADIUS (µm) 30 79.3 45.90 ± 15.50 27.4 95.4 39.10 ± 19.50 41.71 **
MIW (µm) 2 4.14 2.84 ± 0.70 1.78 4.01 2.24 ± 0.63 26.98 **

GOM18

n Min Max Mean ± SD n Min Max Mean ± SD F1,26 p
SL (mm)

15

6.4 9.19 7.77 ± 0.79

14

5.83 9.25 6.87 ± 1.12 105.9 **
DW (mg) 0.5 2.51 1.22 ± 0.59 0.37 2.5 0.86 ± 0.71 56.48 **

RADIUS (µm) 28 85.5 49.10 ± 15.90 23.4 89.3 39.80 ± 22.20 57.97 **
MIW (µm) 2.2 4.64 3.16 ± 0.65 1.76 4.07 2.35 ± 0.73 39.15 **
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For GOM17 pre-flexion larvae, the DEF group had higher values of δ15N, δ13C and
C:N than OPT. Values of δ15N were also higher for the DEF group in GOM18, but δ13C and
C:N were not significantly different (Figure 2 and Table A2).

For GOM17 post-flexion larvae, C:N was higher for DEF, but no significant differences
were found for δ15N, δ13C or TP. For GOM18 post-flexion larvae, δ13C and C:N were higher
for the DEF group while δ15N and TP did not differ between DEF and OPT (Figure 2 and
Table A2).

3.4. Trophic Niches
3.4.1. Maternal Trophic Niches

For inter-population comparisons, maternal isotopic signatures showed ellipse area
overlaps of 60% (0.49) (Figure 3A) and no significant differences in δ15N and δ13C values
between the years (Table 5). The estimated niche area for GOM17 was slightly larger (0.67)
than GOM18 (0.65) (Figure 3B).
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Table 5. Inter-population results of Mann–Whitney U test (mean ± SE, number of larvae, Z ad-
justed and p) between years (GOM17 and GOM18) for maternal isotopic signatures (δ15Nmaternal,
δ13Cmaternal). NS = Non-significant.

GOM17 GOM18 MW—U Test

n Mean ± SD n Mean ± SD Z-adjusted p

δ15Nmaternal (estimated) 49 12.30 ± 0.61 36 12.10 ± 0.72 1.66 NS

δ13Cmaternal (estimated) 49 −17.90 ± 0.38 36 −17.90 ± 0.28 0.07 NS

Comparing optimal growth (OPT) and deficient (DEF) groups, estimated maternal
values of δ15N were significantly different between the years, with higher values in the
DEF groups. However, estimated maternal δ13C values were not significantly different
between OPT and DEF for both years (Table 6).

For GOM2017, maternal niches of the contrasting growth groups overlapped 14%
(0.15) (Figure 4A), and were larger for DEF (0.89) than OPT (0.31) (Figure 4B). For GOM18,
OPT and DEF larvae showed maternal niches of similar size (0.38 OPT vs. 0.36 DEF)
(Figure 4A) with no overlap between them (Figure 4B).
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Table 6. Intra-population (OPT vs. DEF) results of Mann–Whitney U test (mean ± SE, number of
larvae, Z adjusted and p) between surveys (GOM17 and GOM18) for maternal isotopic signatures
(δ15Nmaternal, δ13Cmaternal) estimated by equations based on samples of each survey sample. NS =
Non-significant. ** p < 0.01.

