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Simple Summary: Bacterial chondronecrosis with osteomyelitis-induced lameness presents a
substantial challenge within the avian agricultural sector. The etiology involves pathogenic bacteria
translocating from a compromised intestinal barrier into the bloodstream, subsequently colonizing
microfractures present in the leg bones that are caused by rapid growth rate and heavy bird weight,
resulting in damage and lameness. This study aims to assess whether spraying a non-pathogenic
strain of Enterococcus faecium bacteria at two different concentrations on day-of-hatch chicks is effec-
tive in reducing lameness in broilers using a Staphylococcus challenge model. Results indicate that
dosing day-old chicks with an effective probiotic reduced lameness incidence in a dose-dependent
manner. Findings from this study contribute to the overall understanding of efficient and sustainable
broiler production as a high-quality and affordable source of animal protein, while improving bird
health and welfare at the same time.

Abstract: Bacterial chondronecrosis with osteomyelitis (BCO) lameness is a bone disease characterized
by the translocation of bacteria from the gastrointestinal tract, which colonize microfractures in broiler
leg bones caused by rapid animal growth rate and weight gain, resulting in lameness. As such, BCO
lameness represents a significant challenge for the poultry industry. This study aims to evaluate the
effect of spraying broiler chicks on d0 at hatch with an Enterococcus faecium probiotic on the incidence of
BCO-induced lameness, utilizing a Staphylococcus aureus challenge model. There were four treatments:
(1) negative control (no probiotic + no challenge, NC); (2) positive control (no probiotic + challenge,
PC); (3) low dosage (4.0 × 108 CFU/chick + challenge, LOW); and (4) high dosage (2.0 × 109 CFU/
chick + challenge, HIGH). On d5, groups two through four were challenged with Staphylococcus aureus
through the drinking water at a concentration of 1.0 × 105 CFU/mL. Cumulative lameness incidence
was determined through daily evaluations and necropsies conducted on lame birds starting from d22.
Data were subjected to a binomial general regression analysis (significant p < 0.05). On d56, the PC
group exhibited the highest cumulative lameness incidence (58.0%; p < 0.05), followed by LOW (36.0%),
HIGH (28.7%), and NC groups (25.3%), respectively. These results suggest early probiotic application
at day-of-hatch successfully reduced the incidence of lameness in challenged birds, thus contributing to
understanding of efficient and sustainable broiler production.

Keywords: broiler; probiotic; lameness; bacterial chondronecrosis with osteomyelitis; Staphylococcus
aureus
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1. Introduction

Domestically and internationally, the poultry industry remains a major player in live-
stock production in processed volume and affordability for consumers [1]. This holds sig-
nificant economic importance for an ever-growing world population, whose projected food
demand and at-risk population for food hunger are expected to increase by approximately
30% to 62% and −91% to 30% respectively, accounting for changes in global climate [2].
However, with intensive production to meet the increasing demand for animal protein, the
industry continues to face multiple production-related diseases that impact animal welfare
and productivity, leading to significant economic losses from mortalities and carcass con-
demnations annually [3–5]. Bacterial chondronecrosis with osteomyelitis (BCO) lameness
represents one such issue currently facing the industry, affecting approximately 3 to 15%
of market-age broilers [6]. Owing to intensive genetic selection for drastic muscling and
weight gain rates over the past several decades, modern conventional broiler strains have
developed increased susceptibility to this disease due to such gains, which far outpace leg
bone development and impose tremendous torque and shear stress on the latter [6,7]. BCO
lameness is thought to occur when bacteria translocate from the broiler’s compromised
respiratory and gastrointestinal (GI) tracts to the blood and colonize microfractures in the
leg bones caused by the rapid growth of the animal [6]. Subsequent worsening infection
and eventual necrosis of the bone induce lameness, markedly restricting a bird’s access
to feed and water, thus impacting animal welfare and productivity [8]. Several bacterial
genera have been known to be associated with this disease, including Enterococcus spp. and
Staphylococcus spp. [9,10]. At present, the diagnostic landscape lacks reliable methods for
early detection and effective therapeutics once the clinical presentation of BCO manifests
in the late stages of the disease. As such, research into effective preventative measures
remains of high relevance and importance for the poultry industry. Over the years, our
research group has identified several crucial risk factors to the general understanding of
this disease. Following an investigation into supplementation of an organic trace mineral
complex including zinc, manganese, and copper in the broiler diet, we determined that
such supplementation greatly contributed to intestinal barrier strength via upregulation
of tight junction proteins, thus reducing epithelial permeability in the gut and resulting
in decreased BCO lameness incidence [11]. In other studies, we also discovered potential
inherent predisposing factors of common feed mycotoxins (deoxynivalenol and fumonisin)
in BCO lameness pathogenesis [9], as well as the timing of supplement inclusion for optimal
lameness reduction outcomes [12]. Finally, in addition to the classical wire-flooring lame-
ness induction model employed in this research [13], we have also developed a novel and
effective method of BCO lameness induction that resembles outbreaks in industrial poultry
houses by leveraging ventilation airflow that facilitates dissemination of pathogenic organ-
isms to other animals in close vicinity [14], further expanding our repertoire of experimental
tools in this study of BCO lameness etiology, pathogenesis, and its mitigation.

