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Simple Summary: The expansion of human activities into natural areas increases contact between
humans, domestic animals, and wildlife, which can facilitate the circulation of infectious agents
between these species, leading to the emergence of zoonoses. Several studies have investigated the
role of animals, including reptiles, as possible carriers of the Leptospira bacterium. This study aimed
to detect the DNA of the bacterium in Kinosternon scorpioides turtles kept in captivity in a region
of the Brazilian Amazon. Blood, cloacal fluid, cloacal lavage, and stomach lavage samples were
collected from 40 turtles. Of these, 40% of the animals tested positive for Leptospira. Genetic analysis
confirmed the identification of the bacteria, which could pose a risk to public health. Handling
infected animals could increase the risk of transmitting the disease, especially considering that turtle
meat is consumed in the region. This study is the first to detect Leptospira in the blood of chelonians,
confirming exposure to the pathogen. Although the turtles showed no abnormal clinical signs, it is
possible that the clinical signs are unknown in reptiles. In conclusion, captive K. scorpioides turtles
have been exposed to Leptospira.

Abstract: Leptospirosis is a zoonosis of great importance for One Health. In this context, the
Amazonian biome may harbor numerous hosts for Leptospira spp. that contribute to the maintenance
of the pathogen in the environment. Some reptiles, such as chelonians, have been little studied in
terms of their involvement with leptospires. The objective of this study was to detect Leptospira spp.
DNA in Kinosternon scorpioides turtles kept in captivity in a region of the Brazilian Amazon. A total of
147 samples of blood (n = 40), cloacal fluid (n = 27), cloacal lavage (n = 40), and stomach (n = 40) were
collected from 40 chelonians. After DNA extraction, the samples were subjected to amplification of a
331 base pair product of the 16S rRNA gene using the Lep1 and Lep2 primers. PCR products were
Sanger sequenced, assembled, and subjected to online blast search and phylogenetic analysis. Of
the animals tested, 40% (16/40, 95% confidence interval [CI]: 25–55) had at least one or two samples
positive for Leptospira spp. Considering the total number of samples collected, 12.93% (19/147) were
positive, being blood clots (27.5%; 11/40), followed by cloacal washings (10%; 4/40), cloacal fluid
(11.11%; 3/27) and gastric washings (2.5%; 1/40). Of these, 11 samples were sequenced and showed
99% to 100% identity with Leptospira interrogans sequences, which was confirmed by phylogenetic
analysis. This is the first study to detect pathogenic Leptospira DNA in chelonians in a region of the
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Brazilian Amazon. It has been concluded that K. scorpioides turtles in captivity have been exposed to
pathogenic Leptospira.

Keywords: environment; leptospirosis; one health; reptiles; reservoirs

1. Introduction

Leptospirosis is an important anthropozoonosis for public health because its epidemi-
ological chain involves bacteria, hosts, and the environment [1–3]. Despite being a zoonosis
with a global impact, its severity is underestimated in Brazil due to the incorrect completion
of disease reporting forms, underreporting, misdiagnosis, and stigmatization of the disease
associated with poverty and lack of basic sanitation [4,5].

In humans, it’s a systemic disease that can occur acutely and is characterized by an
icterohemorrhagic syndrome. However, it presents variable clinical signs such as fever,
vomiting, and diarrhea, affecting organs such as the lungs, intestines, liver, and kidneys [6].
In production animals, the infection causes reproductive problems, resulting in significant
animal and economic losses [7]. Furthermore, in hosts such as dogs, the same pathogenic
strain can exhibit varying degrees of severity, ranging from asymptomatic infections to
fatal cases [8].

This zoonosis is caused by pathogenic species of Leptospira spp. of the order Spirochaetales,
family Leptospiraceae. The genus consists of Gram-negative bacteria with a spiral or helical
morphology and periplasmic flagella that provide them with great mobility. These spiro-
chetes are 0.1 to 0.2 µm in diameter and 6 to 12 µm long, and their membrane is full of
lipopolysaccharides (LPS) that are unique to each serovar [6].

Previously, only Leptospira interrogans and Leptospira biflexa represented these bacteria,
which were classified as both pathogenic and saprophytic. However, recent phylogenetic
analyses of their 16S and 23S rRNA genes resulted in their reclassification into pathogenic,
intermediate, and saprophytic species [9]. In 2019, another classification was suggested,
dividing the genus into pathogenic (P1 and P2) and saprophytic (S1 and S2) species [10].