GOM17 GOM18

OPT + DEF – MW—U Test OPT + DEF – MW—U Test
Mean ± SD n Mean ± SD n Z-adjusted p Mean ± SD n Mean ± SD n Z-adjusted p

δ15Nmaternal 11.90 ± 0.44 15 12.50 ± 0.61 15 2.76 ** 11.50 ± 0.33 11 12.60 ± 0.67 14 3.5 **
(estimated)

δ13Cmaternal −17.80 ± 0.22 15 −18.10 ± 0.46 15 −1.68 NS −17.80 ± 0.35 11 −17.90 ± 0.17 14 −0.6 NS
(estimated)
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3.4.2. Larval Trophic Niches

Comparing inter-population trophic niches, we observed significant differences in
both δ15N and δ13C between years (Table A1), without overlap of niche ellipses (Figure 5A).
GOM18 larvae had larger trophic niches (0.58) than GOM17 larvae (0.23) (Figure 5B).
At the intra-population level, OPT and DEF of both years did not differ in δ15N values
(Table A2). In contrast, δ13C values differed between OPT and DEF for GOM18 (Figure 6A
and Table A2). The trophic niches of OPT and DEF larvae for GOM17 overlap 36% (0.13)
(Figure 6A), with similar niche sizes for both groups (0.25 OPT vs. 0.23 DEF) (Figure 6B).
OPT and DEF larvae for GOM18 have a niche overlap of 19% (0.13) (Figure 6A), with larger
areas for DEF (0.53) than OPT (0.28) (Figure 6B).
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Figure 6. (A) δ15N vs. δ13C larval values OPT (green) and DEF (grey) larvae of GOM17 and GOM18
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4. Discussion

Larval fish growth during early development is closely linked to their survival [72].
With increasing size, larvae become more adept at escaping predators and at catching
larger, more nutritious prey and ward off starvation [73,74]. Thus, the faster the larvae
grow, shortening the duration of this critical period of their lives, the lower the cumulative
mortality during the larval stage [75,76].

Larval growth is characterized by great plasticity, which is reflected in its variability
depending on environmental characteristics [77], with temperature and food availability
being the most decisive factors for larval growth [31–34,78]. Temperature is an important
factor for larval survival of the genus Thunnus sp. [38,79] and especially influential for early
developmental of ABFT [80,81]. GOM18 larvae experienced warmer temperature (Table 2)
and showed higher somatic growth (SL and DW) and larger otolith biometrics (RAD and
MIW) (Table 3). However, the temperature differences between GOM17 and GOM18 were
relatively small, only 0.84 ◦C on average, so it is unlikely to be the main reason for the
differences in observed the growth patterns [56,82]. In previous studies of the same species,
no growth pattern differences were detected between years with temperature differences
exceeding 1 ◦C [33].

It is more likely that the inter-annual differences in growth rates would be better
explained by differences in trophic dynamics [82,83] or genetic factors associated with
maternal inheritance [65].

Concentrations of meso-zooplankton (0.2–1 mm) were higher for GOM18 [66] than
GOM17, which could suggest a cause–effect relationship between potential food availability
and growth variability. Field studies indicated that environmental factors account for less
than 40% of the variability observed in larval growth [84,85], which suggests the importance
of other factors such as genetic heritance. Maternal stable isotope transmission has been
traced in perciforms to offspring [55]; however, few studies have applied stable isotopes
to investigate the effects of maternal nutrition on offspring quality [86]. Uriarte et al. [53]
showed in a rearing experiment that eggs and pre-flexion larvae of eastern ABFT larvae
reflected the adult female isotopic signatures. For ABFT, maternal influence analyzed from
the changes in N isotopic values during the pre-flexion stages has a decisive importance for
larval growth [65]. This maternal effect gradually disappears with development until the
values of the N and C isotope reach a steady state with exogenous feeding in post-flexion
larvae. Therefore, to analyze the factors that determine the ABFT larval growth, it is useful
to consider the pre- (greater maternal influence) and post-flexion (greater trophic influence)
stages separately [14,53,54].

4.1. Maternal Influence (Pre-Flexion Larvae)

The maternal effect influences size at hatch and subsequent growth [87], thereby in-
creasing larval viability and decreasing mortality [36,55,88]. The decreasing values of δ15N
with pre-flexion age, together with an increasing δ13C profile for both GOM17 and GOM18
cohorts, agree with observations for the same species both in culture experiments [53]
and in field studies [14,54,65]. The estimated maternal isotopic signatures (δ15Nmaternal,
δ13Cmaternal) based on the equations of isotopic values with age in our field-collected
samples (Table 1) showed no differences between years (Table 5), and the values were com-
parable to the isotopic signatures previously reported for adult muscle tissue [81,89–93].

