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Simple Summary: Our society is increasingly concerned about the well-being of animals like dolphins,
which can be affected by life under professional human care or by anthropogenic disturbances in
the wild. To better understand and improve their welfare, scientists are exploring new, non-invasive
methods to study the response to stressors in these animals. This research introduces an approach for
measuring the stress response by analysing cortisol from epidermis samples, a method that does not
require invasive procedures. We developed and tested a reliable technique to extract and measure
cortisol levels from the epidermis of common bottlenose dolphins and belugas. Our findings show
that this method works well and is accurate, even with very small epidermis samples. We also found
that the amount of stress hormones can vary depending on the individual animal but not necessarily
where the body sample was taken. This study is a step forward in non-invasively studying and
enhancing the welfare of cetaceans, offering insights into their stress levels in a way that is safer and
more comfortable for them, which could ultimately lead to better care and conservation practices for
these species.

Abstract: Society is showing a growing concern about the welfare of cetaceans in captivity as well as
cetaceans in the wild threatened by anthropogenic disturbances. The study of the physiological stress
response is increasingly being used to address cetacean conservation and welfare issues. Within it, a
newly described technique of extracting cortisol from epidermal desquamation may serve as a non-
invasive, more integrated measure of a cetacean’s stress response and welfare. However, confounding
factors are common when measuring glucocorticoid hormones. In this study, we validated a steroid
hormone extraction protocol and the use of a commercial enzyme immunoassay (EIA) test to measure
cortisol concentrations in common bottlenose dolphin (Tursiops truncatus) and beluga (Delphinapterus
leucas) epidermal samples. Moreover, we examined the effect of sample mass and body location on
cortisol concentrations. Validation tests (i.e., assay specificity, accuracy, precision, and sensitivity)
suggested that the method was suitable for the quantification of cortisol concentrations. Cortisol was
extracted from small samples (0.01 g), but the amount of cortisol detected and the variability between
duplicate extractions increased as the sample mass decreased. In common bottlenose dolphins,
epidermal skin cortisol concentrations did not vary significantly across body locations while there
was a significant effect of the individual. Overall, we present a contribution towards advancing and
standardizing epidermis hormone assessments in cetaceans.

Keywords: cortisol; skin; stratum corneum; keratin; steroid hormones; cetacean; stress;
conservation biology
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1. Introduction

Societies show a growing concern about the welfare of cetaceans maintained in captive
settings worldwide. Further, this concern spreads to free-ranging animals threatened by
anthropogenic disturbances and environmental changes and whose habitats are under
human management actions. In this context, adapting and developing tools for a scientific
animal welfare assessment has become an emerging necessity [1–3].

Animal welfare is a multidimensional concept that must be assessed through different
approaches and methodologies. Among these, the physiological parameters related to
health and emotional states, and more specifically to the physiological stress response, are
useful “nonspecific” indicators of a variety of potential welfare problems [4,5]. Exposure
to stressful stimuli usually results in an increased secretion of glucocorticoid hormones
(GCs) subsequent to the activation of the hypothalamic–pituitary–adrenal (HPA) axis [6].
Importantly, the stress response is not inherently bad as it helps an animal to cope with
its environment and challenging circumstances. However, if activated excessively or
for a long time it may have adverse effects resulting in impaired biological functions
(e.g., reproduction, immunity, and growth [7]).

Cortisol is one of the main GCs secreted in marine mammals, and it has been identified
as a potential biomarker of the stress response in several cetacean [8–10]. Cortisol in both
captive and wild cetaceans has been measured in multiple matrices such as serum or
plasma [11–13], saliva [14], respiratory vapour (‘blow’) [15], urine [11], faeces [12], and
blubber [12,15–17].

Although blood is the typical matrix used to measure cortisol, alternative tissues offer
advantages as most are less invasive and enable hormonal assessments in free-ranging
cetaceans without the need to capture them. Moreover, alternative matrices in endocrine
assessments allow different assessments of the stress response of a single individual. For
instance, marine mammal’s blubber and faeces have been shown to reflect relatively recent
elevations in serum cortisol, being detectable within two and five hours, respectively, in
common bottlenose dolphins [12], and thus, they have been proposed as indicators of the
mid-term activation of the HPA axis. In contrast, cortisol levels accumulated in keratinous
materials have been considered an indicator of the longer-term (‘chronic’) activation of the
HPA axis [18]. Cortisol concentrations have been measured in the hair and nails of non-
cetacean mammals (e.g., [19–22]), feathers of birds [23,24], and shed skins of snakes [25].
These keratinous matrices are not present in cetaceans, but it has been possible to measure
long-term accumulated cortisol in the epidermis [26], baleen [27], and earplug [28].

Recent research by Bechshoft et al. [26,29] indicates that the epidermis could be ade-
quate to assess long-term stress in living cetaceans. This would be particularly helpful in
conservation research for assessing chronic cumulative impacts and establishing relation-
ships between the cause and effect, among others [30,31].

Skin is the body’s physical barrier between the external and the internal environments
and communicates with neurological, endocrine, and immune regulatory networks. As
in other mammals, cetacean skin is composed of epidermal, dermal, and hypodermal
layers [32]. However, its anatomy and functions have been highly modified from its
terrestrial ancestors [33].

Cetacean epidermis is thicker than that of terrestrial mammals, allowing higher resis-
tance and the maintenance of homeostasis in water [34]. It is parakeratotic and lacks the
stratum granulosum and stratum lucidum [35]. It consists of three histologically distinct
layers: the stratum basal (that generates new cells), the stratum intermedium, and the
stratum corneum [36]. The basal layer has continuous mitoses and sloughing, and desqua-
mation caused by water friction is rapid, showing a very high cellular turnover rate [37]. In
common bottlenose dolphins the epidermal turnover time has been described as lasting
approximately 73 days [37].