The pathogenic species exhibit distinct characteristics. For instance, in vitro exper-
iments demonstrated that these leptospires could maintain their virulence and survive
even after being stored for 20 months in cold, acidic, and nutrient-poor water [11]. Further-
more, these bacteria are autotrophic in B12 (cyanocobalamin), possess proteins capable of
modifying their virulence, and express specific genes, such as LipL32 and LigB [10,12,13].

In mammals, infection occurs through direct horizontal transmission via contact
with the urine, blood, or tissues of infected animals, or indirectly through contaminated
materials, food, or the environment with pathogenic species [14,15]. A clinical picture
results from two phases: infection/multiplication (blood circulation) and dissemination in
the urine [3]. These phases can significantly impact the diagnosis.

Molecular identification can improve the speed and sensitivity of both phases of
infection. In contrast, dark-field microscopy requires a minimum of 10 spirochetes/mL in
the urine for adequate visualization. However, the most reliable method is the microscopic
agglutination test (MAT). This test relies on the production of antibodies by the host, the
specificity of the circulating serovars, and the collection of antigens used to perform the
test [16,17].

These methods are widely used in human and companion animal clinical practice.
They are also being used to identify other Leptospira reservoirs around the world. These
discoveries have been made mainly in South America due to its high biodiversity, but also
in the USA, Italy, the Netherlands, Japan, and Madagascar. The newly identified hosts are
distributed across Carnivora, Didelphimorphia, Rodentia, Cetacea, Cingulata, Afrosoricida,
Chiroptera, Primates, Reptilia, and Amphibia [18].

The expansion of human activities into natural environments can result in increased
contact between humans, domestic animals, and wildlife, potentially leading to the trans-
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mission of zoonotic agents [5,19]. Therefore, researchers are investigating the role of
unknown hosts, including chelonians [20–30], as potential Leptospira reservoirs.

Reptiles, including chelonians, can host various etiological agents, increasing the main-
tenance and spread of zoonotic agents such as Leptospira [22]. Furthermore, breeding wild
animals as pets, cultural practices, such as the consumption of bushmeat obtained through
hunting, illegal breeding for trade, and, primarily, a lack of management knowledge are
risk factors associated with infection [31].

Serological investigations have been conducted on chelonians in the United States and
Italy, revealing varying seroprevalences of anti-Leptospira antibodies [22–25]. Similarly, an-
tibodies were detected in the Brazilian Amazon turtles of the Podocnemis unifilis, Podocnemis
expansa, and Rhinoclemmys punctularia species [26–28].

Direct diagnostic methods such as culture, dark field microscopy, and PCR are crucial
for confirming the epidemiological significance of chelonians in maintaining leptospires in
the environment [32]. A single published study conducted in Brazil reported the amplifica-
tion of leptospiral DNA extracted from chelonian samples [29]. Globally, investigations
of Leptospira in these animals at the molecular level [20–22,29,30], as well as the genetic
sequencing of positive samples, have been insufficient; as an example, only two studies
confirmed the results through sequencing [21,30].

In addition, there is a paucity of research on the identification of Leptospira spp. in
chelonians. Even in those studies where anti-Leptospira antibodies were detected along
with leptospiral DNA [21,22,29], the animals did not show clinical signs of leptospirosis or
abnormal clinical signs. The available evidence does not document how the bacterium acts
in the organisms of these animals [32].

The Amazonian biome contains a variety of animals that have not been tested for the
presence of Leptospira spp. One of these animals is the scorpion mud turtle (Kinosternon
scorpioides), also known as Muçuã or Jurará, a small semiaquatic freshwater turtle found
from Costa Rica to northern Argentina and Brazil. Due to their semiaquatic behavior, these
animals may play a critical role in the epidemiology of the pathogen [33–35].

Human intervention in the Brazilian Amazon underscores the necessity of identifying
poorly researched Leptospira hosts and analyzing their effects on the environment. Therefore,
the aim of this research was to detect Leptospira spp. DNA in K. scorpioides samples at an
Amazon biome conservation breeding site. The hypotheses that were tested were as
follows: (1) chelonians in captivity may be exposed to the bacterium Leptospira spp.; and
(2) in addition to harboring leptospires in fluids such as cloacal lavage, cloacal fluid, and
gastric lavage, chelonians would also harbor the bacterium in their blood.

