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Abstract: Land use/land cover (LULC) changes significantly impact spatiotemporal groundwater
levels, posing a challenge for sustainable water resource management. This study investigates the
long-term (2000–2022) influence of LULC dynamics, particularly urbanization, on groundwater
depletion in Kabul, Afghanistan, using geospatial techniques. A time series of Landsat imagery
(Landsat 5, 7 ETM+, and 8 OLI/TIRS) was employed to generate LULC maps for five key years
(2000, 2005, 2010, 2015, and 2022) using a supervised classification algorithm based on Support
Vector Machines (SVMs). Our analysis revealed a significant expansion of urban areas (70%) across
Kabul City between 2000 and 2022, particularly concentrated in Districts 5, 6, 7, 11, 12, 13, 15, 17,
and 22. Urbanization likely contributes to groundwater depletion through increased population
growth, reduced infiltration of precipitation, and potential overexploitation of groundwater resources.
The CA-Markov model further predicts continued expansion in built-up areas over the next two
decades (2030s and 2040s), potentially leading to water scarcity, land subsidence, and environmental
degradation in Kabul City. The periodic assessment of urbanization dynamics and prediction of
future trends are considered the novelty of this study. The accuracy of the generated LULC maps
was assessed for each year (2000, 2005, 2010, 2015, and 2022), achieving overall accuracy values of
95%, 93.8%, 85%, 95.6%, and 93%, respectively. These findings provide a valuable foundation for
the development of sustainable management strategies for Kabul’s surface water and groundwater
resources, while also guiding future research efforts.

Keywords: groundwater; LULC; Kabul city; urbanization; impact

1. Introduction

Groundwater is a valuable freshwater resource that is stored in aquifers, which are
underground layers of rock or sediment that can hold water. Demands for groundwater
are increasing. The world’s growing population, expanding agricultural sector, and rising
economic activity are all driving forces behind the ever-increasing demand for water [1,2].
According to [2], groundwater is used for both domestic and agricultural purposes, and
it is especially important in areas where surface water is scarce. Many social, economic,
and environmental processes can affect groundwater quality and quantity. The effects of

Geosciences 2024, 14, 132. https://doi.org/10.3390/geosciences14050132 https://www.mdpi.com/journal/geosciences

https://doi.org/10.3390/geosciences14050132
https://doi.org/10.3390/geosciences14050132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0002-8995-0234
https://orcid.org/0000-0003-2670-3604
https://orcid.org/0000-0003-0527-6797
https://orcid.org/0000-0002-9414-8887
https://doi.org/10.3390/geosciences14050132
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences14050132?type=check_update&version=2


Geosciences 2024, 14, 132 2 of 16

land use and land cover (LU/LC) change on groundwater are becoming more well-known,
especially at the watershed scale [3,4].

The global trend of urbanization is driven by a number of factors, including the pull
of job opportunities and amenities in large cities, as well as the push of environmental
degradation and economic hardship in rural areas. This trend has led to the expansion of
urban areas and the intensification of agricultural production in surrounding areas. Rapid
urbanization in large cities, such as Taejon in South Korea, Beijing and Shanghai in China,
Solapur and Shimla in India, Nairobi in Kenya, and Islamabad in Pakistan, is a major driver
of groundwater depletion. This is because these cities rely heavily on groundwater for their
water supply, and the increasing demand for water is outpacing the rate of natural recharge.
As a result, groundwater levels are falling, and in some cases, wells have gone dry [5–10].

Kabul, the capital and largest city of Afghanistan, has experienced rapid urbanization
over the past two decades. With a population of about 5.3 million, it is considered the fifth
fastest growing city in the world [11–13]. After a political change in Afghanistan in 2001,
there was a gradual return to social, economic, and political stability. This led to an increase
in migration from poor villages and deprived areas of the country to Kabul, where people
could benefit from the available facilities. In addition to the internal migration, hundreds
of thousands of Afghan refugees also returned to the country from neighboring countries
after the establishment of a new government. Most of them settled in Kabul, which led
to a significant increase in the city’s population. The population of Kabul increased from
around 1 million in 2001 to 5.3 million people in 2021 [14,15].

Groundwater is a vital part of the water cycle, but it is difficult to study and under-
stand. The amount, location, and quality of groundwater resources are often unknown or
uncertain. This makes it challenging to manage groundwater effectively. Diverse remote
sensing-based studies have been conducted worldwide to assess the spatial distribution and
temporal variability of groundwater levels, as well as the factors that influence groundwater
levels, e.g., groundwater level assessment [16–20], impact of urbanization on groundwater
recharge rate [21–23], impact of land use/land cover on groundwater level [24–28], and
groundwater potential and recharge zone mapping [4,29–33].

Diverse studies have been conducted over the past years in Kabul to assess the
groundwater level, quality, quantity, and environmental factors that drive groundwater
dynamics [13,16,18,34–37]. However, only one study, by [13], has assessed the impact of
urbanization on the groundwater level of the Kabul aquifer. Other studies have focused
on the quantity and quality of groundwater in Kabul over specific periods of time. The
primary water source for Kabul is the Kabul aquifers, playing a vital role in the city’s
socioeconomic progress [18]. Nevertheless, excessive exploitation of these aquifers has
resulted in significant drops in groundwater levels in certain areas. According to [38],
groundwater extraction is occurring at a rate six times higher than its replenishment rate.
This overexploitation is a consequence of the growing population and has triggered a
crisis for the Paghman–Darulaman and Central Kabul aquifers. Furthermore, unsustain-
able groundwater development and excessive extraction have led to the deterioration of
groundwater quality. This depletion of groundwater poses a grave risk to both the region’s
socio-economic stability and its environmental well-being.

Groundwater depletion and its fluctuating levels in densely populated urban areas
like Kabul are intricate issues that demand regular investigation. This research aims to
delve into these complexities by leveraging geospatial technology to comprehensively
analyze the impact of land use/land cover and particularly built-up expansion on Kabul
city’s groundwater levels over a span of 22 years, from 2000 to 2022.

The outcomes of this meticulous investigation promise to be of paramount importance,
extending their benefits to various sectors. By shedding light on the intricate relation-
ship between urban development and groundwater dynamics, this study stands poised
to furnish pertinent governmental bodies and relevant authorities with crucial insights.
These insights, in turn, hold the potential to fuel more sustainable strategies for manag-
ing groundwater resources in Kabul. Moreover, as urbanization continues to be a global
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trend, the methodologies employed in this study transcend its specific geographical scope.
Researchers grappling with analogous challenges in arid and semi-arid regions can find
inspiration and guidance in the approaches employed herein.