Within the last decade, negative consumer perception of animal agriculture and the
risk of bacterial antibiotic-resistance has increased. Regulatory restrictions on antibiotic
usage in commercial poultry have catalyzed a shift towards the adoption of alternative,
natural approaches such as probiotics. These additives, combined with traditional vaccines
and good management practices, provide an alternative approach to improving flock
health and performance [7,15–18]. The use of such additives has been postulated to work
through several modes of action. For example, exogenous enzymatic additives such as
proteases aid in feed digestibility and broiler nutrient absorption [17], thus maximizing feed
efficiency. On the other hand, additives belonging to the class of microbiome modulators
work by impacting metagenomic functions and metabolic pathways of the microbiome
to drive improved health outcomes and performance broilers [16]. With regard to disease
prevention and treatment, the mode of action of these additives is thought to vary based on
several different mechanisms, including competitive exclusion, improved barrier intestinal
barrier function, immunity modulation, and digestion and nutrient absorption [19–21].
Similarly, the use of Enterococcus as prophylactic probiotics has also been widely studied. As
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a whole, probiotic Enterococcus strains have been known to confer health benefits to the host
due to supporting health in the face of adverse conditions. Properties such as competitive
exclusion and the production of enterocins—broad-spectrum bacteriocins that have been
shown to inhibit growth of pathogenic organisms—may account for some of the beneficial
outcomes realized from feeding these probiotic strains [22–25]. In the poultry industry,
E. faecium has shown positive outcomes relating to broiler performance, where intestinal
health and improved pathogen resistance of young birds have been demonstrated [26–29].
However, despite encouraging results from utilizing a probiotic in practical evaluations of
BCO lameness reduction [30], there remains a severe knowledge gap in the current literature
regarding this topic. Additionally, administration routes of probiotic strains in most studies
(and in the industry) remain as either a feed component, in drinking water [31], or via in
ovo injection [28,32]. Compared to these, direct spraying systems commonly employed
in industrial poultry hatcheries and farms may be equally effective while minimizing
animal physiological stress compared to methods that require animal handling (such as
oculo-oral [33,34]), thereby potentially increasing research translatability when applied to a
real-world scenario, using the same treatment of interest. As such, the use of a spraying
system in administration of prophylactic probiotics warrants closer examination.

With these considerations, this study aims to assess the effects of administering an
effective probiotic in two different concentrations to newly hatched chicks, through a
controlled spray mechanism, on cumulative BCO lameness incidence over 56 days of age
using a Staphylococcus aureus challenge model. We hypothesize that the early exposure and
establishment of E. faecium in the young chick may help mitigate the negative outcomes
resulting from a S. aureus challenge, thus reducing subsequent BCO lameness incidence over
time. The results of this study may prove valuable to producers seeking to optimize flock
health via prophylactic application of probiotics, as well as help ascertain the impact on
BCO lameness in broilers. Interestingly, S. aureus shares the same prevalence in association
with osteomyelitis in humans [35], which also suggests a potential translational model for
a disease with high human medical importance.

2. Materials and Methods
2.1. Environment and Treatment Allocation

This study took place at the University of Arkansas Poultry Environmental Research
Laboratory (PERL) from September 13 to November 8, 2023. Cobb 500 male chicks were
placed in pens in each of twelve completely isolated environmental chambers, on wood
shavings, at a density of 60 chicks per pen on d0 and culled down to 50 birds per pen
on d14. The initial pen space dimensions were 1.22 m × 3.51 m (surface area = 4.30 m2)
from d0–d20 and extended to 2.29 m × 3.66 m on one half (surface area = 6.15 m2) from
d21 onward to accommodate the birds’ growing sizes. Three pens, each representing a
treatment replicate, were allocated to each of the four treatments involved in this study as
outlined in Table 1.