2. Materials and Methods
2.1. Study Area and Animals

This study was carried out with K. scorpioides chelonians kept in captivity in a conser-
vation breeding facility at the main campus of the Federal Rural University of Amazonia
(UFRA) in Belém, State of Pará (1◦27′26.7′′ S 48◦26′19.7′′ W), in the area assigned to the Bio-
Fauna Project of the Socioenvironmental and Water Resources Institute (ISARH)/UFRA,
Belém, PA, Brazil, during four expeditions conducted in 2019. The animals are part of the
stock of the Bio-Fauna Project (Figure 1) and were captured by the Brazilian Institute of
Environment and Renewable Natural Resources (IBAMA), PA, Brazil.

Because they were captured, there is no information on the origin or age of the
chelonians used in this study. On the other hand, the duration of captivity of each specimen
was not considered, as the specimens lived together for at least one year. Animals were
handled daily for feeding, water changes, monitoring, and data collection. In addition,
the animals lived in an outdoor water-storage-tank-type enclosure with environmental
enrichment to mimic the natural environment.
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Figure 1. Map (QGIS 3.22.3) showing the location of the Brazilian Amazon biome in South America,
the study area within the Amazon biome, and the location of the chelonian captivity. The satellite
image shows the forest fragment within the Federal Rural University of Amazonia and the location
of the captive breeding facility surrounded by vegetation. The arrow indicates the location where the
animal samples were taken, and where the biofauna project is being carried out.

2.2. Sample Collection and Processing

All the chelonians present in the enclosures were sampled, and a total of 40 animals
and 147 biological samples were obtained (whole blood, n = 40; gastric lavage, n = 40;
cloacal lavage, n = 40; and cloacal fluid, n = 27). All the samples collected were stored in
isothermal boxes and transported to the Laboratory of Zoonoses and Public Health of the
Federal University of Pará (UFPA), Castanhal Campus, for processing.

Whole-blood samples were collected aseptically by puncture of the coccygeal vein
and cervical sinus using needles (25 × 0.7 mm) and 3 mL disposable syringes into amber
microtubes containing a separation gel (BD Microtainer®, Franklin Lakes, NJ, USA). After
centrifugation, the serum was removed, and the clots were used for DNA sequencing
(Figure 2a).

Cloacal contents were obtained by washing according to the methods of another study
conducted in Brazil [29], with modifications. Disposable 20 mL syringes, urethral probe no.
6, sterile 0.9% sodium chloride (NaCl) solution, and 15 mL polypropylene conical bottom
tubes were used (Figure 2b).

The stomach contents were also determined by washing with NaCl (Figure 2c) [29].
However, the distance between the oral cavity and the gastric opening was measured by the
external part of the plastron, which marked the probe for each animal. This procedure was
designed to avoid injury during harvesting, both because the diameter of the probe could
damage the animal’s esophagus and because its size could damage the gastric mucosa.
Hemostatic forceps were used to keep the oral cavity open. A premarked probe of the
appropriate size was then inserted into each animal, a syringe was attached to the other end
of the probe, and 20 mL of sterile 0.9% sodium chloride (NaCl) solution was administered.

Chemical restraint was not necessary for this stomach washing procedure because it is
not considered invasive [36]; the animals tend to be cooperative due to their anatomy and
the whole procedure was carried out quickly considering the animals’ physical well-being,
with the procedure lasting a maximum of 3 min for each animal.
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lavages (c), and urine (d) samples from K. scorpioides in the Biofauna Project, municipality of Belém,
Pará State, Brazil.

Cloacal fluid was collected by massaging the hind legs near the right and left femoral
shields of the plastron to induce urination directly into sterile 15 mL conical bottom tubes
(Figure 2d). These samples were immediately neutralized with phosphate-buffered saline
(PBS) (pH 7.2) at a ratio of 2.5:1 (cloacal fluid–PBS) [37]. After centrifugation at 5200 rpm
for 15 min, the supernatant was discarded, and the cell pellet was transferred to a 1.5 mL
microtube containing 1 mL of PBS (pH 7.2). A second centrifugation was performed at
10,000 rpm for 2 min, the supernatant was discarded, and the cell pellet was resuspended
in 200 µL of PBS (pH 7.2).

All the samples collected were stored at −20 ◦C until DNA was extracted for subse-
quent molecular analysis.
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2.3. DNA Extraction

For DNA extraction, cloacal fluid, gastric wash, cloacal wash, and blood clot samples
were extracted using the IllustraTM Tissue and Cell Prep Mini Spin Kit (GE Healthcare,
Buckinghamshire, UK) according to the manufacturer’s instructions. DNA was extracted
in the same year of collection and the integrity of the extraction was assessed by agarose
gel electrophoresis.