The growth and replacement of cetacean epidermis is understood as a continuous
process [33] affected by factors such as trauma, hormonal influences, diurnal effects, and
environmental fluctuations in temperature [37]. Belugas, however, have a unique pattern



Animals 2024, 14, 1377 3 of 18

of habitat use that has set the stage for cyclical ‘phases’ in the epidermal growth, which
have been described analogous to a molt [38]. Studies have documented increased thyroid
secretion [39] and enhanced epidermal cell proliferation [38] at the time of year when
belugas occupy estuaries. There, the exposure to warm fresh water and active abrasion of
the skin surface may promote the proliferation of new skin cells as well as the detachment
of cellular debris from the stratum externum [40].

Cortisol concentrations have been successfully measured in epidermal skin samples
from harbour porpoise (Phocoena phocoena; Bechshoft et al. [26]) and common bottlenose
dolphins [29] through liquid chromatography–mass spectrometry (LC—MS/MS). Peaks in
circulating cortisol (i.e., acute stress) have been detected in common bottlenose dolphin
sloughed epidermis with an average delay of 46 days, suggesting that full-depth epidermis
samples could reflect longer-term cortisol levels (i.e., chronic stress) during that period of
time [29]. Nevertheless, before using epidermal cortisol concentrations as an indicator of
stress and therefore as a tool to assess cetacean welfare, several knowledge gaps need to
be addressed. Some of these are related to methodological considerations while others are
related to the kinetics of cortisol integration into skin [27,41].

Confounding factors are common when measuring glucocorticoid hormones in differ-
ent matrices [19,42–46], and identifying and characterizing these is necessary to interpret
these indicators correctly. In particular, the interpretation of cetacean epidermal cortisol
concentrations may be confounded by sample storage and treatment techniques, the sex
and age of the individual, variations in matrix growth rates, the location of the body and the
epidermal layers sampled, among others [44,46–49]. Further, obtaining cetacean skin sam-
ples can be challenging, and especially in free-ranging animals, samples are often divided
for multiple analyses in order to maximize their usefulness. For this reason, establishing
the minimum sample mass needed to obtain robust, replicable measurements of cortisol
concentrations for an extraction method is essential [50].

Using an immunoassay is probably the most common method for analysing GC levels
in diverse tissue types, and two versions are mostly used, enzyme immunoassays (EIAs)
and radioimmunoassays (RIAs), both competitive binding assays and highly sensitive.
Importantly, each assay must be validated for a new species and matrix to ensure reliable
and interpretable results [51]. Furthermore, it is noteworthy that liquid chromatography–
tandem mass spectrometry (LC-MS/MS) has been widely adopted, especially in recent
research, for quantifying hormones in non-invasive samples from across diverse species.

Our objectives in this study were (i) to develop a method for a non-invasive epider-
mis desquamation collection in captive common bottlenose dolphins and belugas; (ii) to
validate a protocol for steroid hormone extraction and for the analysis of cetacean epi-
dermal cortisol concentrations using a commercial EIA test; and (iii) to identify potential
confounding factors that could affect cortisol concentrations related to sex, sample mass,
and body location.

2. Materials and Methods
2.1. Experimental Design

Ten common bottlenose dolphins and three belugas housed in the Oceanogràfic de
Valencia aquarium at the City of the Arts and the Sciences (Comunidad Valenciana, Spain)
were used in this study. Common bottlenose dolphins included in the study were eight
adults (four males and four females) and two juveniles (males) with a mean age of 23.8 years
(range 9 to >40). Belugas included one calve male, one adult female, and one adult male
with an age of 3, 22, and more than 55 years, respectively.

The dolphin’s facility consisted of seven outdoor pools eleven metres deep and inter-
connected by variably opened or closed gates, with a total capacity of 23 million litres of
sea water. Water temperatures ranged from 19.21 to 26.26 ◦C during the year, ensuring that
all animals were always within their thermal comfort range. Diets consisted of frozen fish,
mainly herring (Clupea harengus), capelin (Mallotus villosus), hake (Merluccius merluccius),
and squid (Loligo spp.), and were formulated to meet individual animal requirements. The
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beluga’s facility consisted of four indoor pools six metres deep and interconnected by
variably opened or closed gates, with a total capacity of 3.5 million litres of sea water.
Water temperature varied between 11 and 16 ◦C. Diets consisted of frozen fish, mainly
herring (Clupea harengus), capelin (Mallotus villosus), hake (Merluccius merluccius), sprat
(Sprattus sprattus), and blue whiting (Micromesistius poutassou), and were formulated to
meet individual animal requirements.

Positive reinforcement training was the main tool used to assist with animal husbandry,
veterinary, and research procedures. Epidermis sampling was conducted without causing
injury to the animals and without altering their daily programmed activities, locations, or
group compositions. Moreover, individuals attended and participated voluntarily in the
sampling; otherwise, the procedure was postponed.