As all twelve chambers were completely isolated from one another, pen and block
randomization were not conducted. Except for daily health evaluation, feed replenishment,
and other emergent issues pertaining to bird caretaking, personnel were encouraged to
refrain from entering chambers to minimize disturbance and cross-contamination. Dispos-
able boot covers were changed between movement to each treatment. Each chamber was
equipped with temperature regulators to ensure daily bird thermoneutral targets were met,
as well as automatic light clocks set at a photoperiod schedule of 23L:1D for the entirety of
the study. Each pen was equipped with one water line placed on one end and two hanging
feeders on the other to facilitate bird movement. All birds received industry standard
formulated starter (crumbles) and finisher (pellets) diets (Table A1) and had access to clean
water and feed ad libitum.
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Table 1. Detailed study treatment descriptions.

Treatments Group Descriptions Animals/Pens

NC Negative Control 150 birds/3 pens

PC Positive Control (No spray vaccination + S. aureus
challenge on d5) 150 birds/3 pens

LOW Probiotic Concentration #1 (0.25 mL/chick spray
vaccination on d0 + S. aureus challenge on d5) 150 birds/3 pens

HIGH Probiotic Concentration #2 (1.25 mL/chick spray
vaccination on d0 + S. aureus challenge on d5) 150 birds/3 pens

2.2. Probiotic

The probiotic E. faecium strain procured and prepared in the study comes from
a commercially available product (GalliPro® Hatch, Novonesis, Hørsholm, Denmark).
Per the manufacturer’s specification (2.0 × 1011 CFU/g) and recommendation, a low
(4.0 × 108 CFU/chick) and high (2.0 × 109 CFU/chick) concentration were calculated and
administered via an in-house static spraying system on d0 of age. Boxes of 60 chicks were
manually sprayed with multiple passes until exhaustion of a set volume per concentration
(LOW = 150 mL/60 chicks; HIGH = 75 mL/60 chicks). Non-toxic blue food dye was added
to each prepared stock to aid in visualization of spray dispersion on chicks.

2.3. Bacterial Challenge Model

On d5 of the study, except for three negative control (NC) chambers, birds in all
remaining treatment chambers received a S. aureus challenge in their drinking water via
carboys. Glycerol stock S. aureus strain used in the study was revived, incubated for 24 hrs
with viable CFU concentration determined, and diluted in 20 L of clean water per carboy to
a final concentration of 1.0 × 105 CFU/mL. Carboys were vigorously shaken intermittently
throughout each day to ensure no settling occurred. All challenged pens received the
bacterial water challenge on d5 until exhaustion of the carboys, after which the water
source was switched back to clean water.

2.4. Lameness Evaluation

Starting from d22 of the study, daily clinical lameness in each pen was evaluated by
gently encouraging the birds to walk brief distances. Birds that were reluctant to walk or
incapable of walking were diagnosed as clinically lame, euthanized, and necropsied to
assess BCO lesions on femoral and tibial heads as per Wideman [6]: N = Femur head and
proximal tibia appear entirely normal; FHS = Proximal Femoral Head Separation (epiphyse-
olysis); FHT = Proximal Femoral Head Transitional degeneration; FHN = Proximal Femoral
Head Necrosis; THN = Proximal Tibial Head Necrosis; THNC = Proximal Tibial Head
Necrosis Caseous; and THNS = Proximal Tibial Head Necrosis Severe. Other symptoms are
TD = Tibial Dyschondroplasia; and KB = Kinky Back (spondylolisthesis). Figure 1 visualizes
these lesion progression categories.