2. Hydrological and Geological Settings of Study Area

Kabul, the capital of Afghanistan, is located in the east central part of the country,
at 69◦02′–69◦23′ E longitude, 34◦25′–34◦36′ N latitude, and altitude of 1800 m (6000 feet)
above sea level (Figure 1). The city is situated in a triangular valley between the Asamai
and Sherdarwaza mountain ranges and is bisected by the Kabul River [11,12]. Kabul city
has a total area of 1049 km2 land area and 396,095 dwelling units and is divided into 22
administrative districts [12,39]. The Kabul River, Logar River, and Paghman River are three
seasonal rivers that flow through Kabul (Figure 1). These rivers drain to the northeast
through the Tangi Gharu gorge. Kabul has a continental climate, with hot, dry summers
and cold, snowy winters. The average temperature in Kabul is 12.1 ◦C (53.8 ◦F), with a
high of 40 ◦C (104 ◦F) in July and a low of −10 ◦C (14 ◦F) in January [11,40].

Kabul is a mountainous city, with approximately 56% of its territory covered by
mountains and rough terrain. The remaining 38% of the city is flat. Guzarga-Asmai
Mountain divides the Kabul Basin into two sub-basins: the upper and lower Kabul sub-
basins. The upper sub-basin is located to the northwest of Kabul and drains southeast
through the upper Kabul and Paghman rivers. The lower Kabul River is formed when these
two rivers join together at a narrow gorge called Shardarwaza. The lower Kabul sub-basin
is located under the northeastern part of Kabul and drains via the Kabul and Logar rivers,
which join and pass through the second narrow gorge, called Tangi Gharo [41].

Kabul is one of the fastest growing cities in the world. The city’s population increased
from approximately 1.5 million in 2001 to around 4.9 million people by 2015, and a further
increase of up to 8 million is estimated by 2050. This rapid urbanization is putting a strain
on a city that was originally designed for around 800,000 people. As a result, an estimated
70% of Kabul’s residents live in informal or illegal settlements [12,39,42].

Shallow groundwater is the main source of water supply in Kabul. The Kabul basin is
situated at the intersection of three major fault systems. It comprises three interconnected
aquifers, which are 20–70 m thick and consist of coarse sandy to gravely detritus originating
from the surrounding mountains. The aquifers were deposited by the three rivers flowing
through the basin. The coarse aquifer material has a high permeability. Deeper parts are
affected by the cementation of pore spaces, resulting in the formation of semi-diagenetic
conglomerates. This decreases the pore space and interconnectivity, leading to lower well
yields. The main groundwater recharge occurs after the snowmelt from direct infiltration
from the rivers [43]. Based on [44], the city is situated upon a system of three interconnected,
unconsolidated alluvial aquifers. These aquifers were deposited as a series of terraced
fluvial (river) deposits by the historical flows of the Paghman, Logar, and Kabul Rivers.
The underlying aquifers are permeable (2.3 × 10−5 to 1.3 × 10−3 m/s) and act as a single
hydraulic system due to minimal internal barriers. Deeper sections show some mineral
cementation. Droughts and pumping have caused unconfined conditions, but past wetter
periods may have led to semi-confined aquifers with loess as the confining layer.

Geologically, Kabul City is located in the north central part of the Kabul Block. It
was formed by the faulting of crystalline rocks and erosion. The faulting uplifted the
surrounding mountains and hills, creating a depression in the landscape. Subsequent
erosion of these highlands and deposition of sediment in the basin grabens filled the
depression, resulting in the present landscape [45–47]. Kabul is bordered on the west by the
Paghman Massif, which is comprised of Proterozoic and Mesozoic crystalline rocks, as well
as Paleozoic and Mesozoic sedimentary rocks. These rocks are highly faulted, as described
by [48] (Figure 1). The Kohi Safi Mountain range borders the Kabul basin on the east and
northeast. It is a complex geological formation that contains Proterozoic and Paleogene
crystalline rocks, Paleozoic sedimentary rocks, and Triassic rhyolitic lavas [48]. According
to [48,49], the hills to the south of the Kabul basin are made up of sedimentary rocks from
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the late Paleozoic and Mesozoic eras, as well as intrusive rocks from the Cenozoic era. The
low hills within the basin are made up of Proterozoic gneiss and are surrounded by alluvial
fan material from the late Cenozoic era (Figure 1).
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Figure 1. General sketch of Kabul city location: (A) hydrological setting of Afghanistan and related
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3. Materials and Methods

In this study, we primarily utilized remote sensing and hydrogeological data to evalu-
ate the effects of land use and its expansion on groundwater depletion in Kabul city. We
acquired multispectral Landsat series data, including Landsat 5 TM, Landsat 7 ETM+, and
Landsat 8 OLI/TIRS, spanning five time points (2000, 2005, 2010, 2015, and 2022) from the
official NASA USGS website. The chosen time interval facilitates the alignment of remote
sensing data with groundwater level data. This alignment allows for the effective observa-
tion of how spatial patterns of urbanization influence (or are influenced by) groundwater
levels. The specifications of the dataset are elaborated in (Table 1). Hydrogeological data,
encompassing previous studies regarding the groundwater conditions in Kabul city, were
meticulously examined through an array of sources, including journal articles, conference
proceedings, published reports, and authorized official websites. Groundwater-level data,
including data for 1007 wells, spanning from 2000 to 2022 were sourced from various
institutions, notably the Ministry of Energy and Water (MEW), the Danish Committee for
Aid to Afghan Refugees (DACAAR), and the Japan International Cooperation Agency
(JICA), among others. The description, including numbers and comprehensive details of
this groundwater-level data, have been succinctly outlined in Table 1.

As depicted in Figure 2, a series of preprocessing steps were undertaken on the remote
sensing data to ensure radiometric and atmospheric correction. Similarly, preprocessing was
applied to the groundwater data, involving sorting and filtering based on the chosen date
intervals. The preprocessed remote sensing data were then subjected to a comprehensive
processing phase, enabling a robust supervised classification of distinct categories—namely,
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vegetation, bare land, urbanization, and water bodies. Concurrently, interpolation was
employed to derive comprehensive groundwater-level data covering the entire city. The
resultant classified maps underwent validation using test data to determine accuracy levels
for each interval. Concluding the process, during the post-processing stage, the land use
thematic maps were meticulously examined for temporal changes. These alterations were
subsequently correlated with the interpolated groundwater data, facilitating an assessment of
how urbanization expansion contributes to the depletion of groundwater levels across distinct
districts within the city. ENVI 5.3 was employed for processing and classifying satellite
imagery, while ArcMap 10.8 was utilized for groundwater data processing and plotting.
Additionally, Google Earth Pro and ESRI basemaps were scrutinized to gather test data for
verification purposes. Four sets of reference data points were collected for the years 2000, 2005,
2010, and 2015 from historical satellite imagery available on Google Earth Pro and represent
known locations within the study area encompassing various land cover classes. One set
of reference points for 2022 was derived from the basemap layer within ArcMap 10.8. A
systematic approach was employed to ensure representative coverage of all relevant land
cover classes across the entire study area during point collection. These points were imported
to the ArcMap 10.8 environment for making confusion matrix calculations.

Table 1. Description of the downloaded Landsat data.