2.2. Epidermal Sampling

One sample per individual was collected weekly over the course of a year between
2018 and 2019. Epidermis sampling consisted of a trainer placing the animal in a “line
up” position (parallel to the edge of the facility) and with the sampling area out of the
water. New behavioural training was not necessary as the animals were desensitized with
different objects and techniques as a part of their daily routine. The epidermis sampling
area was prevented from getting wet and dried with a gauze pad. A semi-rigid plastic
card, comparable in material and flexibility to an identity document or a membership card,
featuring a smooth edge and sterilized with alcohol, was utilized to gather desquamated
epidermis. This was achieved by scraping in multiple directions and applying moderate
pressure on healthy skin areas approximately 15 × 15 cm in size (Figure 1). After 3 to
6 scrapings, the sampled epidermis was transferred into a 1.5 mL Eppendorf tube. This was
achieved by carefully aligning the edge of the card with the tube’s aperture and guiding the
epidermis particulates into the tube, all while wearing gloves to prevent any contamination
(Figure 1). After 3 to 6 scrapings, sampled epidermis flakes were transferred into a 1.5 mL
Eppendorf tube by meticulously guiding the edge of the card into the tube’s aperture
without direct contact and employing gloves to prevent contamination. Subsequently, the
sample was transported to the laboratory, accompanied by refrigerant gel packs within a
range of 5 to 15 min, and was then stored at −20 ◦C to ensure preservation.
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Figure 1. Collection of epidermis from the dorsal fin of a bottlenose dolphin in professional human
care (Tursiops truncatus). The left image displays a trainer using a semi-rigid plastic card to scrape the
fin after drying the area. The right image demonstrates how the epidermis sample is carefully placed
into an Eppendorf tube to avoid contamination.

2.3. Sample Preparation and Storage

Frozen skin samples were dried in an oven (Heraeus model T6; Kendro® Laboratory
Products, Langenselbold, Germany) at 36 ◦C for 72 h in order to evaporate the remaining
water. Once dried, samples were cut into small pieces and then ground in a ball mill
(MM200, Retsch, Haan, Germany) for 15 min at 25 Hz to homogenize the contents. To
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avoid losing samples, each Eppendorf tube with stainless-steel balls inside was fixed inside
a 10 mL stainless-steel grinding jar. Grinding media was then separated using magnets,
and the pulverized samples were stored at −20 ◦C.

2.4. Epidermis Pool, Effect of Sample Mass, and Sample Processing Error

We created homogenous mixtures of pooled epidermis samples to perform validation
tests and examine methanol extraction efficiency with different amounts of samples. For
common bottlenose dolphins, five pools were created using between 4 and 12 samples
that were previously homogenized and pulverized. This epidermis dust was then mixed
thoroughly. Pooled samples were then divided into 10 subsamples in five duplicated mass
categories: 5, 10, 20, 50, and 100 mg (solvent/sample ratios of 300:1, 150:1, 75:1, 30:1, and
15:1 (µL:mg), respectively). For belugas, three pools (one per individual) were created
using between 3 and 7 samples as described before. Pooled samples were then divided
into 6 subsamples in three duplicated mass categories: 10, 50, and 100 mg (solvent/sample
ratios of 150:1, 30:1, and 15:1 (µL:mg), respectively). Each subsample was extracted and
processed in the laboratory independently.

2.5. Effect of Body Location

To evaluate the effect of body location, all individuals were sampled simultaneously
on multiple body sites. The objective was to examine whether significant differences in
epidermal cortisol concentrations existed depending on the region of the body from which
the sample is collected.

Dolphins’ scraped epidermis samples were collected from eight locations along the
left and right side of the individuals: (1) left dorsal fin; (2) right dorsal fin; (3) left dorsal
peduncle; (4) right dorsal peduncle; (5) left ventral peduncle; (6) right ventral peduncle;
(7) dorsal caudal fin; and (8) ventral caudal fin (Figure 2). Samples were normalized by a
mass of 15 to 20 mg due to an effect of sample masses detected in the previous phase of
the study. Samples of less than 15 mg were discarded from analysis. Finally, samples were
dried and stored, as described in 2.3, before hormone extraction.

Animals 2024, 14, x FOR PEER REVIEW 5 of 19 
 

(MM200, Retsch, Haan, Germany) for 15 min at 25 Hz to homogenize the contents. To 
avoid losing samples, each Eppendorf tube with stainless-steel balls inside was fixed in-
side a 10 mL stainless-steel grinding jar. Grinding media was then separated using mag-
nets, and the pulverized samples were stored at −20 °C. 

2.4. Epidermis Pool, Effect of Sample Mass, and Sample Processing Error 
We created homogenous mixtures of pooled epidermis samples to perform valida-

tion tests and examine methanol extraction efficiency with different amounts of samples. 
For common bottlenose dolphins, five pools were created using between 4 and 12 samples 
that were previously homogenized and pulverized. This epidermis dust was then mixed 
thoroughly. Pooled samples were then divided into 10 subsamples in five duplicated mass 
categories: 5, 10, 20, 50, and 100 mg (solvent/sample ratios of 300:1, 150:1, 75:1, 30:1, and 
15:1 (µL:mg), respectively). For belugas, three pools (one per individual) were created us-
ing between 3 and 7 samples as described before. Pooled samples were then divided into 
6 subsamples in three duplicated mass categories: 10, 50, and 100 mg (solvent/sample ra-
tios of 150:1, 30:1, and 15:1 (µL:mg), respectively). Each subsample was extracted and pro-
cessed in the laboratory independently. 

2.5. Effect of Body Location 
To evaluate the effect of body location, all individuals were sampled simultaneously 

on multiple body sites. The objective was to examine whether significant differences in 
epidermal cortisol concentrations existed depending on the region of the body from which 
the sample is collected. 

Dolphins’ scraped epidermis samples were collected from eight locations along the 
left and right side of the individuals: (1) left dorsal fin; (2) right dorsal fin; (3) left dorsal 
peduncle; (4) right dorsal peduncle; (5) left ventral peduncle; (6) right ventral peduncle; 
(7) dorsal caudal fin; and (8) ventral caudal fin (Figure 2). Samples were normalized by a 
mass of 15 to 20 mg due to an effect of sample masses detected in the previous phase of 
the study. Samples of less than 15 mg were discarded from analysis. Finally, samples were 
dried and stored, as described in 2.3, before hormone extraction. 