2.5. Data Analyses

Data were entered and processed using Microsoft® Excel v2403 (Microsoft Corporation,
Redmond, WA, USA) from which cumulative lameness incidence over time and lesion
categories per treatment (expressed in percentages) were calculated and plotted. Total
cumulative lameness data was prepared separately, followed by binomial general regression
(or generalized linear model) analysis using JMP® Pro v17.1 (SAS Institute Inc., Cary, NC,
USA). All statistical significance was determined at α < 0.05.
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Figure 1. Examples of BCO lesion severity categories for diagnosis. Arrows provided to indicate
hallmark characteristics: 1. Normal proximal femoral head state with intact epiphyseal articular carti-
lage; 2. Proximal femoral epiphysis surface separated from cartilage that remains in the acetabulum;
3. Separated proximal femoral epiphysis with varying degrees of damage (moderate lesion here with
fibrinonecrotic exudate); 4. Extreme damage to fracture of weakened proximal femoral epiphysis
and physis upon disarticulation of the femur; 5. Normal state of proximal tibia with clearly defined
physeal growth plate (a) and firm cancellous bone (b); 6. Necrotic state of the proximal tibia, still
with clearly defined physeal growth plate (a) but damaged cancellous bone, replaced with a necrotic
void of various sizes (b); 7. Severe necrotic state of the proximal tibia, with large necrotic void (b)
encroaching upon the physeal growth plate (a); 8. Necrotic state of the proximal tibia with additional
caseous exudate, marking bacterial infiltration region; 9. Proximal tibial head afflicted with tibial
dyschondroplasia, marking abnormally large region of cartilage instead of cancellous bone.

3. Results

Exhibition of clinical lameness first appeared in the NC group on d26, but not in
all treatments until d35 of the study. Cumulative lameness incidence per treatment (in
percentage) from d35–57 of the study is presented in Figure 2.
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Figure 2. Cumulative percent lameness by treatment groups from d35–57 of the study. Treatments
are as follows: NC = Negative Control, PC = Positive Control, LOW = Low, and HIGH = High.
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Cumulative lameness incidence trends between all treatments remained largely similar
until d46–47 of the study, following which incidence rate in the positive control (PC) group
increased sharply and continued to do so until the end of the study, peaking at 58%,
followed by the LOW (L; 36%), HIGH (H; 28.67%), and negative control (NC; 25.33%)
groups. Table 2 summarizes the cumulative lameness incidence rate progression for the
last four weeks of the study and significant statistical differences between treatments (if
any) using binomial generalized regression analysis.

Table 3 outlines binomial logistic regression analysis of total cumulative lameness
incidence at the end of the study on d56.

As summarized, PC treatment is significantly different compared to all other treat-
ments involved in the study (p < 0.05). Both HIGH and NC groups share a similarly high
degree of significance compared to PC (p < 1.0 × 10−4), which agrees with their statistical
similarity (p = 0.52).

An evaluation of BCO lesion distribution among treatments is presented in Figure 3.
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Figure 3. Tibial and femoral lesion severity categories and their incidence rate for clinically lame
birds as per Wideman [6]. RT- Right Tibia, LT- Left Tibia, RF- Right Femur, LF- Left Femur,
N = Femur head, and proximal tibia appear entirely normal, FHS = Proximal Femoral Head Separa-
tion (epiphyseolysis), FHT = Proximal Femoral Head Transitional degeneration, FHN = Proximal
Femoral Head Necrosis (bacterial chondronecrosis with osteomyelitis, BCO), THN = Proximal Tibial
Head Necrosis, THNC = Proximal Tibial Head Necrosis Caseous, THNS = Proximal Tibial Head
Necrosis Severe, TD = Tibial Dyschondroplasia. Treatments are as follows: NC = Negative Control,
PC = Positive Control, LOW = Low, and HIGH = High.
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Table 2. Cumulative lameness progression per week for last 4 weeks of the study (in %).

Day NC PC LOW HIGH

35 4.67 a 1.33 a 2.67 a 2.00 a

42 9.33 a 7.33 a 8.67 a 9.33 a

49 15.33 a 24.00 a 16.67 a 16.67 a

56 25.33 a 58.00 b 36.00 a 28.67 a

Superscripts with different letters per timepoint indicate significant statistical differences at α < 0.05.

Table 3. Binomial logistic regression of cumulative lameness incidence between treatments at d57.

p-Value PC LOW HIGH

NC <1.0 × 10−4 * 0.05 0.52
PC 2.0 × 10−4 * <1.0 × 10−4 *

LOW 0.18
Asterisks (*) indicate statistical significance.

Overall, N (normal) and FHS (Femoral Head Separation) are generally the most
frequently seen lesion category among femoral lesions, while THN (Tibial Head Necrosis)
and THNS (Tibial Head Necrosis Severe) are mostly seen in tibial lesions. Within femoral
lesions, the highest incidence rate is recorded with right leg FHS within the HIGH group
at 53.49%. Within tibial lesions, THN has the highest rate within the PC group at 63.22%.
There are no apparent trends for lesion severity between right and left legs in both femoral
and tibial lesions, nor is there a dominating trend between treatments in severity reduction.