2.4. Molecular Analysis

To detect Leptospira spp. DNA, we performed the polymerase chain reaction (PCR) us-
ing the primers Lep1 (5′GGCGGCGCGTCTTAAACATG3′) and Lep2 (5′TTCCCCCCATTGA
GCAAGATT3′), which amplify a 331 base pair (bp) fragment of the 16S rRNA gene [38]
The PCR mix and thermal cycling steps were carried out according to a protocol previously
described [37].

All reaction mixtures included two positive controls and one contamination control.
The positive controls were DNA extracted from isolates of Leptospira serovar Icterohaem-
orrhagiae and Patoc obtained from an EMJH (Ellinghausen, McCullough, Johnson, and
Harris) culture medium, while the contamination control was ultrapure water with no
DNA added to the amplification solution.

All the reactions were run on a gradient thermal cycler (Veriti 96 Well Thermal Cy-
cler, Applied Biosystems®, Foster City, CA, USA). The PCR products were subjected to
horizontal electrophoresis on a 1.5% agarose gel and stained with Gel Red® (Biotium™,
Fremont, CA, USA). Bands of the expected size were visualized under ultraviolet light in a
transilluminator (Gel DOCTM XR+ Imaging System Bio-Rad, Hercules, CA, USA) with a
photo documentation system (Image Lab™ V. 5.2-Bio-Rad).

Amplification products with the best electrophoresis bands were selected to be se-
quenced in commercial facilities, totaling 11 samples (ATCGene Análises Molecularis Ltd.a.,
Alvorada, RS, Brazil). for sequencing using a commercial kit (ExoSAP-IT™ PCR Product
Cleanup Reagent, Applied Biosystems®) and an automated sequencer (ABI Prism 3500
Genetic Analyzer, Applied Biosystems®).

The genetic sequences obtained from sequencing were processed using BioEdit Se-
quence Alignment Editor software (Version 7.7). Consensus sequences were generated for
each sample amplified by the forward and reverse primers, with total lengths ranging from
265 bp to 338 bp. The consensus sequences were compared with sequences from BLAST
(Basic Local Alignment Search Tool—www.blast.ncbi.nlm.nih.gov (accessed on 12 February
2024), USA) to determine the percentage identity of the nucleotides.

The consensus sequences were aligned using the AliView v.1.18 program [39] and the
MAFFT alignment algorithm [40]. The Leptospira sequences from the P1, P2, and S1 groups
were added from the Genbank database, selecting those with the closest identities to the
consensus sequence. The resulting sequences were submitted to the GenBank database.

For phylogenetic analysis, 26 reference sequences from different Leptospira species with
the closest identity to the consensus sequences were selected (n = 11), and one sequence
from Leptonema illini was chosen as the outgroup. The sequences ranged in size from 674 bp
to 1516 bp but were trimmed to a similar size (338 bp) before analysis.

The Jmodeltest v.2.0 algorithm [41,42] was used to calculate the evolutionary models
best suited to the data. The phylogenetic relationships were built using the Neighbor-
Joining (NJ) method with 1000 bootstrap replicates, and support statistic values below 70%
were disregarded. The MEGA v.6.0 program [43] was employed for this purpose.

3. Results

Considering the number of animals analyzed, 40% (16/40, 95% confidence interval
[CI]: 25–55) of the chelonians had at least one or two positive samples for Leptospira spp.
(Table 1).

www.blast.ncbi.nlm.nih.gov
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Table 1. Distribution of biological samples collected and results of the molecular analysis for Leptospira
spp. DNA in Kinosternon scorpioides in the Amazon Biome.

Sample Collected Positives Negatives Sequenced

Cloacal Lavage 40 4 36 2
Stomach Lavage 40 1 39 0

Cloacal fluid 27 3 24 0
Blood clot 40 11 29 9

TOTAL 147 19 128 11

Among the samples collected, 12.93% (19/147) were positive (Table 2). A greater
frequency of Leptospira spp. DNA was detected in blood clots (27.5%; 11/40), followed
by cloacal washings (10%; 4/40), cloacal fluid (11.11%; 3/27), and gastric washings (2.5%;
1/40).

Table 2. PCR results for DNA detection of Leptospira spp. in cloacal lavage, stomach lavage, cloacal
fluid, and blood clots from Kinosternon scorpioides.