 
Figure 2. Body locations from which epidermis samples were obtained from ten common bottlenose 
dolphin individuals (Tursiops truncatus): (1) left dorsal fin; (2) right dorsal fin; (3) left dorsal pedun-
cle; (4) right dorsal peduncle; (5) left ventral peduncle; (6) right ventral peduncle; (7) dorsal caudal 
fin; and (8) ventral caudal fin. Illustration credit: Emma Abad García, 2022. 

Figure 2. Body locations from which epidermis samples were obtained from ten common bottlenose
dolphin individuals (Tursiops truncatus): (1) left dorsal fin; (2) right dorsal fin; (3) left dorsal peduncle;
(4) right dorsal peduncle; (5) left ventral peduncle; (6) right ventral peduncle; (7) dorsal caudal fin;
and (8) ventral caudal fin. Illustration credit: Emma Abad García, 2022.
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Belugas’ scraped epidermis samples were collected from ten locations along the left
and right side of the individuals: (1) left dorsal anterior to the dorsal ridge; (2) right dorsal
anterior to the dorsal ridge; (3) left dorsal ridge; (4) right dorsal ridge; (5) left dorsal
peduncle; (6) right dorsal peduncle; (7) ventral peduncle; (8) dorsal caudal fin; (9) ventral
right caudal fin; and (10) right dorsal pectoral fin. In all three individuals, we only obtained
enough samples (equal or more than 15 mg of dry epidermis) in the dorsal caudal fin and
in the dorsal pectoral fin. Due to the low number of individuals and samples obtained, we
decided to use the right dorsal pectoral fin as the standard sample location throughout the
study without analysing the differences between the two locations.

2.6. Hormone Extraction

A methanol-based extraction protocol was designed based on the method previously
described by Tallo-Parra et al. [52] to extract cortisol from the hair of dairy cows. For
each sample, 1.5 mL of pure methanol was added, and the samples were vortexed and
then moderately shaken for 18 h at 30 ◦C (G24 Environmental Incubator Shaker; New
Brunswick Scientific Co. Inc., Edison, NJ, USA) for steroid extraction. Following the
extraction, samples were centrifuged at 7000× g for 2 min.

Subsequently, 1.2 mL of supernatant was transferred into a new 2 mL Eppendorf tube
and then placed in an oven (Heraeus model T6; Kendro Laboratory Products, Langensel-
bold, Germany) at 38 ºC. Once the methanol was completely evaporated (approximately
after 36 h), the dried extracts were reconstituted with 0.15 mL of EIA buffer (1 M phosphate
buffered saline) provided by the EIA assay kit (Cortisol ELISA Kit; Neogen® Corporation,
Ayr, UK) and vortexed for 30 s. This dilution was chosen to fall near the 50% bound on the
standard curve, the area of greatest assay precision. Then, the samples were immediately
stored at −20 ◦C until analysis.

2.7. Hormone Detection and Assay Validation

Cortisol concentrations and validation tests were determined by using three competi-
tive EIA kits (Neogen® Corporation Europe, Ayr, UK) and following the manufacturer’s
instructions. Standard curves ranged between 0 and 3.8 ng/mL, and cortisol concentrations
in the samples were determined using a linear regression model based on the standard
curve. All samples were assayed in duplicate, and the mean hormone concentration
was recorded.

Following the essential criteria for immunological validation [53], the precision, speci-
ficity, accuracy, and sensitivity of the assays were determined. Extracts from pooled 20 mg
samples for common bottlenose dolphins and 50 mg samples for belugas were used for
both the assay validation and the study of sample mass effect.

Precision was evaluated by calculating intra- and inter-assay coefficients of variation
(CV). The intra-assay CV was calculated as a mean of the intra-assay CV of all the samples
analysed per duplicate. The inter-assay CV was calculated only for common bottlenose
dolphins’ samples as a mean of the inter-assay CV of 2 pooled samples analysed per
duplicate in two EIA kits.

Accuracy was assessed through the spike-and-recovery test by adding known volumes
of pooled extracts to different known concentrations of pure standard cortisol solution.
Then, recovery was calculated to examine the possible interference of components within
the extract with antibody binding. The percent recovery was calculated using the following
formula: (amount observed/amount expected) × 100. The amount observed was the value
obtained though the EIA analysis, and the amount expected was the mathematical calcula-
tion of cortisol concentrations in the spiked sample considering the original concentrations
of both pooled extracts and standard cortisol solutions.

Specificity was assessed by the linearity of the dilution, determined by using 1:1,
1:2, 1:5, and 1:8 dilutions of pools with EIA buffer. According to the manufacturer,
the cross-reactivity of the EIA antibody with other steroids is as follows: prednisolone
47.4%, cortisone 15.7%, 11-deoxycortisol 15.0%, prednisone 7.83%, corticosterone 4.81%,
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6β-hydroxycortisol 1.37%, 17-hydroxyprogesterone 1.36%, and deoxycorticosterone 0.94%.
Steroids with cross-reactivity less than 0.06% are not presented. Finally, sensitivity was
given by the smallest amount of hormone concentration detected.

2.8. Statistical Analyses

Data were processed and analysed using Statistical Analysis System (SAS.9.4. soft-
ware, SAS Institute Inc.; Cary, NC, USA). All the values are presented as mean ± SD. A
p-value < 0.05 was considered for significance.

For the biochemical validation, statistical correlations in the dilution test (expected vs.
obtained values) was determined using the Pearson’s Product correlation test. One-way
analysis of variances (ANOVAs) were performed to determine if there were significant
differences in the obtained sample mass between individuals, sampling week (including
one year from January to December in the analysis) and season. Independent sample
t-tests were used to determine significant differences between common bottlenose dolphins’
sexes and ages (adults and juveniles) in the amount of obtained sample mass. Linear
regression was performed to test for relationships between the sample mass and epidermal
cortisol concentrations.