No Satellite/Sensor Acquisition Date Remarks

1 Landsat 5 TM 11 June 2000

2 Landsat 7 ETM+ 17 June 2005

3 Landsat 5 TM 9 July 2010

4 Landsat 8 OLI/TIRS 21 June 2015

5 Landsat 8 OLI/TIRS 23 May 2022
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3.1. Support Vector Machine (SVM)

There are two main methods for digital image classification: unsupervised and su-
pervised classification. Both methods use automated quantitative decision-making mech-
anisms to classify pixels in an image into different categories [51]. In unsupervised clas-
sification, images are auto-grouped based on pixel similarity, forming spectral classes
or themes. However, this may miss subtle spectral differences in user-relevant themes.
Supervised classification solves this using a hand-classified training set. This set creates an
interpretation key describing spectral signatures for user-relevant themes [52–54].

Support vector machines (SVMs) are a type of supervised learning algorithm that are
based on the principle of statistical learning theory. SVMs are known for their accuracy and
robustness, and they are often used for classification and regression problems [51,55,56].
SVMs work by finding a hyperplane in the space of possible inputs that separates the data
into two classes. The hyperplane is chosen in such a way that it maximizes the margin
between the two classes. In SVMs, the hyperplane is developed using a training dataset
and validated using a testing dataset to prevent overfitting [55,57]. The efficiency of SVMs
with other classification algorithms has been proven in the literature [58,59]

In this study, we employed Support Vector Machine (SVM) classification due to its
efficiency for LULC classification to delineate four distinct classes: vegetation, bare land,
urbanization, and water bodies. Under the vegetation classification, we encompassed
dense vegetation, open green spaces, and agricultural land marked by crops and trees.
The bare land class accounted for terrains like mountains, sandy expanses, deserts, and
non-utilizable areas. The urbanization category encompassed residential, commercial, and
industrial zones. Lastly, the water body class incorporated wetlands, canals, rivers, and
lakes. In total, we obtained 3917 training samples, distributed as follows: 887 for vegetation,
1558 for bare land, 1307 for urbanization, and 165 for water bodies. The accuracy of the
classified maps for each date interval was evaluated through a confusion matrix, which is
elaborated upon later in the discussion.

3.2. Inverse Distance Weighting (IDW) Interpolation

Inverse distance weighting (IDW) interpolation is a method for estimating the value of
a variable at an unsampled location based on the values of the variable at nearby sampled
locations. It is a simple and effective method that is often used for mapping variables such
as elevation, rainfall, groundwater level, and population density. IDW interpolation is
an exact method, which means that the interpolated values will exactly match the values
at the sampled locations. It is also a convex method, which means that the interpolated
values will always be between the minimum and maximum values of the variable at the
sampled locations. IDW interpolation is only suitable for variables that have a continuous
model of spatial variation. This means that the variable must change smoothly from
one location to another, without any sudden jumps or discontinuities [20,60]. According
to [60], the fundamental concept underlying IDW interpolation involves employing a set
of sampled points through a weighted linear combination. It relies on both statistical and
mathematical approaches to construct surfaces and estimate values for unmeasured points.
The overarching equation utilized for IDW interpolation is as follows:

Ẑ(x0) =
n

∑
i=1

z(xi)d
−p
ij /

n

∑
i=1

d−p
ij (1)

In this context, Z represents the interpolated value at a grid node, while Zi signifies
the neighboring data points, and dij corresponds to the distances between the grid node
and the data points.

In this research, we employed IDW interpolation techniques within the ArcMap
environment to interpolate groundwater level data across five distinct intervals: 2000,
2005, 2010, 2015, and 2022 for the entire area of Kabul city. Subsequently, we utilized the
raster calculator to quantify the fluctuations in groundwater levels for each of the five-year
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periods. These outcomes were then cross-referenced with changes in land use, with a
specific focus on urbanization, to facilitate an impact assessment.

4. Results
4.1. Land Use and Land Cover (LULC)

LULC analysis of Landsat imagery from 2000 to 2022 revealed significant changes in
Kabul’s natural environment, likely due to human activities. The analysis identified four
land cover classes: bare land, urbanization, vegetation, and water bodies. These classes
exhibited variations across the city throughout the study period. A supervised classification
using a support vector machine (SVM) was employed to estimate the rate of change in land
cover classes across the study area for the five years 2000, 2005, 2010, 2015, and 2022. The
classification achieved high accuracy (Figures 3 and 4). Spatial patterns and total area of
each land cover class for the study period (2000–2022) are presented in Figures 3 and 4 and
Table 2. Analysis of these results reveals changes in the area of different LULC classes over
time. Notably, the data indicate a significant increase in urbanization.
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Table 2. Areal changes calculation of LULC between 2000 and 2022 in the Kabul city.

No Classes

2000–2005 2005–2010 2010–2015 2015–2022 2000–2022

Area

ha % ha % ha % ha % ha %

1 Vegetation 700 5 −100 −1 −600 −5 −200 −2 −200 −2

2 Bare land −6700 −9 0 0 −9200 −14 −1400 −2 −17,300 −26

3 Urbanization 5800 45 0 0 10,000 44 1700 7 17,500 71

4 Water bodies 300 60 0 0 −100 −25 −100 −33 100 33

The LULC analysis revealed substantial changes between 2000 and 2005. Vegetation
area increased by 700 hectares (5.15%), while bare land decreased by 6700 hectares (8.8%).
Notably, built-up areas exhibited the most significant increase, expanding by 5800 hectares
(44.9%). Water bodies also showed a noteworthy increase of 300 hectares (60%) (Figure 3a,c).
As observed, mostly bare land and vegetation were substituted with built-up areas over the
central districts of Kabul. Further research is needed to establish a definitive link between
these observed changes and potential drivers such as changes in the government system,
refugee resettlement, and population growth.
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As indicated in Figure 4, the LULC analysis for 2010 revealed a decrease in the
vegetation area of 100 hectares (1.0%). Notably, the remaining three land cover classes (bare
land, built-up areas, and water bodies) did not exhibit significant changes compared to
2005. The 2015 LULC analysis revealed substantial changes. Vegetation area decreased by
600 hectares (4.6%), and bare land area decreased even more significantly by 9200 hectares
(13.75%). Conversely, built-up areas, a crucial class for the city’s development, increased
by 10,000 hectares (43.67%). Notably, water bodies also showed a decrease of 100 hectares
(25%) (Figure 4) (Table 2).

The period from 2015 to 2022 witnessed continued changes in land cover. Vegetation
area decreased by 200 hectares (1.57%), and bare land area also exhibited a decrease of
1400 hectares (2.14%). Conversely, built-up area continued its expansion, increasing by
1700 hectares (6.91%). Notably, water bodies showed the most significant decline in this
period, with a decrease of 100 hectares (33.3%) (Figure 4) (Table 2). During the past two
decades, urbanization has been extended around the central capital and mostly the districts,
e.g., D5, D6, D7, D11, D12, D13, D15, D17, and D22.