4. Discussion

As a whole, Enterococci make up a diverse group consisting of mostly commensal
and harmless bacteria that can be commonly found inhabiting the GIT of humans and
other animal species—poultry included. Application of Enterococcus-based probiotics in
livestock production has seen increasing adoption, especially as an early intervention
strategy. Utilizing these probiotics as a prophylactic supplement has been extensively
researched within the poultry industry, demonstrating significant benefits in supporting
normal health, performance, and providing protection against potentially harmful bac-
teria [28,29,32]. Effective probiotics exhibit a wide array of modes of action, including
competitive exclusion of potentially harmful bacteria by occupying the same ecological
niches and stimulating host immune responses, which enables the bird to mount a better
response against challenges [36]. With these mechanisms in mind, Wideman et al. (2012)
postulated that inclusion of prophylactic probiotics (including E. faecium) in the feed may
aid in the reduction of BCO-associated lameness in broilers. The pathogenesis of this is
likely based on the “leaky gut” model with translocation of pathogenic bacteria across
the gut lining and seeding of the joint infection sites [13]. This wire-floor model provides
more physical stress to the growing broilers than what is exerted in a commercial setting.
Although this model is useful to evaluate the impacts of experimental products on BCO
lameness outcomes in a research setting, it is important to follow up on this research with
commercial in-field evaluations. Therefore, a closer examination of this probiotic in a
commercial context, such as the day-of-hatch spray application [37] and its impact on BCO
lameness is warranted.

The Staphylococcus challenge model used in the study was designed to introduce and
establish an abundance of S. aureus in the immature chick gut [38], thereby increasing
translocation chances of these potentially harmful bacteria across the gut lining following
a “leaky gut” event with a bacterium known to be associated with BCO lameness. As
such, this model also evaluates if early E. faecium supplementation attenuates the effects
of oral S. aureus challenges on BCO lameness in a dose-dependent manner. The results
of this study strongly suggest that that the challenge of S. aureus in drinking water on
d5 was successful in inducing clinical BCO lameness, indicated by significantly higher
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cumulative lameness incidence over 57 d of age in challenged versus non-challenged birds
(PC vs. NC; 58.00% vs. 25.33%; Table 2). Administration of GalliPro® Hatch on newly
hatched chicks on d0 was also found to be effective in reducing cumulative BCO lameness
at the end of the study (PC vs. L vs. H; 58.00%, 36.00%, 28.67%, respectively; Table 2). While
cumulative lameness incidence rate was still lowest in the NC group, it should be noted
that this group received no mechanical or pathogenic challenge over the duration of the
experiment beyond an intensive lighting schedule that was applied equally to all treatment
groups. Therefore, a lower overall incidence rate in the NC group was expected. Numerical
data indicated a higher cumulative incidence of lameness in both probiotic-treated groups;
however, the differences were not statistically significant compared to the NC group. This
suggests that probiotic treatment demonstrates potential efficacy in mitigating clinical
BCO-related lameness. Additionally, a difference of only 3.34% between HIGH and NC
groups is almost negligible (p = 0.52) and highlights a potential dose-dependent effect
at a 5× higher dosage (2.0 × 109 CFU/g) compared to the low dosage. Future research
using a similar approach could include measuring levels of enterocins recovered between
treatment dosages at different timepoints. This will help better define the probiotic’s mode
of action and the impact of dose-response which we hypothesize to correlate to pathogenic
microbial composition in the gastrointestinal tract of the animal and subsequent BCO
lameness incidence rate.