Finally, a mixed linear regression model (PROC MIXED, the method of restricted
maximum likelihood (REML)) was applied to investigate the effect on dolphins’ epidermal
cortisol concentrations of body location, sex, age, and ELISA plate, included as fixed effects.
Each individual was treated as a random effect in the model.

3. Results
3.1. Validation of the Epidermis Collection Methodology and the EIA

In common bottlenose dolphins, we collected 407 samples of 35.4 ± 23.18 mg of dry
epidermis, range: 1 to 145 mg. The semi-rigid plastic card consistently collected enough
sample mass (≥20 mg of dry epidermis) in 72.97% of the sampling attempts (Figure 3).
Significant differences in the dried sample mass were found among individuals (ANOVA:
F(9, 397) = 6.04, p < 0.001), sampling weeks (ANOVA: F(45, 361) = 3.49, p < 0.001), and
seasons (ANOVA: F(3, 403) = 12.16, p < 0.001). Post hoc Tukey HSD tests revealed that
fall (46.14 ± 27.28 mg) had a significantly higher sample mass compared to summer
(28.70 ± 16.86 mg) and winter (32.94 ± 23.44 mg). There were no significant differences
between fall and spring (34.36 ± 20.13 mg) or among spring, summer, and winter. No
significant differences in the residuals of the sample mass were found between sexes (t-
test: t(405) = 0.85, p = 0.398). However, the sample mass tended to be higher in adult
(37.89± 23.56 mg) than in juvenile individuals (30.98 ± 21.87; t-test: t(405) = 2.92, p < 0.01).
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Figure 3. Percentage of collected epidermis samples equal or greater than 5, 10, 20, 50, and 100 mg
of dry epidermis and 20, 50, and 100 mg of dry epidermis in common bottlenose dolphins (Tursiops
truncatus) and belugas (Delphinapterus leucas), respectively.

In belugas, we collected 117 samples of 113.03 ± 213.28 mg of dry epidermis, range:
3 to 1076 mg. The semi-rigid plastic card consistently collected enough sample mass
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(≥ 20 mg of dry epidermis) in 94.87% of the sampling attempts (Figure 3). No significant
differences in the residuals of the sample mass were found among individuals (ANOVA:
F(2, 114) = 0.94, p = 0.393), sampling weeks (ANOVA: F(52, 64) = 0.947, p = 0.333), nor across
seasons (ANOVA: F(3, 113) = 1.43, p = 0.239).

The individuals of both species participated voluntarily in all sampling attempts and
did not show avoidance or discomfort behaviours. The sampling time per individual was
around 1 min.

For common bottlenose dolphins, the mean intra-assay CV was 9.35 ± 7.13%. The
mean inter-assay CV was 4.55 ± 3.65%. In the linearity of the dilution, the obtained cortisol
concentrations were correlated with the expected cortisol values (Pearson: r(3) = 0.96,
p = 0.017; Figure 4). The average recovery percentage from the spike recovery test was
108.17 ± 20.85%. The sensitivity of the assay was 0.061 ng cortisol/g of dried epidermis.
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Figure 4. Biochemical validation of the enzyme immunoassay: correlation between observed and
theoretical epidermal cortisol concentrations obtained in the dilution test. Left: common bottlenose
dolphins (Tursiops truncatus; Pearson: r(3) = 0.96, p = 0.017); right: belugas (Delphinapterus leucas;
Pearson: r(3) = 0.98, p = 0.017).

For belugas, the mean intra-assay CV was 8.06 ± 5.33%. In the linearity of the dilution,
the obtained cortisol concentrations were correlated with the expected cortisol values
(Pearson: r(3) = 0.98, p = 0.017; Figure 4). The average recovery percentage from the spike
recovery test was 115.17 ± 15.86%. The sensitivity of the assay was 0.03 ng cortisol/g of
dried epidermis.

3.2. Effect of Sample Mass

In common bottlenose dolphins, the measured concentrations of cortisol per gram of
dry epidermis increased significantly as the masses of the pooled samples decreased (linear
regression model: R2 = 0.63, F(1, 48) = 82.51, p < 0.001). Moreover, the one-way ANOVA
indicated a significant effect of the sample mass on epidermal cortisol concentrations
(F(4, 45) = 49.64, p < 0.001). The post hoc Tukey’s honestly significant difference (HSD)
test revealed significantly higher cortisol concentrations (ng/g) in the 5 mg sample mass
compared to those in the 10 mg (HSD: p = 0.004), 20 mg, 50 mg, and 100 mg sample
masses (HSD: p < 0.001; Figure 5). The 10 mg sample mass exhibited lower cortisol levels
than the 5 mg samples (HSD: p = 0.004) but higher levels than those in the 20 mg (HSD:
p = 0.005), 50 mg, and 100 mg sample masses (HSD: p < 0.001; Figure 5). Additionally,
cortisol extractions from 50 mg samples showed concentrations comparable to those from
20 mg and 100 mg samples (HSD: p = 0.97 and 0.121, respectively; Figure 5).
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Figure 5. Relationship between sample mass (mean cortisol concentrations ± SEM) and epidermal
cortisol concentration in duplicate subsamples of the pools obtained from pulverized epidermis
from common bottlenose dolphins (Tursiops truncatus; left) and belugas (Delphinapterus leucas; right).
Extractions were performed in duplicate for each sample mass.

In belugas, the measured concentrations of cortisol per gram of dry epidermis in-
creased significantly as the masses of the pooled samples decreased (linear regression
model: R2 = 0.42, F(1, 16) = 11.49, p = 0.004). However, the one-way ANOVA did not find
an effect of the sample mass on epidermal cortisol concentrations (F(2, 15) = 0.24, p = 0.783).