As observed, analysis of land use and land cover (LULC) changes in Kabul city from
2000 to 2022 revealed a gradual increase in urbanization. Built-up areas expanded from
approximately 5800 hectares in 2000 to 10,000 hectares by 2015, with a further increase of
1700 hectares by 2022. The most notable increase in built-up areas occurred between 2010
and 2015. The other land cover classes have also undergone substantial changes over the
past two decades. Vegetation extent decreased by 200 hectares from 2000 to 2022. Bare land,
directly correlated with built-up areas, decreased by 17,300 hectares from 2000 to 2022. The
water body class, however, increased by 300 hectares from 2000 to 2005 but then decreased
again from 2005 to 2015. Overall, the water body area only expanded by 100 hectares across
the city (Table 2).
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The CA-Markov model was employed to simulate potential land use/land cover
(LULC) changes for 2030 and 2040. The model was trained on the historical LULC data
from 2000 to 2022 (identified using vector machine classification). Simulated LULC maps
for 2030 and 2040 are presented in Figure 5. The corresponding areas of each simulated land
cover class in 2030 and 2040 are detailed in Table 3. The CA-Markov model simulations
project changes in land cover for the study area. Vegetation area is expected to increase from
12,700 hectares in 2022 to 15,400 hectares in 2030 and 16,100 hectares in 2040. Conversely,
bare land is expected to decrease from 65,500 hectares in 2022 to 46,600 hectares in 2030
and 43,800 hectares in 2040. The predictions continue expansion of built-up areas, a key
indicator of urbanization. Built-up areas are expected to increase from 24,600 hectares in
2022 to 40,500 hectares in 2030 and 42,700 hectares in 2040. Water bodies, on the other hand,
exhibit a more complex pattern. While they are expected to increase to 600 hectares in 2030,
the model predicts a decrease to 400 hectares by 2040 (Table 3).
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Table 3. Calculation of the predicted LULC changes between 2022 and 2040 using CA-Markov model.

No Classes LULC Changes from 2022–2030 in ha LULC Changes from 2022–2040 in ha Status

1 Vegetation 2700 3400 Increase

2 Bare land −18,900 −21,700 Decrease

3 Urbanization 15,900 18,100 Increase

4 Water bodies 300 100 Increase

4.2. Groundwater Fluctuation

To assess the potential impacts of urbanization and land cover changes on Kabul city’s
groundwater, groundwater-level data were acquired from various sources. These sources
include private wells, public standard wells, and piezometers installed and monitored
by the Groundwater Department of the Ministry of Water and Energy (MWE) and DA-
CAAR. The wells and piezometers are situated across different areas of the city. A total
of 1007 groundwater-level data points were obtained for the analysis. These data were
distributed across the study periods, with 78 measurements from 2000, 527 from 2005, 116
from 2010, 189 from 2015, and 97 from 2022. This data was used to generate interpolation
maps depicting groundwater levels.

Groundwater-level data for 2000 reveal spatial variations across Kabul city. The eastern
part exhibited the shallowest groundwater table, ranging from 3 m to 22.6 m, while the
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central and western regions had the deepest groundwater, ranging from an unspecified
minimum to a maximum of 22.6 m (Figure 3b). By 2005, a decline in groundwater levels
was observed across the entire city, with the range expanding from 2 m to 34.5 m. Notably,
the eastern region continued to show the most significant decline, with a water table depth
now lower than the central and western regions (Figure 3b).

Groundwater-level data from observatory wells in 2010 indicate spatial variations
across Kabul city (Figure 4b). The eastern and central regions exhibited the shallowest
groundwater table, ranging from 6 m to 9 m. Conversely, the western and northwestern
districts, particularly D14, D11, D13, and a part of D5, had the deepest groundwater,
reaching up to 39.9 m. By 2015, the data (Figure 4d) reveals a decline in groundwater levels
across the entire city, with depths reaching up to 64.8 m. Central and southern districts
showed the shallowest levels in 2015, although deeper than those observed in 2010. Eastern
districts, particularly D19 and D21, and northern districts, specifically D11 and D17, had
the deepest groundwater levels in 2015.

The decline in groundwater levels observed throughout the previous years persists
in 2022. Data from recent well measurements indicate a range of 3 to 88.9 m, with eastern
Kabul districts exhibiting shallower groundwater compared to western districts. However,
compared to groundwater levels two decades ago, a significant decline is evident across
the entire city (Figure 4f).

Analysis of groundwater-level data collected from 2000 to 2022 indicates a decline
in groundwater levels across the study area. The data reveals a decrease in water table
depth in nearly all wells monitored. Figure 6 illustrates this trend, with groundwater levels
dropping within a range of 13 to 35 m between 2000 and 2022. This decline may be linked
to factors such as population growth, urban expansion, and climate change, which require
further investigation.
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5. Discussion

This study employed geospatial technology to assess the impact of land use and land
cover (LULC) dynamics on groundwater depletion in Kabul City, Afghanistan, from 2000
to 2022. The findings reveal a significant correlation between increasing urbanization and
declining groundwater levels. Urbanization has multiple consequences for groundwater
resources, e.g., reduced infiltration impervious surfaces (such as concrete and asphalt
hinder rainwater infiltration into the ground, thereby limiting groundwater recharge),
increased water demand (growing urban populations require more water for domestic and
industrial uses, leading to overexploitation of groundwater resources), and deterioration of
water quality (urban wastewater infiltration can contaminate groundwater with pollutants).
Landsat imagery from missions 5, 7 (Enhanced Thematic Mapper Plus), and 8 (Operational
Land Imager/Thermal Infrared Sensor) was acquired at five-year intervals over the past
two decades to map land use/land cover (LULC) dynamics. This high-resolution time
series data facilitated the analysis of urbanization patterns. Concurrently, groundwater well
data encompassing 1007 points was employed to delineate groundwater levels and assess
depletion trends over the same two-decade period. Change detection techniques were
applied to both LULC and groundwater data, followed by spatial interpolation to elucidate
the relationship between urbanization patterns and groundwater depletion. A strong
spatial correlation was observed between the patterns of LULC change and groundwater
level fluctuations across the entire city. Notably, districts characterized by the most intensive
urban expansion exhibited the most pronounced declines in groundwater levels.

Our analysis revealed a significant decline in groundwater levels within urbanizing
districts between 2000 and 2005, with an average decrease of approximately 10 m (Figure 3).
This period coincided with an influx of Afghan refugees from neighboring countries to
Kabul due to a government transition. This influx likely caused a significant increase in
water demands. Additionally, the concurrent expansion of urbanization around the city
likely triggered a rise in domestic well usage, further straining drinking water supplies.
Climate change is another factor that may have contributed to the reduction in precipitation
feeding the Kabul aquifer. This trend continued during the 2005–2010 period, with a less
pronounced decline of roughly 4 m. Interestingly, the spatial pattern of groundwater deple-
tion shifted from eastern to western districts during this five-year interval. This shift could
potentially be attributed to a confluence of factors, including population growth, urban
expansion, and the overexploitation of groundwater resources for agricultural purposes.