Maternal trophic niches express the isotopic characteristics of the trophic niches ex-
ploited by the breeders, and their sizes can vary depending on food availability [94].
According to our results, the maternal isotopic niche areas were similar between years
(Figure 3B) with a high degree of overlap (Figure 3A), which we interpret as the females
feeding on prey with similar mean isotopic characteristics. Our results do not mean that
the spawning adults in both years came from exactly the same geographic locations, but
they do support the “common feeding grounds” hypothesis [16] by which adults aggregate
in large groups to feed broadly in the western Atlantic Ocean [8,95,96].
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Therefore, at the population level, it does not seem that growth differences for pre-
flexion stages (Figure A3 and Table 3) were related to differences in maternal isotopic
niches or to breeder trophic behavior. However, a direct relationship between maternal
inheritance and larval growth can be evaluated by considering the contrasting growth
groups in residual analysis [65,71].

According to our intra-population comparison, OPT growing larvae showed lower
estimated maternal δ15N values in both years (Table 4), implying a direct relationship
between growth potential and maternal inheritance. This variability in maternally inherited
δ15N values may be based on various factors such as differences in age, condition, or natural
variability in quality of spawning episodes [65].

In the GOM, ABFT is an opportunistic and generalist predator [91] that feeds on a wide
range of available prey, and its diet is affected by food availability. The smaller maternal
isotopic niches estimated for GOM2017 OPT larvae (Figure 4A,B), could be associated
with a more selective maternal diet on a low number of species [97]. On the other hand,
the wider maternal isotopic niches for DEF suggest a more diverse diet and generalist
trophic behavior. As trophic niche size is related to ecosystem productivity [98], consumers
must adapt a foraging strategy in order to satisfy their metabolic demands. Following this
reasoning, larvae with greater growth potential would seem to be associated with more
stenophagous maternal trophic behavior in which females cover their energy requirements
with more selective feeding behavior in areas of greater production and likely higher prey
quality. In contrast, those with lower growth potential would be associated with maternal
euryphagous behaviors in which females search for food over larger less-productive areas.

Since 2018 OPT and DEF larvae had similar maternal niches widths, growth differences
between these groups cannot be associated with differences in the breeder trophic behavior
as for GOM17 (Figure 4A,B). Moreover, the absence of overlap of maternal niches between
these groups (Figure 4A,B) could be due to many factors that determine N isotopic signature
such as age, nutritional status and quality variance among/within spawning batches, as
previously mentioned. Further investigations are needed to elucidate the implications of
these various factors for larval growth variability.

4.2. Trophic Behavior (Post-Flexion Larvae)

δ15N levels are enriched with each trophic transfer, providing information about
the TPs of consumers [50,99]. In previous studies, better larval growth was found to be
associated with higher TPs [56,64,100], which was interpreted as reflecting greater trophic
specialization. According to our results, however, larvae with better growth from GOM18
had lower TPs than GOM17 (Table A1). Similar observations have been reported for larval
Shortbelly Rockfish where larvae with a lower TP were heavier and grew faster [101].
The TP reflects how the energy is transferred from the base of the food web up to the
larva [99,102], and its estimation can be influenced by food chain efficiency [103,104], which
causes a wide range of TP estimates in the GOM [64].