Moreover, variability between duplicate extractions was, in most cases, high for both
5 and 10 mg samples and low for 20, 50, and 100 mg samples (Figure 5).

3.3. Effect of Individual, Body Location, and Sex in Common Bottlenose Dolphins

The average epidermal cortisol concentration was 0.71 ± 1.05 ng cort/mg of dry
epidermis (range: 0.13 to 8.09).

Epidermal cortisol concentrations did not vary significantly across body locations
(LMM: fixed effect; F = 0.84; p = 0.568; Figure 6), sexes (LMM: fixed effect; F = 0.44; p = 0.529),
nor EIA plate (LMM: fixed effect; F = 0.71; p = 0.428). Meanwhile, there was a significant
effect of the individual (LMM: random effect; p < 0.05; Figure 7).
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Figure 6. Epidermal cortisol concentrations across eight body sites in 10 common bottlenose dolphins
(Tursiops truncatus): dorsal caudal fin, ventral caudal fin, left dorsal fin, right dorsal fin, left dorsal
peduncle, right dorsal peduncle, left ventral peduncle, and right ventral peduncle.
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Figure 7. Epidermal cortisol concentrations across ten common bottlenose dolphins (Tursiops trunca-
tus) in different body locations.

4. Discussion

In this study, we analysed cortisol concentrations in the epidermis of common bot-
tlenose dolphins and belugas to validate a method for epidermis collection and steroid
hormone extraction, as well as the use of an enzyme immunoassay (EIA) test to quantify
cortisol concentrations in this alternative matrix.

4.1. Validation of the Epidermis Collection Methodology and the EIA

The use of a semi-rigid plastic card provided samples to measure cortisol in most
sampling attempts without any apparent discomfort for the animals and without the need
of complex training or altering the facility routines. Thus, it proved to be a non-invasive,
easy, safe, and fast (i.e., feasible) method to collect samples from this species in captivity.
However, amplifying the epidermis sampling area to more than ≈15 × 15 cm in common
bottlenose dolphins may have provided a bigger proportion of samples complying with
the minimum sample mass required to perform cortisol analysis in the present study.

In free-ranging animals, obtaining epidermis samples through these methods would
be possible when animals are restrained for tagging or health assessments and during disen-
tanglement efforts. Moreover, epidermis samples can be obtained by remote biopsying [54]
or even by collecting the epidermis naturally sloughed off at sea surface [55] or from
animals bow riding boats. The epidermis from stranded animals and tissue banks could
also be used, enabling retrospective studies [26].

The amount and appearance of the epidermis collected varied among the samples from
both species. For instance, some sampling attempts resulted in trace amounts of epidermis
collected, while others resulted in a mixture of small particles of sloughed epidermis or in
peeled sheets. Therefore, when designing studies, it is important to consider that sampling
in captive settings may be sometimes unsuccessful. This is also described in Bechshoft
et al.’s study [29] which suggests that sloughing is not continual but occurs in pulses with
different stages of epidermis turnover. In common bottlenose dolphins, the amount of
collected epidermis significantly varied among individuals, weeks, and seasons. Individual
variability was related to age but not to sex. The variability in the amount of epidermis
collected may correspond to differences in skin cell proliferation and maturation rate as
a function of skin trauma and hormonal influences (individual and sex variation) and as
a function of environmental fluctuations in temperature and salinity (week and season
variation; Hicks et al., 1985). However, additional research characterizing skin growth is
necessary to clarify these variations.

Contrarily, in belugas, the amount of collected epidermis did not vary among in-
dividuals, sampling weeks, nor seasons. However, we had a low sample size of three
individuals. Moreover, although belugas show seasonal patterns of epidermal growth,
a reduction in the circulating levels of thyroid hormones [56] and the absence of strong
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seasonal or environmental cues under human care may suppress epidermal growth cycles
in captive individuals.

The assay validation results indicate that cetacean desquamated epidermis contains a
quantifiable amount of cortisol that can be detected with the methodology presented here,
even using an EIA kit not designed specifically for the epidermis nor cetacean species.

Both intra-assay CVs revealed good repeatability within the assays, while the inter-
assay CV suggested a good repeatability between the two assays. In the spike-and-recovery
test, various quantities of cortisol previously added to the pooled extracts were quan-
titatively recovered; thus, other components of the samples probably did not interfere
acutely with the estimation of the hormone. Meanwhile, the serial dilution of pooled
scraped epidermis sample extracts ran parallel to both assay standard curves, suggesting
that cortisol successfully bound to the antibody in a dose-dependent way and without
other substances in the epidermis matrix interfering with the steroid–antibody interaction.
However, we cannot dismiss the possibility that uncommon steroid metabolites and/or
conjugated steroids were present in dolphin or beluga epidermis and, not included in the
manufacturer’s information, cross-reacted with the antibody [57].

The use of high-performance liquid chromatography coupled with tandem mass
spectrometry (LC-MS/MS) as described in Bechshoft et al. [26,29] is a more precise and
sensitive technique than EIA for the quantification of epidermal cortisol concentrations [57].
However, in contrast to LC-MS/MS, EIA equipment is significantly more economical and
demands lower analytical skills [57]. For this reason, immunoassays remain the method of
choice in many laboratories and in particular of researchers studying wildlife.

Finally, the range of cortisol concentrations obtained in common bottlenose dolphins
(0.13 to 8.09 ng cort/mg of dry epidermis) is comparable to that obtained in the same
species by Bechshoft et al. [29], who reported range values of 0.31 to 16.17 ng cort/mg of
dry epidermis. This may suggest that the modifications made to the previously described
methodology by Bechshoft et al. [26] have a minimum impact on hormone extractions
and quantifications. Additionally, belugas exhibited a cortisol concentration range (0.47 to
1.44 ng cort/mg of dry epidermis) comparable to that of common bottlenose dolphins.