ID
Analysis Result

Blood Clot CL SL Cloacal Fluid

01 - - + Nc
02 - - - Nc
03 - - - Nc
04 - - - +
05 - - - Nc
06 - - - Nc
07 - - - Nc
08 - - - -
09 - - - Nc
10 - + - -
11 + + - -
12 - - - -
13 + - - +
14 - - - +
15 - - - -
16 - - - -
17 - - - Nc
18 + - - Nc
19 - - - -
20 - - - -
21 + - - -
22 - - - Nc
23 - - - -
24 + - - -
25 + - - -
26 - - - -
27 - - - -
28 - - - -
29 - - - -
30 - - - -
31 + - - -
32 - - - -
33 + - - Nc
34 - - - Nc
35 + - - -
36 + - - -
37 - - - -
38 - - - -
39 + + - -
40 - + - Nc

Identification; Nc: not collected; CL: cloacal lavage; SL: stomach lavage; positive samples, +; negative samples, -.

In the BLASTn analysis, the sequenced samples (n = 11) showed 99–100% maximum
identity with Leptospira interrogans sequences from isolates in different countries. The
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assembled nucleotides have been deposited in GenBank (http://www.ncbi.nlm.nih.gov
(accessed on 12 February 2024), USA) under access numbers OP312971 to OP312981.

Phylogenetic analysis confirmed the identity of the partial sequences of the 16S rRNA
gene of Leptospira spp. The sequences obtained from the K. scorpioides samples were grouped
in the same clade as the sequences of the L. interrogans serovar Kennewick from Brazil
(FJ154571) and L. interrogans serovar Pyrogenes from Russia (KY075909) within the subclade
of Leptospira, which form the P1 group of pathogenic species (Figure 3).
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Figure 3. Phylogenetic tree constructed using the neighbor-joining (K2P) method with paired 16S
rRNA gene sequences of Leptospira spp. isolates, showing only bootstrap values > 70%. The sequences
obtained from eleven samples of Kinosternon scorpioides are marked by a black period. The sequence
of one isolate from Leptonema illini (JQ988853) was used as an outgroup.

4. Discussion

This is the first report of natural exposure and detection of Leptospira interrogans DNA
in chelonians kept in captivity in a region of the Amazon biome and in the species K.
scorpioides.

This study is the first of its kind to detect Leptospira DNA in the blood of chelonians.
Blood collection from chelonians can be challenging due to the rapid coagulation of blood,
non-visible vessels, and the impossibility of using a tourniquet. The jugular vein is the
preferred route for collection, but due to the strong retraction muscles of the chelonian
head, it can be difficult to keep the neck taut without sedation. In this study, the coccygeal
vein was preferred for blood collection since the animals were not sedated [44].

The mechanism of adaptation of these bacteria in ectothermic animals, where body
temperature is influenced by environmental factors [45], requires further study since
leptospires multiply satisfactorily in hosts with stable temperatures, such as mammals.

http://www.ncbi.nlm.nih.gov
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Previous studies on chelonians have only detected leptospiral DNA in samples of
stomach wash, cloacal wash, cloacal swab, cloacal fluid, and kidney [21,22,29,30]. While
the use of whole blood from these animals to search for leptospires is not a new prac-
tice [20], this study demonstrates that blood clots are also effective in detecting Leptospira
in chelonians.

The cloaca of these animals consists of three cavities: the urodeum, the coprodeum,
and the proctodeum [40]. However, this internal division is not very distinct in these
animals; the urine is deposited in the urodeum, but when an animal needs to hydrate, it
can return to the bladder or go directly to the proctodeum, where it contacts the animal’s
feces and other urogenital fluids [46].

Previous studies have also suggested that chelonians can serve as natural hosts for
these bacteria and excrete them for extended periods [29,47]. The absence of leptospires in
some samples may be due to the purity of the collected content, as fecal matter and urinary
acidity can chelate leptospiral DNA [48]. It is also possible that the bacteria also transiently
shed [49].

Although pathogenic Leptospira DNA was found in K. scorpioides samples, it is only pos-
sible to confirm the viability of leptospires using specific culture media such as Fletcher and
EMJH (Ellinghausen–McCullough–Johnson–Harris) [50]. Therefore, it cannot be concluded
that these animals are spreading these bacteria.