In the oligotrophic microbially dominated ecosystems in which ABFT larvae de-
velop [16], the main trophic pathway is highly inefficient, with most production lost to
bacterial remineralization and multi-step protistan food chains [105]. Knapp et al. [106]
found that N2 fixation accounted for a relatively small component of new N-based produc-
tivity during GOM17 and GOM18, and Kelly et al. [107] observed that chronic N deficits in
the offshore oligotrophic waters where ABFT larvae live are met by lateral advection of
organic matter from the more productive shelf regions. The average contribution of nitro-
gen fixation was double in GOM17 compared to GOM18, while the advected particulate
organic nitrogen (PON) was five times higher in GOM18 [104]. Thus, greater oligotrophy
in 2017 could explain the unusually depleted values of δ15N observed from micro- and
meso-zooplankton (Table 2) to ABFT larvae (Table A1).

Our results are consistent with those summarized by Gerard et al. [63] for the BLOOFINZ-
GOM cruises, suggesting ABFT larvae are more likely to thrive by feeding at a lower trophic
position regardless of the source of production (GOM18). These findings appear consistent
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with the newly proposed Trophic Efficiency in the Early Life hypothesis in which larval
survival is linked to feeding on prey that are low in the food chain, thereby maximizing
energy transfer [103] (Figure A2 and Table 3).

ABFT larvae are daylight visual feeders that feed selectively on preferred prey such as
copepods, copepod nauplii, appendicularians and cladocerans [43–45,66,108,109]. Stukel
et al. [104] indicated that an ABFT diet of calanoid copepods and podonid cladocerans
(which were more abundant in the water column during GOM18), was consistent with
maintaining relatively low trophic positions. Likewise, Shiroza et al. [45] demonstrated
that highly selective predation on cladocera was an active process, which would support
the idea that ABFT larvae are highly specialized for maximizing trophic efficiency in the
oligotrophic environments where they develop.

In our inter-annual comparison, ABFT larvae occupy completely separate isotopic
niche areas (Figure 5A), which would imply that they exploit prey with very different
isotopic characteristics depending on the year. Zooplankton biomass was higher with
greater diversity and concentrations of preferred ABFT larval prey for GOM18 compared
to GOM17 [45,110]. The greater growth observed in 2018 would be associated with larger
larval trophic niches that reflect greater availability of preferred prey, facilitating higher
growth rates [66]. Conversely, the lower prey concentration and richness (including pre-
ferred types) in 2017 could result in narrower isotopic niches (Figure 5B) being, from a
trophic point of view, a limiting situation for development, reflected in lower growth rates.
In this case, inter-population growth differences in post-flexion stages would be associated
with the aforementioned differences in food availability and diversity rather than with
trophic behavioral shifts.

The intra-population analysis of isotopic niches offers different results for each group.
In 2018, larvae with optimal growth are associated with narrower trophic niches, which
can be interpreted as more selective trophic behavior in a higher production ecosystem
(Figure 6A,B). At this point, it is important to highlight that the trophic niche differences
between OPT and DEF are determined mainly by the range of variation in δ13C values,
which reflect the prey carbon sources for larval growth. In this sense, a trophic niche size of
OPT may rely more on food chains fueled by production from laterally transported water
masses, which one might expect to have a higher δ13C signature [104,111].

On the other hand, the similarities of isotopic niches with respect to their widths and
their high degree of overlap for GOM17 do not explain the observed larval growth differ-
ences between OPT and DEF groups for this year based on trophic criteria (Figure 6A,B).
This is one area that could be better explained by maternal inheritance. This inter-generational
transfer tracked through the δ15N values would arise from the trophic characteristics of
breeders [65] that influence larval growth into the flexion stage. Moreover, it cannot be ruled
out that the suboptimal larval feeding conditions and more homogeneous oligotrophic
environment due to less lateral transport [104,110] prevent us from statistically separating
OPT and DEF based on their isotopic niches. Additional research is required to clarify the
effects of other factors on larval growth variability, such as population genetic variability,
density dependent effects and early life thermal history.

C:N ratio has been used to evaluate nutritional status [112], being a particularly good
proxy for the amount of lipid reserve [67]. For the intra-population comparison, C:N values
were consistently higher in larvae with lower growth potential in both years and regardless
of developmental stage (Figure 2 and Table A2). We interpret these results as lower
consumption of lipid reserves for growth by DEF larvae, in contrast to the OPT growth
group whose lipid levels are reduced as a consequence of a greater energy investment in
somatic growth.