4.2. Effect of Sample Mass

The use of very small epidermis samples (e.g., 5 and 10 mg) resulted in higher apparent
cortisol concentrations in both species. In common bottlenose dolphins, samples of 5 and
10 mg resulted in a higher dispersion of the values and variability between duplicate
extractions and repeated measurements in the EIA. This effect has already been documented
for cortisol in other matrices such as blubber [58], feathers [59], and faeces [44], and it could
be caused by several methodological problems. For instance, errors associated with mass
weighting have a stronger quantitative impact on the final calculation of hormones when
the sample mass decreases [47,60]. Moreover, the efficiency of cortisol extraction may
decline at lower extract-solvent-volume-to-sample-mass ratios [47].

Our results suggest a potential sample mass threshold of 20 mg, below which cortisol
concentrations data seem to become overestimated and less repeatable. Therefore, we
recommend that future studies use this protocol to avoid extractions of small samples
(<20 mg). Moreover, given the variability in apparent cortisol concentrations between
sample mass classes, we suggest standardizing the sample mass used throughout studies
whenever possible. In our study, we used a standard sample mass of 20 mg in common
bottlenose dolphins as mass values higher than 20 mg can be difficult to obtain (for instance,
72.97% vs. 23.59% of valid samples for 20 mg and 50 mg of sample mass, respectively). In
belugas, we initially decided to use a standard sample mass of 50 mg for the methodological
validation. However, only 53% of the collected samples reached this dry mass, while 94.87%
of the samples reached 20 mg. Therefore, we recommend amplifying the sampling area or
using a standard sample mass of 20 mg in both species.
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4.3. Effect of Individual, Body Location, and Sex

The individual had a significant effect on epidermal cortisol concentrations. Although
this study was intended to be the first step in the validation of epidermal cortisol con-
centrations as an indicator of the stress response in common bottlenose dolphins, the
inter-individual differences observed could be related to differences in individuals’ en-
docrinological status. Meanwhile, no differences in epidermal cortisol concentrations were
found among sexes. This coincides with other studies showing no differences in corti-
sol concentrations across sexes in common bottlenose dolphin blood [11,42], faeces [61],
and blubber [62]. Conversely, other authors detected sex-related variations in dolphin
blood [15], while many studies across vertebrate taxa have found a variation in cortisol
levels with respect to sex (e.g., [63–65]). This may be partly explained by sex differences
in the body condition index [66] or in the sex-specific effects of gonadal steroids on basal
and stress-induced HPA axis activity [67,68]. Further studies with higher sample sizes are
needed to assess the influence of sex on epidermal cortisol concentrations.

Although differences in epidermal cortisol concentrations were not found among
dolphin body locations in this study, these results should be interpreted with caution,
particularly due to the limited number of animals sampled. In fact, the inconsistent but
high variability obtained in epidermal cortisol concentrations between body locations could
suggest that cortisol is not homogeneously distributed along dolphin epidermis.

The ventral part of cetacean epidermis is typically thicker [69], while differences across
body regions exists in the dermal papilla height [70] and colour due to regional differences
in the concentration of melanocytes [71,72]. The heterogeneity in these and other potential
traits may explain cortisol regional variations along the body epidermis, which may lead to
erroneous results or comparisons between studies. For instance, in dogs and chimpanzees,
darker hairs had lower cortisol concentrations than lighter ones [73–75], whereas the
opposite was true in grizzly bears and dairy cattle [19,52]. The body location of blubber
has been related to differences in steroid hormone concentrations in cetaceans [49,76,77].
Considering these observations, we suggest that sampling the same specific body locations
would facilitate a more nuanced analysis in hormonal trends.

4.4. Cetacean Epidermis as a Storage Medium of Steroid Hormones

Epidermis growth occurs in the basal layer of the epidermis where matrix cells (ker-
atinocytes and melanocytes) undergo proliferation cycles that provide for the renewal of
the tissue. During epidermis growth, newly formed cells constantly displace the older
cells upward, first to the stratum spinosum and subsequently to the epidermis surface,
which consists of a stratum corneum with a parakeratosis-like morphology [35]. Finally,
the stratum corneum is sloughed off to the environment as sloughed epidermis [36]. The
speed of skin renewal may show some variation between individuals, depending on factors
such as trauma, hormonal influences, diurnal effects, and environmental fluctuations in
temperature and salinity. However, a period of approximately 73 days for the migration of
cells from the basal lamina to the most external surface has been described [37].

Cortisol synthesis occurs in pulsatile events in the adrenal gland followed by infusion
into the bloodstream [78]. The precise mechanisms by which cortisol is incorporated from
blood into growing skin cells is still not understood. However, following the multicompart-
ment model [79,80] and due to cortisol’s lipophilic character, the most likely incorporation
route is passive diffusion. Moreover, according to the free hormone hypothesis [81], only
the unbound, the free cortisol fraction of the plasma would be incorporated into skin.

Keratinous (or in case of skin, lipokeratinocytic; [82]) tissues are thought to reflect the
long-term cortisol status since its molecules are incorporated into cells as they grow and
keratinize (e.g., [83,84]. Evidence suggests that both the baleen and earplug from whales
can trap hormones, leaving a historical record of physiological state fluctuations [27,28,85].
For this reason, as is the case for the abovementioned matrices, it has been postulated that
a full-depth epidermis sample may reflect chronic cortisol levels, while a section of the
stratum basal (where cells are constantly produced) would most likely reflect more recent
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circulating cortisol concentrations, and a section of the stratum externum and sloughed
epidermis would provide information on the oldest physiological status [29]. In fact,
the relationship found in common bottlenose dolphins between cortisol peaks in blood,
blubber (2 h delay compared to blood), and epidermis (45–60 days delay compared to
blood) provides evidence of the latest [29].