The study utilized conventional PCR, which yielded favorable results compared to
other studies conducted in Brazil using the same technique [20,29]. In Italy, nested PCR
was used on cloacal swabs, which is considered more sensitive, and Leptospira DNA was
detected in 20% (10/50) of the samples [21]. Real-time PCR analysis of cloacal swab samples
in the U.S. revealed a high prevalence of animals with Leptospira DNA (73.5%–25/34) [22].

Our research identified L. interrogans as the species belonging to the P1 subgroup
based on phylogenetic analysis. Generally, these species have longer genomes and a greater
diversity of genes encoding virulence factors, potentially making the P1 subgroup more
pathogenic than the P2 subgroup [10].

In this study, none of the chelonians that tested positive by molecular detection showed
abnormal clinical signs, which supports the findings of other studies [21,22,29,30] that have
investigated Leptospira spp. in chelonians. However, it should be noted that these clinical
signs may be present in these animals but are currently unknown.

Leptospira spp. DNA was detected in the clot and cloacal lavage fluid of animal 11 and
in the clot and cloacal fluid of animal 39. This suggests a potential difference in spirochete
behavior in chelonians, as the bacteria were found in both the bloodstream and cloacal fluid
simultaneously. In contrast, urinary dissemination in mammals occurs when leptospires
are lodged in renal tubules [3,6].

The identification of leptospires in aquatic and semiaquatic animals can aid in the
recognition of hosts with distinct profiles from those already known. Semiaquatic animals
seem to be more susceptible to exposure and dissemination as they traverse various envi-
ronments, including soil and water [50,51]. Another study supported the hypothesis that
leptospires originate in the soil and are transported to bodies of water during heavy rains,
despite their common association with aquatic environments [52].

The chelonians studied in this research were kept in open water enclosures, with
access to the ground, which indicates that the animals could have been exposed by contact
with the soil. It is also possible that the water was contaminated by opportunistic hosts,
such as rodents, as the environment surrounding the enclosure could provide access to
water, food, and shelter.

The animals are kept in captivity at the Federal Rural University of Amazonia, which
is situated near large forest fragments, such as the Camillo Vianna Utinga State Park. These
findings suggest that professionals who work with captive reptiles are at risk of contracting
infectious agents. Additionally, the presence of free-living animals around these facilities
can contribute to the spread of pathogens in the environment [53].
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Since they were captured, there is no information on the origin of the chelonians
used in this study. On the other hand, the duration of captivity of each specimen was
not considered, as the specimens lived together for at least one year. The discovery of
Leptospira DNA in the studied samples shows that there is a need to study infectious agents,
especially those of a zoonotic nature, that may affect captive animals. In addition, the risk
factors associated with exposure to these animals and the people who handle them should
be investigated.

In the northern region of Brazil, in addition to the factors directly linked to the
One Health triad, it is important to consider sociocultural factors in the transmission
of pathogens. In the Amazon biome, chelonian meat is consumed for subsistence pur-
poses [33]. The most consumed species are the Amazonian turtle, Arrau River Turtle,
(Podocnemis expansa), the Tracajá, Yellow-spotted Amazon River Turtle, (Podocnemis unifilis),
and the Muçuã, Scorpion Mud Turtle, (Kinosternon scorpioides) [34]. Therefore, handling the
carcasses of animals with Leptospira can pose a zoonotic threat.

Environmental degradation also contributes to the circulation of zoonotic agents. The
Amazon biome has edaphoclimatic conditions and diverse fauna that can influence the
maintenance of pathogens in the environment. Additionally, forest fragmentation and
urban encroachment bring humans and wildlife into closer contact. However, the risk of
zoonotic spillover in the Amazon region is often underestimated due to a lack of investment
in research and underreporting, likely due to the vast size of the biome [54].

Future studies should aim to identify chelonians exposed to Leptospira spp. by cultur-
ing samples from the stomach lavage, cloacal lavage, cloacal fluid, and blood to determine
the viability of the detected agent. This approach may lead to the identification of a serovar
that has not yet been described in the Brazilian Amazon. In addition, this work expands
the list of reptile hosts of pathogenic Leptospira, and the prevalence of positive animals in
this study may represent a high risk for their handlers.

5. Conclusions

Leptospiral DNA could be detected in cloacal lavage, stomach lavage, cloacal fluid,
and blood clots of the turtles studied, demonstrating that captive Kinosternon scorpioides
turtles in the Amazon region were exposed to a pathogenic Leptospira of the P1 subclade.
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