Progression of BCO lesions commonly observed in various studies at the research site
is shown in Figure 1. Generally, FHN (Femoral Head Necrosis) lesions are regarded as
the most severe category, indicated by the complete fracturing or necrosis of the proximal
femoral head, which is usually coupled with erosion of articular cartilage and loss of
smooth joint articulation [39]. Birds afflicted with FHN lesions exhibit reduced mobility—
and are often completely unable to move—leading to severe impacts on their health and
welfare due to the inability to access feed and water [8]. In contrast to FHN, FHS (Femoral
Head Separation) and FHT (Femoral Head Transitional [Degeneration]) lesions present
less severe physical damage of the proximal femoral head, indicated by relatively smooth
(FHS) to somewhat damaged (FHT) femoral epiphysis. Despite this less severe appearance,
birds presenting with these lesions still exhibit an observable negative impact on gait,
ranging from reluctance to walk to an unacceptable degree of immobility due to a lack of
articular cartilage. Tibial lesions severity progression follows a similar trend to femoral
head damage, with an expanding necrotic void encroaching on the growth plate of the
proximal tibial head from THN (Tibial Head Necrosis) to THNS (Tibial Head Necrosis
Severe). In rare occasions, a caseous exudate may also be present in THNC (Tibial Head
Necrosis Caseous) lesions, marking bacterial-associated necrosis [6]. In this study, the
reduction in lameness incidence observed in probiotic supplemented groups does not seem
to extend to BCO lameness lesion severity, as there were no clear trends between treatments
with respect to lesion category or severity, nor were there any regarding leg side (Figure 3).
This observation agrees with the current understanding of BCO lameness treatment in
that there is a lack of effective therapeutic intervention for BCO lesion severity after onset,
which continues to progress until severe lameness is noted. Research to identify preventive
approaches for BCO is important because of this lack of therapeutic efficacy and the lack of
healing observed in the short grow-out period. In this study, the higher dosage of probiotic
inclusion did not adversely affect bird health, observed behavior, or mortality rates. The
remaining birds evaluated on d56 of the study showed neither significant differences in
body weight nor mortality count between treatment groups (Table A1), indicating normal
growth in birds not exhibiting signs of clinical lameness.

While the results show significant promise of the prophylactic administration of the
E. faecium in clinical BCO lameness reduction, further investigation is warranted to accu-
rately characterize the influence of this probiotic on the gut microbiota. In humans, the gut
microbiota has long been regarded as an important site of high biological relevance, often
having lasting influence on the functionality of various systems, including the immune [40]
as well as central nervous and enteric nervous systems [41]. In broilers, the gut microbiota
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are well characterized within the ceca and have been directly linked to animal health and
performance [42]. Recently, it has been discovered in humans that surgical site infections
(SSI) are closely connected to a patient’s immediate preoperative microbiome [43]. Despite
the inherent differences across species, there are grounds to consider the characterization
of broiler gut microbial communities and their impacts on BCO lameness etiology and
pathogenesis—particularly concerning the concept of a “leaky gut” and its association with
infection of leg bone microfractures in a similar fashion to SSIs. Shifts in the microbial
populations may also correlate with changes in the intestinal morphology that have been
previously documented with the use of GalliPro® Hatch [28]. Finally, while the use of the
isolated chambers in this study allowed for evaluation of BCO lameness incidence with
the confounding environmental grid factor eliminated, it may be also more commercially
relevant to utilize a different induction model in future research, such as the hybrid aerosol
model [14] meant to simulate the conditions of large-scale poultry production. Such mod-
els leverage horizontal transmission of particulates via ventilation airflow, which closely
resembles outbreaks often seen in industrial broiler housing, thus increasing the relevance
of future research findings.

5. Conclusions

This study was conducted to assess the impact of spraying an Enterococcus faecium-
based probiotic strain on day-old broiler chicks at hatch on reducing clinical BCO lameness
using a Staphylococcus aureus bacterial challenge model in drinking water. Cumulative
lameness incidence at the end of the study was significantly higher in the challenged
untreated PC group compared to the other treatments, while cumulative lameness incidence
in the LOW and HIGH probiotic-supplemented groups were not significantly different from
the negative control (NC), suggesting probiotic supplementation at day of hatch effectively
mitigated BCO-associated lameness. Results also showed a possible dose-response effect
between supplemented treatments. This study’s findings hold considerable relevance for
the poultry industry in reducing incidence of lameness, directly improving animal health
and welfare. Further research is warranted to better understand the mode of action of the
probiotic attenuating BCO lesions.
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Appendix A

Table A1. Proximate analysis of broiler diets in the study.

Ingredient Starter Finisher

Ash, % 5.15 4.76
Dry Mater, % 89.6 89.4

Protein, % 22.5 20.5
Crude Fat, % 4.83 1.35

Al, ppm 80.4 51.5
Ca, ppm 8530 7075
Cu, ppm 114 130
Fe, ppm 452 216
K, ppm 9199 6869

Mg, ppm 1606 1353
Mn, ppm 142 111
Na, ppm 1107 1216
P, ppm 6775 6118
S, ppm 2422 2175

Zn, ppm 142 128

Table A2. Average d56 sample bird weights in all treatments (in kg) and total mortality throughout
entire study.

Treatment Number of Birds Average Weight
(±SEM, in kg) Mortality (Birds)

NC 6 10.76 ± 0.39 0
PC 6 10.86 ± 0.39 1

LOW 6 11.50 ± 0.39 3
HIGH 6 11.74 ± 0.39 1
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