However, in contrast to the baleen or earplug, the epidermis is a metabolically active
tissue, which demands caution in interpreting the measured hormone concentrations
retrospectively in relation to its growth rate. For instance, although the measurement
of glucocorticoids in hair has been presented as a method for assessing chronic stress
in studies on humans and animals, some authors have questioned the validity of hair
cortisol as a marker of stress outside the immediate past [86]. In some species, hair cortisol
concentrations seem to increase rapidly in response to acute stress events [66,87]. Further,
recent research using radio-labelled cortisol suggest that the hormone may be displaced
along the hair shaft and converted to cortisone and other metabolites instead of forming
pure cortisol discrete bands [88].

Therefore, as is the case with hair [86], we suggest there is no evidence at all to assume
that cortisol molecules accumulate and remain permanently locked into the skin as it grows,
which would be the basis to relate specific skin sections to time windows in the past.

Importantly, another potential source of cortisol is the epidermis itself. Several studies
proved that mammalian skin express elements of the hypothalamo-pituitary–adrenal (HPA)
axis such as the corticotrophin-releasing hormone (CRH), the CRH receptor-1 (CRH-R1),
and key enzymes of corticosteroid synthesis [89,90]. This results in the local synthesis and
release of cortisol as well as a negative feedback regulation on CRH expression. Therefore,
skin can be considered functionally equivalent to the HPA axis [91]. The skin “HPA” may
in fact coordinate the initial response to environmental stressors [92]. Therefore, cortisol
concentrations measured here may not only reflect adrenal activity but cortisol locally
derived [26,93].

Additionally, cortisol from the surface of the epidermis could be lost to sea water
due to its polarity as suggested for baleen [27] and described in human hair immersion in
water [94].

4.5. Implications of the Study and Future Research

To the best of our knowledge, this is the first evidence of cortisol measurements
through a commercial enzyme immunoassay in the epidermis from any species of cetacean.
Here, we propose a method to collect, process, and quantify epidermal cortisol concentra-
tions in a standardized, simplified, and relatively economic way.

An assessment of cortisol in the epidermis may serve as a unique biomarker of the
HPA activity over extended time periods in living cetaceans, avoiding the need of repeated
samplings and the effect of non-recurrent short-term stress [26]. Moreover, the epidermis
represents a more superficial tissue than blubber, and a sloughed portion can be collected
non-invasively in some species and eventually away from the animal, thus benefiting the
welfare impacts of research.

Cause–effect in relation to long-term stress in both captive and wild environments,
as well as the significance of chronic vs. short-term exposure to stressors in these species,
is an important study topic that could benefit from this technique. However, knowledge
relevant to interpret cortisol levels in the epidermis of cetaceans is still missing, and to
avoid misinterpretation, results should be approached cautiously.

Further studies should address some fundamental questions such as how GCs are
incorporated into cetacean epidermis and how long they persist post deposition. To find
this out, studies utilizing radioisotope-labelled GCs could be an excellent option [88,95].
Moreover, studies assessing the validity of epidermal cortisol concentrations as a wel-
fare indicator for cetaceans are crucial and necessary. For instance, studies on epidermal
cortisol concentrations in well-known captive individuals subjected to different stressors
and changes in their welfare (e.g., changes in their social or physical environment, man-
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agement, health, or behaviour) would generate valuable knowledge and allow studies of
content, construct, and criterion validity. Stressor features and timing, and other potential
stressors (not taken into account in the study design), should be recorded as accurately as
possible [86]. Meanwhile, factors not directly related to physical or emotional stress like
sex, age, or reproduction may alter baseline epidermal cortisol concentrations (as seen in
other matrices) and should be characterized. Variations in hormone content in different
sections of the epidermis and their capacity to represent cetaceans’ stress status could also
be investigated (e.g., inner layer vs. outer layer, sloughed epidermis vs. cut epidermis, and
full-depth epidermis vs. epidermis section).

Interestingly, other types of steroid hormones such as aldosterone, testosterone, or
progesterone can also be found in cetacean epidermis [29]. The methanol-based extraction
procedure described in this study can extract not only cortisol but other steroid hormones
from epidermis matrices, as was conducted in other keratin matrices [85,96]. Thus, other
commercial EIA assays could be validated as well for other steroid hormones such as
progesterone, testosterone, and aldosterone, and potentially, a single epidermis sample
and extraction procedure could allow the quantification of multiple steroid hormones
in cetaceans.

5. Conclusions

We present a method for a feasible and non-invasive epidermis collection in captive
common bottlenose dolphins and belugas. The study provides evidence that commercial
EIA immunoassays can perform well in quantifying cortisol in cetacean epidermis. The
individual had a significant effect on epidermal cortisol concentrations which may be
related to individuals’ endocrinological status differences, while sex did not. We suggest
that a sample mass of 20 mg has both good analytical results and a high probability of
sampling in captive common bottlenose dolphins. Further studies are needed to evaluate
the effect of body location on epidermis cortisol concentrations. However, we recommend
standardizing the body location for epidermis sample collections within a study to re-
duce variability and avoid potential confusion regarding the data. Overall, our results
suggest that epidermal hormone quantification potentially enables less or non-invasive and
longer-term assessments of physiological stress response in cetaceans. To further develop
epidermal cortisol concentrations as an indicator to be used in welfare and conservation
research, it is necessary to perform physiological validations from individuals existing in a
well-known welfare state.
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