A substantial decline in groundwater levels, exceeding 20 m, was observed across
the northern, eastern, and western districts during the 2010–2015 period (Figure 4). This
coincided with a significant expansion of built-up areas evident in the corresponding LULC
data, suggesting a causal relationship between urbanization and increased groundwater
consumption. The conversion of vegetated and bare lands suitable for infiltration, partic-
ularly in the northern, eastern, and southwestern peri-urban areas of Kabul, to built-up
areas has likely significantly reduced groundwater recharge. This process is known as
urban sprawl. Additionally, the expansion of built-up areas along the Kabul and Paghman
Rivers may have further exacerbated groundwater demands due to increased population
density and potential changes in water usage patterns. Furthermore, analysis of LULC
and well data from 2015 to 2022 reveals continued depletion, with an additional decrease
of approximately 24 m in the northwestern and western districts, particularly within Dis-
tricts D11, D13, and D17. Despite the potentially high vegetation cover in these districts,
groundwater depletion has likely occurred over the past two decades. A significant con-
tributing factor could be the overexploitation of groundwater resources by agricultural
activities. The widespread adoption of solar-powered irrigation systems may have enabled
farmers to pump groundwater for extended periods, potentially exceeding natural aquifer
recharge rates.

Our findings indicate a strong negative impact of urban expansion on groundwater
levels in Kabul City. The observed spatial correlation between land use/land cover (LULC)
changes and groundwater depletion suggests a causal relationship. Utilizing the CA-
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Markov model’s predictions for LULC changes over the next 10 and 20 years (2030–2040),
we can anticipate further depletion of groundwater resources (Figure 5). This scenario
necessitates the development and implementation of a comprehensive groundwater man-
agement strategy to ensure the city’s long-term water security.

The accuracy of the LULC maps derived from remote sensing data was assessed using
ground truth data for verification (in total, 3917 reference points, including 936 for 2000, 973
for 2005, 976 for 2010, 476 for 2015, and 556 for 2022). Direct access to field truth data was
not available; therefore, high-resolution imagery from Google Earth served as the reference
data for this validation process. We attempted to collect the reference data randomly from
each class to cover the entire study area. Overall accuracy, user accuracy, producer accuracy,
and Kappa coefficient were calculated for each classified image (2000, 2005, 2010, 2015, 2022)
to evaluate both thematic and positional correctness. As presented in Table 4, the overall
accuracy for all LULC maps exceeded 86%. Notably, these values surpass the minimum
threshold of 85% established by the USGS for satisfactory land cover classifications [61].
Furthermore, the Kappa coefficients for each classified map ranged from 78.4% to 93.5%,
with most exceeding 0.80. This indicates a high level of agreement between the classified
maps and the reference data, supporting their suitability for further analyses. This study
encountered limitations in differentiating built-up areas with low classification accuracy,
particularly when these areas comprised mixed construction materials and were confused
with bare land. Building roof materials in Kabul exhibit significant spatial variability.
Local construction practices incorporate mud roofs, which spectrally resemble bare land
composed of clay and sand. This spectral similarity presents a challenge for accurate land
use/land cover (LULC) classification using remote sensing data. However, the accuracy
of simulated land use/land cover (LULC) from the CA-Markov model is demonstrably
linked to the quality and availability of input data. In this study, while we lack field-based
truth data for future scenarios to directly assess the CA-Markov model’s accuracy, we can
indirectly evaluate it using the generated LULC data for the 2000–2022 period. The high
overall accuracy of the model for this historical period suggests its potential for simulating
future LULC changes. Additionally, the spatial patterns in the model output exhibit a
strong correlation with the input data, further supporting its reliability. A key limitation of
this study is the absence of direct ground truth data for future LULC simulations. Future
research efforts could address this limitation by incorporating field data collection for
model validation.

Table 4. Results of accuracy assessments of LULC between 2000 and 2022 achieved from confusion matrix.

Classes

2000 2005 2010 2015 2022

User
Accuracy

(%)

Producer
Accuracy

(%)

User
Accuracy

(%)

Producer
Accuracy

(%)

User
Accuracy

(%)

Producer
Accuracy

(%)

User
Accuracy

(%)

Producer
Accuracy

(%)

User
Accuracy

(%)

Producer
Accuracy

(%)

Vegetation 91.5 99.2 89.8 98.9 89.8 91.1 96.4 99.3 94.2 98.0

Bare land 95.6 89.6 96.8 90.8 81.0 90.8 97.4 92.1 94.8 91.7

Urbanization 98.5 95.3 93.9 93.6 90.8 75.5 92.6 96.6 88.8 91.6

Water bodies 80.0 96.6 88.9 100.0 100.0 85.3 91.7 100.0 95.8 95.8

Kappa
coefficient 92.5 91.0 78.4 93.5 89.1

Overall
accuracy 95.0 93.8 86.0 95.6 93.0

6. Conclusions

In alignment with the primary objective of this study, which was to assess the influence
of land use/land cover (LULC) changes on groundwater fluctuations across Kabul over
the past two decades (2000–2022), a geospatial approach was implemented. A time series
of Landsat imagery, encompassing Landsat 5, 7 ETM+, and 8 OLI/TIRS, was utilized to
generate LULC maps using a supervised classification algorithm based on support vector
machines. This analysis produced five distinct LULC maps corresponding to the years
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2000, 2005, 2010, 2015, and 2022. Our findings revealed statistically significant changes in
LULC classes over the study period, particularly a notable increase in the built-up class
within Kabul City.

Our analysis revealed a substantial increase in urban extent of 44.9% between 2000
and 2005, coinciding with a decrease in bare land cover of 8.8%. This shift can be attributed
to factors such as changes in government, refugee resettlement programs, and population
growth. The subsequent period (2005–2010) did not exhibit significant changes in land cover
classes. However, a renewed surge in urban expansion was observed from 2010 to 2015,
with a 43.67% increase in built-up areas. Conversely, vegetation cover, bare land, and water
bodies experienced reductions of 4.6%, 13.75%, and 25%, respectively, during this timeframe.
This trend continued over the next five years (2015–2020), with a further expansion of built-
up class (6.91%) at the expense of other land cover classes. Notably, these land cover
changes coincided with a decline in groundwater levels across the city. Over the entire
study period (2000–2022), urban areas within Kabul City expanded by a significant 70%,
particularly within Districts 5, 6, 7, 11, 12, 13, 15, 17, and 22. Furthermore, predictions based
on the CA-Markov model, considering the current LULC patterns, suggest a continued
expansion of built-up areas over the next two decades.