This study focused on answering open ABFT larval ecology questions crucial to un-
derstanding larval survival. There is an important lack of knowledge about the trophic
implications for survival in the oligotrophic environments in which these larvae develop.
We used larval growth and trophic analyses to describe growth variability with direct im-
plications for larval survival and recruitment. Improved understanding of the connections
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among environmental variability, larval ecology and recruitment processes can inform
future management strategies, including development of bluefin larval indices [113] that
aid in meeting ICCAT sustainability goals within an integrated ecosystem-based approach.

5. Conclusions

Our results confirm a direct relationship between growth potential and δ15N signatures
of ABFT pre-flexion larvae due to breeder feeding behavior that is transmitted by maternal
inheritance. Maternal isotopic signatures and estimates of isotopic niche space of pre-flexion
larvae are consistent with previous SIA studies of adult females.

Larval trophic ecology is reflected in isotopic niches widths and overlaps, which
follow the availability and diversity of prey and their effects on larval growth potential.
TP estimates are determined by food web length/efficiency and range substantially with
temporal and spatial variability in trophic conditions. Regardless of developmental status,
larvae with higher growth potential have significantly lower C:N, consistent with greater
energy investment in growth.
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Figure A2. Comparison of somatic growth pattern (LOGSL, LOGDW) and biometric of otoliths
(LOGRADIO, MIW) between years (GOM17 (red), GOM18 (blue)) versus AGE. The equations
coefficients and R2 are included.
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Figure A3. Comparison of somatic (LOGSL, LOGDW) and otoliths biometrics (LOGRADIO, MIW)
versus AGE of pre-flexion larvae according to inter-population (GOM17 in red, GOM18 in blue) and
intra-population (OPT in green, DEF in black). The equations coefficients and R2 are included.
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Figure A4. Comparison of somatic (LOGSL, LOGDW) and otoliths biometric (LOGRADIO, MIW)
versus AGE, of post-flexion larvae according to inter-population analysis between years (GOM17 in
red, GOM18 in blue) and intra-population (OPT in green, DEF in black). The equations coefficients
and R2 are included.
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Table A1. δ15N, δ13C, C:N and TP in inter-population level grouping by stage (PRE, POST, TOTAL)
between years (GOM17, GOM18). ANCOVA analysis result (F, p) using AGE as covariate and ANOVA
results. NS = Non-significant; ** p < 0.01.

GOM17 GOM18 ANCOVA ANOVA

n Min Max Mean ± SD n Min Max Mean ± SD F1,154 p F1,154 p

TOTAL
δ15N

83
3.27 6.16 4.47 ± 0.59

74
5.46 9.04 6.60 ± 0.78 454.78 **

δ13C −20.3 −18.1 −19.1 ± 0.34 −20.5 −18.2 −18.8 ± 0.42 37.02 **
CN 3.62 4.96 4.20 ± 0.27 3.86 7.97 4.40 ± 0.54 9.19 **

n Min Max Mean ± SD n Min Max Mean ± SD F1,82 p

PRE
δ15N

49
3.51 6.16 4.68 ± 0.61

36
5.72 9.04 7.06 ± 0.85 197.89 **

δ13C −20.3 −18.1 −19.1 ± 0.40 −19.4 −18.4 −18.8 ± 0.23 21.6 **
CN 3.93 4.96 4.33 ± 0.26 3.95 5.01 4.42 ± 0.27 0.602 NS

n Min Max Mean ± SD n Min Max Mean ± SD F1,69 p F1,69 p

POST

δ15N

34

3.27 5.21 4.17 ± 0.42

38

5.46 7.00 6.16 ± 0.35 474.88 **
δ13C −20 −19 −19.10 ± 0.23 −20.5 −18.20 −18.80 ± 0.54 13.137 **
CN 3.62 4.3 4.01 ± 0.14 3.86 7.97 4.37 ± 0.71 8.786 **

TP(1.46) 3.77 5.10 4.38 ± 0.29 3.17 4.23 3.65 ± 0.24 136.49 **

Table A2. δ15N, δ13C, C:N and TP in intra-population level (OPT, DEF) grouping by stage (PRE,
POST, TOTAL) and years (GOM17,GOM18). ANCOVA analysis result (F, p) using AGE as covariate
and ANOVA results. NS = Non-significant; * p < 0.05; ** p < 0.01.