A strong spatial correlation was observed between the patterns of LULC changes
and groundwater-level fluctuations across Kabul City. Districts characterized by the most
intensive urban expansion exhibited the most pronounced declines in groundwater levels.
This spatial correspondence suggests a potential causal relationship between urbanization
and groundwater depletion. Our analysis of LULC and groundwater well data further
indicates that overexploitation of groundwater resources for agricultural purposes in
rural villages surrounding the central districts likely contributes to the overall decline in
groundwater levels.

The projected continuation of current LULC trends and groundwater depletion pat-
terns suggests a heightened risk of water scarcity, land subsidence, and environmental
degradation for Kabul City in the coming decades. To mitigate these potential threats,
several strategies are highly recommended, including water conservation initiatives, rain-
water harvesting programs, improved wastewater management practices, exploration of
alternative water sources, and the implementation of sustainable urban planning princi-
ples. Sustainable groundwater management is critical for Kabul’s future. Implementing
several key strategies is recommended. First, adopting an Integrated Water Resources
Management (IWRM) framework would ensure coordinated management across all water
sectors. Second, a robust monitoring system with a centralized database for groundwater
levels and quality would provide real-time data for informed decision-making. Third, a
legal framework regulating extraction and preventing overexploitation is crucial. Fourth,
public education programs promoting water conservation and sustainable practices, along
with community engagement, are essential. Fifth, investment in modern water recycling
technologies and efficient irrigation systems would minimize reliance on groundwater. Fi-
nally, for transboundary aquifers, collaborating with neighboring countries on sustainable
management is vital. Implementing these scientifically grounded recommendations will
contribute significantly to the long-term health of Kabul’s groundwater resources.

This study serves as a valuable foundation for further research on Kabul’s water
resources and management. Future investigations could focus on groundwater quality
assessment and future trends based on the CA-Markov-generated model for LULC, the de-
velopment of models to predict water demand and groundwater availability under various
scenarios, and a socio-economic impact analysis of water resource management strategies.

Author Contributions: Conceptualization, H.A., G.O. and A.P.; methodology, H.A.; software, A.P.
and S.A.; validation, H.A., E.P. and A.B.; formal analysis, A.B.; investigation, H.A.; resources, G.O.,
Y.A. and S.A.; data curation, E.P.; writing—original draft preparation, A.P.; writing—review and
editing, H.A.; visualization, A.P.; supervision, H.A.; project administration, H.A.; funding acquisition,
A.B. and Y.A. All authors have read and agreed to the published version of the manuscript.



Geosciences 2024, 14, 132 14 of 16

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wada, Y.; Van Beek, L.P.H.; Van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater

resources. Geophys. Res. Lett. 2010, 37. [CrossRef]
2. Zhang, X.; Zhang, L.; He, C.; Li, J.; Jiang, Y.; Ma, L. Quantifying the impacts of land use/land cover change on groundwater

depletion in Northwestern China—A case study of the Dunhuang oasis. Agric. Water Manag. 2014, 146, 270–279. [CrossRef]
3. Agam, N.; Evett, S.R.; Tolk, J.A.; Kustas, W.P.; Colaizzi, P.D.; Alfieri, J.G.; McKee, L.G.; Copeland, K.S.; Howell, T.A.; Chávez, J.L.

Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area. Adv. Water Resour. 2012, 50, 20–30.
[CrossRef]

4. Ahmadi, H.; Kaya, O.; Babadagi, E.; Savas, T.; Pekkan, E. GIS—Based groundwater potentiality mapping using AHP and FR
models in central Antalya, Turkey. Environ. Sci. Proc. 2021, 5, 11.

5. Dong, S.; Samsonov, S.; Yin, H.; Ye, S.; Cao, Y. Time-series analysis of subsidence associated with rapid urbanization in Shanghai,
China measured with SBAS InSAR method. Environ. Earth Sci. 2014, 72, 677–691. [CrossRef]

6. Jeong, C.H. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J.
Hydrol. 2001, 253, 194–210. [CrossRef]

7. Misra, A.K. Impact of Urbanization on the Hydrology of Ganga Basin (India). Water Resour. Manag. 2011, 25, 705–719. [CrossRef]
8. Oiro, S.; Comte, J.C.; Soulsby, C.; MacDonald, A.; Mwakamba, C. Depletion of groundwater resources under rapid urbanisation

in Africa: Recent and future trends in the Nairobi Aquifer System, Kenya. Hydrogeol. J. 2020, 28, 2635–2656. [CrossRef]
9. Sohail, M.T.; Manzoor, Z.; Ehsan, M.; Al-Ansari, N.; Khan, M.B.; Shafi, A.; Ullah, J.; Hussain, A.; Raza, D.; Usman, U.; et al.

Impacts of urbanization, LULC, LST, and NDVI changes on the static water table with possible solutions and water policy
discussions: A case from Islamabad, Pakistan. Front. Environ. Sci. 2023, 11, 1018500. [CrossRef]

10. Zhou, Y.; Wang, L.; Liu, J.; Li, W.; Zheng, Y. Options of sustainable groundwater development in Beijing Plain, China. Phys. Chem.
Earth 2012, 47–48, 99–113. [CrossRef]

11. Ahmadi, H.; Sahak, A.S.; Ayoobi, A.W.; Pekkan, E.; Inceoğlu, M.; Karsli, F. Application of GIS-Based AHP Model for the Impact
Assessment of COVID-19 Lockdown on Environment Quality: The Case of Kabul City, Afghanistan. J. Indian Soc. Remote Sens.
2023, 51, 439–452. [CrossRef]

12. Ayoobi, A.W.; Ahmadi, H.; Inceoglu, M.; Pekkan, E. Seasonal impacts of buildings’ energy consumption on the variation and
spatial distribution of air pollutant over Kabul City: Application of Sentinel—5P TROPOMI products. Air Qual. Atmos. Health
2021, 15, 73–83. [CrossRef]

13. Zaryab, A.; Nassery, H.R.; Alijani, F. The effects of urbanization on the groundwater system of the Kabul shallow aquifers,
Afghanistan. Hydrogeol. J. 2022, 30, 429–443. [CrossRef]

14. Macrotrends, L. Kabul, Afghanistan Metro Area Population 1950–2023|MacroTrends. Available online: https://www.
macrotrends.net/cities/20002/kabul/population (accessed on 2 August 2023).

15. National Statistic and Information Authority (NSIA). Estimated Population of Afghanistan 2020–21; NSIA Authority: Kabul,
Afghanistan, 2021.