OPT(+) DEF(−) ANCOVA ANOVA

GOM17

n Min Max Mean ± SD n Min Max Mean ± SD F1,52 p F1,52 p

TOTAL

δ15N
27

3.43 4.67 4.15 ± 0.33
28

3.79 5.86 4.75 ± 0.56 19.83 **
δ13C −19.4 −18.7 −19.1 ± 0.20 −20.3 −18.1 −19.2 ± 0.46 2.626 NS
CN 3.76 4.30 4.05 ± 0.13 3.62 4.96 4.33 ± 0.31 18.31 **

GOM18

n Min Max Mean ± SD n Min Max Mean ± SD F1,59 p F1,59 p
δ15N

36
5.46 7.69 6.26 ± 0.46

26
5.69 9.04 6.95 ± 0.93 19.68 **

δ13C −19.9 −18.2 −18.7 ± 0.40 −19.9 −18.3 −18.8 ± 0.31 0.23 NS
CN 3.86 5.01 4.26 ± 0.28 3.92 5.79 4.44 ± 0.39 5.324 *

GOM17

n Min Max Mean ± SD n Min Max Mean ± SD F1,27 p F1,27 p

PRE

δ15N
15

3.82 5.55 4.33 ± 0.44
15

3.96 5.86 4.94 ± 0.59 10.09 **
δ13C −19.4 −18.8 −19.1 ± 0.18 −20.3 −18.8 −19.4 ± 0.47 3.985 NS
CN 4.04 4.66 4.20 ± 0.17 4.06 4.82 4.43 ± 0.25 8.317 **

GOM18

n Min Max Mean ± SD n Min Max Mean ± SD F1,23 p F1,23 p
δ15N

11
5.72 7.69 6.50 ± 0.56

14
6.06 9.04 7.53 ± 0.84 24.81 **

δ13C −19.4 −18.4 −18.7 ± 0.29 −19.0 −18.4 −18.7 ± 0.18 0.148 NS
CN 3.95 5.01 4.36 ± 0.21 4.07 4.97 4.51 ± 0.29 1.71 NS

GOM17

n Min Max Mean ± SD n Min Max Mean ± SD F1,26 p F1,26 p

POST

δ15N

14

3.27 4.67 4.04 ± 0.44

11

3.79 4.95 4.33 ± 0.34 3.32 NS
δ13C −19.3 −18.7 −19.1 ± 0.22 −19.7 −18.9 −19.2 ± 0.21 2.37 NS
CN 3.74 4.30 3.98 ± 0.15 3.62 4.20 4.03 ± 0.16 4.74 *

TP(1.46) 3.77 4.72 4.29 ± 0.30 4.13 4.92 4.49 ± 0.23 3.32 NS

GOM18

n Min Max Mean ± SD n Min Max Mean ± SD F1,26 p F1,26 p
δ15N

15

5.46 6.63 6.10 ± 0.39

14

5.69 6.52 6.07 ± 0.26 0.078 NS
δ13C −19.7 −18.2 −18.6 ± 0.41 −20.5 −18.4 −19.1 ± 0.61 9.72 **
CN 3.86 4.94 4.14 ± 0.26 3.92 7.97 4.73 ± 1.06 4.76 *

TP(1.46) 3.17 3.97 3.61 ± 0.27 3.33 3.90 3.59 ± 0.18 0.078 NS
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