16. Mack, T.J.; Chornack, M.P.; Taher, M.R. Groundwater-level trends and implications for sustainable water use in the Kabul Basin,
Afghanistan. Environ. Syst. Decis. 2013, 33, 457–467. [CrossRef]

17. Ndlovu, M.S.; Demlie, M. Statistical analysis of groundwater level variability across KwaZulu-Natal Province, South Africa.
Environ. Earth Sci. 2018, 77, 739. [CrossRef]

18. Noori, A.R.; Singh, S.K. Spatial and temporal trend analysis of groundwater levels and regional groundwater drought assessment
of Kabul, Afghanistan. Environ. Earth Sci. 2021, 80, 698. [CrossRef]

19. Pathak, A.A.; Dodamani, B.M. Trend Analysis of Groundwater Levels and Assessment of Regional Groundwater Drought:
Ghataprabha River Basin, India. Nat. Resour. Res. 2019, 28, 631–643. [CrossRef]

20. Chen, J.; Zhang, H.; Qian, H.; Wu, J.; Zhang, X. Selecting proper method for groundwater interpolation based on spatial
correlation. In Proceedings of the 2013 4th International Conference on Digital Manufacturing and Automation, ICDMA 2013,
Shinan, China, 29–30 June 2013; pp. 1192–1195.

21. Minnig, M.; Moeck, C.; Radny, D.; Schirmer, M. Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland.
J. Hydrol. 2018, 563, 1135–1146. [CrossRef]

22. Tubau, I.; Vázquez-Suñé, E.; Carrera, J.; Valhondo, C.; Criollo, R. Quantification of groundwater recharge in urban environments.
Sci. Total Environ. 2017, 592, 391–402. [CrossRef]

23. Vázquez-Suñé, E.; Sánchez-Vila, X.; Carrera, J. Introductory review of specific factors influencing urban groundwater, an emerging
branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeol. J. 2005, 13, 522–533. [CrossRef]

24. Biswas, B.; Jain, S.; Rawat, S. Spatio-temporal analysis of groundwater levels and projection of future trend of Agra city, Uttar
Pradesh, India. Arab. J. Geosci. 2018, 11, 278. [CrossRef]

https://doi.org/10.1029/2010GL044571
https://doi.org/10.1016/j.agwat.2014.08.017
https://doi.org/10.1016/j.advwatres.2012.07.010
https://doi.org/10.1007/s12665-013-2990-y
https://doi.org/10.1016/S0022-1694(01)00481-4
https://doi.org/10.1007/s11269-010-9722-9
https://doi.org/10.1007/s10040-020-02236-5
https://doi.org/10.3389/fenvs.2023.1018500
https://doi.org/10.1016/j.pce.2011.09.001
https://doi.org/10.1007/s12524-022-01633-5
https://doi.org/10.1007/s11869-021-01085-9
https://doi.org/10.1007/s10040-021-02445-6
https://www.macrotrends.net/cities/20002/kabul/population
https://www.macrotrends.net/cities/20002/kabul/population
https://doi.org/10.1007/s10669-013-9455-4
https://doi.org/10.1007/s12665-018-7929-x
https://doi.org/10.1007/s12665-021-10005-0
https://doi.org/10.1007/s11053-018-9417-0
https://doi.org/10.1016/j.jhydrol.2017.09.058
https://doi.org/10.1016/j.scitotenv.2017.03.118
https://doi.org/10.1007/s10040-004-0360-2
https://doi.org/10.1007/s12517-018-3577-4


Geosciences 2024, 14, 132 15 of 16

25. Choi, W.; Galasinski, U.; Cho, S.J.; Hwang, C.S. A Spatiotemporal Analysis of Groundwater Level Changes in Relation to Urban
Growth and Groundwater Recharge Potential for Waukesha County, Wisconsin. Geogr. Anal. 2012, 44, 219–234. [CrossRef]

26. Ibkar, A.; Mukherjee, A.; Didwania, N.; Rai, S. Impact of Urbanization on Groundwater in Changing Climatic Scenario: A Case
Study. In Impacts of Urbanization on Hydrological Systems in India; Springer International Publishing: New York, NY, USA, 2023; pp.
323–343.

27. Ismail, S.; Ahmed, M.F.; Bakar, M.Z.A. Assessing the impact of urbanization on groundwater quality of lahore region, Pakistan.
Environ. Sci. Pollut. Res. 2023, 30, 83929–83949. [CrossRef] [PubMed]

28. Jat, M.K.; Khare, D.; Garg, P.K. Urbanization and its impact on groundwater: A remote sensing and GIS-based assessment
approach. Environmentalist 2009, 29, 17–32. [CrossRef]

29. Anteneh, Z.S.; Awoke, B.G.; Reda, T.M.; Jothimani, M. Groundwater potential mapping using integrations of remote sensing and
analytical hierarchy process methods in Ataye-watershed, Middle Awash Basin, Ethiopia. Sustain. Water Resour. Manag. 2022, 8, 183.
[CrossRef]

30. Bai, Z.; Liu, Q.; Liu, Y. Groundwater Potential Mapping in Hubei Region of China Using Machine Learning, Ensemble Learning,
Deep Learning and AutoML Methods. Nat. Resour. Res. 2022, 31, 2549–2569. [CrossRef]

31. Hasanuzzaman, M.; Mandal, M.H.; Hasnine, M.; Shit, P.K. Groundwater potential mapping using multi-criteria decision, bivariate
statistic and machine learning algorithms: Evidence from Chota Nagpur Plateau, India. Appl. Water Sci. 2022, 12, 58. [CrossRef]

32. Masoud, A.M.; Pham, Q.B.; Alezabawy, A.K.; Abu El-Magd, S.A. Efficiency of Geospatial Technology and Multi-Criteria Decision
Analysis for Groundwater Potential Mapping in a Semi-Arid Region. Water 2022, 14, 882. [CrossRef]

33. Melese, T.; Belay, T. Groundwater Potential Zone Mapping Using Analytical Hierarchy Process and GIS in Muga Watershed,
Abay Basin, Ethiopia. Glob. Chall. 2022, 6, 2100068. [CrossRef]

34. Aqili, S.W.; Hong, N.; Hama, T.; Suenaga, Y.; Kawagoshi, Y. Application of Modified Tank Model to Simulate Groundwater Level
Fluctuations in Kabul Basin, Afghanistan. J. Water Environ. Technol. 2016, 14, 57–66. [CrossRef]

35. Brati, M.Q.; Ishihara, M.I.; Higashi, O. Groundwater level reduction and pollution in relation to household water management in
Kabul, Afghanistan. Sustain. Water Resour. Manag. 2019, 5, 1315–1325. [CrossRef]

36. Jawadi, H.A.; Iqbal, M.W.; Naseri, M.; Farahmand, A.; Azizi, A.H.; Eqrar, M.N. Nitrate contamination in groundwater of Kabul
Province, Afghanistan: Reasons behind and conceptual management framework discourse. J. Mt. Sci. 2022, 19, 1274–1291.
[CrossRef]

37. Singh, S.K.; Noori, A.R. Delineation of groundwater recharge potential zones for its sustainable development utilizing GIS
approach in Kabul basin, Afghanistan. Arab. J. Geosci. 2022, 15, 213. [CrossRef]

38. Saffi, M.H. National Alarming on Groundwater Natural Storage Depletion and Water Quality Deterioration of Kabul City and Immediate
Response to the Drinking Water Crisis; DAACAR: Kabul, Afghanistan, 2019.

39. Wafa, W.; Hairan, M.H.; Waizy, H. The Impacts of Urbanization on Kabul City ’ s Groundwater Quality. Int. J. Adv. Sci. Technol.
2020, 29, 10796–10809.

40. Qutbudin, I.; Shiru, M.S.; Sharafati, A.; Ahmed, K.; Al-Ansari, N.; Yaseen, Z.M.; Shahid, S.; Wang, X. Seasonal drought pattern
changes due to climate variability: Case study in Afghanistan. Water 2019, 11, 1096. [CrossRef]

41. Jawadi, H.A.; Sagin, J.; Snow, D.D. A detailed assessment of groundwater quality in the kabul basin, afghanistan, and suitability
for future development. Water 2020, 12, 2890. [CrossRef]

42. Ahmadi, A.S.; Kajita, Y. Evaluation of urban land development direcction in kabul city, Afghanistan. World Acad. Sci. Eng. Technol.
Int. J. Urban Civ. Eng. 2017, 11, 152–162.

43. Hussaini, M.S.; Farahmand, A.; Shrestha, S.; Neupane, S.; Abrunhosa, M. Site selection for managed aquifer recharge in the city of
Kabul, Afghanistan, using a multi-criteria decision analysis and geographic information system. Hydrogeol. J. 2022, 30, 59–78.
[CrossRef]

44. Houben, G.; Niard, N.; Tünnermeier, T.; Himmelsbach, T. Hydrogeology of the Kabul Basin (Afghanistan), part I: Aquifers and
hydrology. Hydrogeol. J. 2009, 17, 665–677. [CrossRef]

45. Ahmadi, H.; Uygucgil, H. Targeting iron prospective within the Kabul Block (SE Afghanistan) via hydrothermal alteration
mapping using remote sensing techniques. Arab. J. Geosci. 2021, 14, 183. [CrossRef]

46. Robert, E.B.; Amin, M.A.; Michael, P.C.; David, K.M. Inventory of Ground-Water Resources in the Kabul Basin, Afghanistan; USGS:
Reston, VA, USA, 2005.

47. Shroder, J.F.; Eqrar, N.; Waizy, H.; Ahmadi, H.; Weihs, B.J. Review of the Geology of Afghanistan and its water resources. Int. Geol.
Rev. 2021, 64, 1009–1031. [CrossRef]

48. Bohannon, R.G.; Turner, K.J. Geologic map of quadrangle 3468. Chak-e-Wardak (509) and Kabul (510) quadrangles. U.S. Geol.
Surv. Sci. Investig. Rep. 2005. Available online: https://pubs.usgs.gov/of/2005/1107/A/ (accessed on 6 May 2024).

49. Bohannon, R.G. Geologic and Topographic Maps of the Kabul North 30’ × 60’ Quadrangle, Afghanistan. U.S. Geol. Surv. Sci.
Investig. Map 2010, 3120, 34.

50. Abdullah, S.H.; Chmyriov, V.M.; Dronov, V.I. Geology and Mineral Resources of Afghanistan; British Geological Survey: Nottingham,
UK, 2008; Volume 2.

51. Oommen, T.; Misra, D.; Twarakavi, N.K.C.; Prakash, A.; Sahoo, B.; Bandopadhyay, S. An objective analysis of support vector
machine based classification for remote sensing. Math. Geosci. 2008, 40, 409–424. [CrossRef]

52. Hord, R. Digital Image Processing of Remotely Sensed Data; Acadamic Press: New York, NY, USA, 1982; p. 256.

https://doi.org/10.1111/j.1538-4632.2012.00848.x
https://doi.org/10.1007/s11356-023-28400-4
https://www.ncbi.nlm.nih.gov/pubmed/37351747
https://doi.org/10.1007/s10669-008-9176-2
https://doi.org/10.1007/s40899-022-00772-4
https://doi.org/10.1007/s11053-022-10100-4
https://doi.org/10.1007/s13201-022-01584-9
https://doi.org/10.3390/w14060882
https://doi.org/10.1002/gch2.202100068
https://doi.org/10.2965/jwet.15-039
https://doi.org/10.1007/s40899-019-00312-7
https://doi.org/10.1007/s11629-021-7002-1
https://doi.org/10.1007/s12517-021-09410-3
https://doi.org/10.3390/w11051096
https://doi.org/10.3390/w12102890
https://doi.org/10.1007/s10040-021-02408-x
https://doi.org/10.1007/s10040-008-0377-z
https://doi.org/10.1007/s12517-020-06430-3
https://doi.org/10.1080/00206814.2021.1904297
https://pubs.usgs.gov/of/2005/1107/A/
https://doi.org/10.1007/s11004-008-9156-6


Geosciences 2024, 14, 132 16 of 16

53. Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd ed.; Pearson: Upper Saddle River, NJ, USA,
2015; ISBN 0132058405.

54. Lillesand, T.M.; Kiefer, R.W. Remote sensing and image interpretation. Remote Sens. Image Interpret. 1979, 146, 448–449. [CrossRef]
55. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011,

66, 247–259. [CrossRef]
56. Sain, S.R.; Vapnik, V.N. The Nature of Statistical Learning Theory. Technometrics 1996, 38, 409. [CrossRef]
57. Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011.

[CrossRef]
58. Dabija, A.; Kluczek, M.; Zagajewski, B.; Raczko, E.; Kycko, M.; Al-Sulttani, A.H.; Tardà, A.; Pineda, L.; Corbera, J. Comparison of

support vector machines and random forests for corine land cover mapping. Remote Sens. 2021, 13, 777. [CrossRef]
59. Chowdhury, M.S. Comparison of accuracy and reliability of random forest, support vector machine, artificial neural network and

maximum likelihood method in land use/cover classification of urban setting. Environ. Chall. 2024, 14, 100800. [CrossRef]
60. Khouni, I.; Louhichi, G.; Ghrabi, A. Use of GIS based Inverse Distance Weighted interpolation to assess surface water quality:

Case of Wadi El Bey, Tunisia. Environ. Technol. Innov. 2021, 24, 101892. [CrossRef]
61. Khawaldah, H.A.; Farhan, I.; Alzboun, N.M. Simulation and prediction of land use and land cover change using GIS, remote

sensing and CA-Markov model. Glob. J. Environ. Sci. Manag. 2020, 6, 215–232. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2307/634969
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.2307/1271324
https://doi.org/10.1080/01431160512331314083
https://doi.org/10.3390/rs13040777
https://doi.org/10.1016/j.envc.2023.100800
https://doi.org/10.1016/j.eti.2021.101892
https://doi.org/10.22034/gjesm.2020.02.07

	Introduction 
	Hydrological and Geological Settings of Study Area 
	Materials and Methods 
	Support Vector Machine (SVM) 
	Inverse Distance Weighting (IDW) Interpolation 

	Results 
	Land Use and Land Cover (LULC) 
	Groundwater Fluctuation 

	Discussion 
	Conclusions 
	References

